Chemical Force Microscopy Nanoscale Probing of Fundamental Chemical Interactions

  • Aleksandr Noy
  • Dmitry V. Vezenov
  • Charles M. Lieber

Intermolecular forces impact a wide spectrum of problems in condensed phases: from molecular recognition, self-assembly, and protein folding at the molecular and nanometer scale, to interfacial fracture, friction, and lubrication at a macroscopic length scale. Understanding these phenomena, regardless of the length scale, requires fundamental knowledge of the magnitude and range of underlying weak interactions between basic chemical functionalities in these systems (Figure 1). While the theoretical description has long recognized that intermolecular forces are necessarily microscopic in origin, experimental efforts in direct force measurements at the microscopic level have been lagging behind and have only intensified in the course of the last decade. Atomic force microscopy (AFM)1, 2 is an ideal tool for probing interactions between various chemical groups, since it has pico-Newton force sensitivity (i.e., several orders of magnitude better than the weakest chemical bond3) and sub-nanometer spatial resolution (i.e., approaching the length of a chemical bond). These features enable AFM to produce nanometer to micron scale images of surface topography, adhesion, friction, and compliance, and make it an essential characterization technique for fields ranging from materials science to biology.


Atomic Force Microscopy Surface Free Energy Adhesion Force Atomic Force Microscopy Probe Contact Mechanic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binnig, G.; Quate, C. F.; Gerber, C. Phys. Rev. Lett. 1986, 56, 930–3.CrossRefADSGoogle Scholar
  2. 2.
    Quate, C. Surf. Sci. 1994, 299/300, 980.Google Scholar
  3. 3.
    Smith, D. P. E. Rev. Sci. Instr. 1995, 66, 3191–5.CrossRefADSGoogle Scholar
  4. 4.
    Frisbie, C. D.; Rozsnyai, L. F.; Noy, A.; Wrighton, M. S.; Lieber, C. M. Science 1994, 265, 2071.CrossRefADSGoogle Scholar
  5. 5.
    Albrecht, T. R.; Akamine, S.; Carver, T. E.; Quate, C. F. J. Vac. Sci. Technol. A, Vac. Surf. Films 1990, 8, 3386–96.CrossRefADSGoogle Scholar
  6. 6.
    Meyer, G.; Amer, N. M. Appl. Phys. Lett. 1988, 53, 1045–7.CrossRefADSGoogle Scholar
  7. 7.
    Cleveland, J. P.; Schaffer, T. E.; Hansma, P. K. Phys. Rev. B 1995, 52, R8692–R8695.CrossRefADSGoogle Scholar
  8. 8.
    Israelachvili, J. Intermolecular and Surface Forces. Academic Press: New York, 1992.Google Scholar
  9. 9.
    Grandbois, M.; Beyer, M.; Rief, M.; Clausen-Schaumann, H.; Gaub, H. E. Science 1999, 283, 1727–1730.CrossRefADSGoogle Scholar
  10. 10.
    Burnham, N. A.; Colton, R. J.; Pollock, H. M. J. Vac. Sci. Technol. A, Vac. Surf. Films 1991, 9, 2548–56.CrossRefADSGoogle Scholar
  11. 11.
    Schaffer, T.; Viani, M.; Walters, D.; Drake, B.; Runge, E.; Cleveland, J.; Wendman, M.; Hansma, P. In Micromachining and Imaging; SPIE: San Jose, CA, 1997; Vol. 3009, p 48–52.Google Scholar
  12. 12.
    Viani, M. B.; Schaffer, T. E.; Chand, A.; Rief, M.; Gaub, H. E.; Hansma, P. K. J. Appl. Phys. 1999, 86, 2258–62.CrossRefADSGoogle Scholar
  13. 13.
    Israelachvili, J. Acc. Chem. Res. 1987, 20, 415–21.CrossRefGoogle Scholar
  14. 14.
    Chaudhury, M. K.; Whitesides, G. M. Langmuir 1991, 7, 1013–25.CrossRefGoogle Scholar
  15. 15.
    Chaudhury, M. K.; Whitesides, G. M. Science 1992, 255(5049), 1230–2.CrossRefADSGoogle Scholar
  16. 16.
    Kappl, M.; Butt, H. J. Particle & Particle Systems Characterization 2002, 19, 129.CrossRefGoogle Scholar
  17. 17.
    Ducker, W. A.; Senden, T. J.; Pashley, R. M. Nature 1991, 353, 239–241.CrossRefADSGoogle Scholar
  18. 18.
    Houston, J. E.; Michalske, T. A. Nature 1992, 356, 266–267.CrossRefADSGoogle Scholar
  19. 19.
    Bustamante, C.; Macosko, J. C.; Wuite, G. J. L. Nature Reviews Molec. Cell Biol. 2000, 1, 130–136.CrossRefGoogle Scholar
  20. 20.
    Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.CrossRefGoogle Scholar
  21. 21.
    Porter, M. D.; Bright, T. B.; Allara, D. L.; Chidsey, C. E. D. J. Am. Chem. Soc. 1987, 109, 3559–3568.CrossRefGoogle Scholar
  22. 22.
    Bain, C. D.; Troughton, E. B.; Tao, Y.-T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. J. Am. Chem. Soc. 1989, 111.Google Scholar
  23. 23.
    Bain, C. D.; Evall, J.; Whitesides, G. M. J. Am. Chem. Soc 1989, 111, 7155.CrossRefGoogle Scholar
  24. 24.
    Bain, C.; Whitesides, G. Angew. Chem. Int. Ed. Engl. 1989, 28, 506–512.CrossRefGoogle Scholar
  25. 25.
    Whitesides, G. M.; Laibinis, P. E. Langmuir 1990, 6, 87.CrossRefGoogle Scholar
  26. 26.
    Noy, A.; Frisbie, C. D.; Rozsnyai, L. F.; Wrighton, M. S.; Lieber, C. M. J. Am. Chem. Soc. 1995, 117, 7943–7951.CrossRefGoogle Scholar
  27. 27.
    Vezenov, D. V.; Noy, A.; Rosznyai, L. F.; Lieber, C. M. J. Am.Chem. Soc. 1997, 119, 2006–2015.CrossRefGoogle Scholar
  28. 28.
    Noy, A.; Sanders, C. H.; Vezenov, D. V.; Wong, S. S.; Lieber, C. M. Langmuir 1998, 14, 1508–1511.CrossRefGoogle Scholar
  29. 29.
    Nakagawa, T.; Ogawa, K.; Kurumizawa, T.; Ozaki, S. Japanese J. Appl. Phys., Part 2 (Letters) 1993, 32, L294–6.CrossRefGoogle Scholar
  30. 30.
    Nakagawa, T.; Ogawa, K.; Kurumizawa, T. J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. 1994, 12, 2215–18.CrossRefADSGoogle Scholar
  31. 31.
    Green, J.-B. D.; McDermott, M. T.; Porter, M. D.; Siperko, L. M. J. Phys.Chem. 1995, 99, 10960.CrossRefGoogle Scholar
  32. 32.
    Thomas, R. C.; Tangyunyong, P.; Houston, J. E.; Michalske, T. A.; Crooks, R. M. J. Phys. Chem. 1994, 98, 4493.CrossRefGoogle Scholar
  33. 33.
    Sinniah, S. K.; Steel, A. B.; Miller, C. J.; Reutt-Robey, J. E. J. Am. Chem. Soc. 1996, 118, 8925–8931.CrossRefGoogle Scholar
  34. 34.
    Zepeda, S.; Yeh, Y.; Noy, A. Langmuir 2003, 19, 1457–1461.CrossRefGoogle Scholar
  35. 35.
    Vezenov, D. V.; Noy, A.; Lieber, C. M. J. Adhes. Sci.Tech. 2003, 17, 1385–1401.CrossRefGoogle Scholar
  36. 36.
    Noy, A.; Zepeda, S.; Orme, C. A.; Yeh, Y.; De Yoreo, J. J. J. Am. Chem. Soc. 2003, 125, 1356 – 1362.CrossRefGoogle Scholar
  37. 37.
    Noy, A.; Huser, T. R. Rev. Sci. Instr.2003, 74, 1217–1221.CrossRefADSGoogle Scholar
  38. 38.
    Xiao, X.; Qian, L. Langmuir 2000, 16, 8153–8158.CrossRefGoogle Scholar
  39. 39.
    Jang, J.; Schatz, G. C.; Ratner, M. A. J. Chem. Phys. 2004, 120, 1157–1160.CrossRefADSGoogle Scholar
  40. 40.
    Wilbur, J. L.; Biebuyck, H. A.; MacDonald, J. C.; Whitesides, G. M. Langmuir 1995, 11, 825–831.CrossRefGoogle Scholar
  41. 41.
    Poggi, M. A.; Bottomley, L. A.; Lillehei, P. T. Nano Lett. 2004, 4, 61–64.CrossRefADSGoogle Scholar
  42. 42.
    Drake, B.; Prater, C. B.; Weisenhorn, A. L.; Gould, S. A. C.; Albrecht, T. R.; Quate, C. F.; Cannell, D. S.; Hansma, H. G.; Hansma, P. K. Science 1989, 243, 1586–9.CrossRefADSGoogle Scholar
  43. 43.
    Fotiadis, D.; Scheuring, S.; Muller, S. A.; Engel, A.; Muller, D. J. Micron 2002, 33, 385–397.CrossRefGoogle Scholar
  44. 44.
    Malkin, A. J.; Land, T. A.; Kuznetsov, Y. G.; McPherson, A.; Deyoreo, J. J. Phys.l Rev. Lett. 1995, 75, 2778–2781.CrossRefADSGoogle Scholar
  45. 45.
    Land, T. A.; Malkin, A. J.; Kuznetsov, Y. G.; McPherson, A.; Deyoreo, J. J. Phys.l Rev. Lett. 1995, 75, 2774–2777.CrossRefADSGoogle Scholar
  46. 46.
    Kuznetsov, Y. G.; Malkin, A. J.; McPherson, A. J. Cryst. Growth 1999, 196, 489–502.CrossRefADSGoogle Scholar
  47. 47.
    Kuznetsov, Y. G.; Malkin, A. J.; Land, T. A.; DeYoreo, J. J.; Barba, A. P.; Konnert, J.; McPherson, A. Biophys. J.1997, 72, 2357–2364.CrossRefGoogle Scholar
  48. 48.
    Malkin, A. J.; Kuznetsov, Y. G.; Lucas, R. W.; McPherson, A. J. Struct. Biol. 1999, 127, 35–43.CrossRefGoogle Scholar
  49. 49.
    Li, M. Q. Appl. Phys. A: 1999, 68, 255–258.CrossRefADSGoogle Scholar
  50. 50.
    Woolley, A. T.; Cheung, C. L.; Hafner, J. H.; Lieber, C. M. Chemistry & Biology 2000, 7, 193–204.CrossRefGoogle Scholar
  51. 51.
    Noy, A.; Vezenov, D.; Kayyem, J.; Meade, T.; Lieber, C. Chemistry & Biology 1997, 4, 519–527.CrossRefGoogle Scholar
  52. 52.
    Friddle, R.; Klare, J. E.; Martin, S.; Corzett, M.; Balhorn, R.; Baldwin, E. P.; Baskin, R.; Noy, A. Biophys. J. 2004, 86, 1632–1639.CrossRefGoogle Scholar
  53. 53.
    Sulchek, T. A.; Friddle, R. W.; Langry, K.; Lau, E. Y.; Albrecht, H.; Ratto, T. V.; DeNardo, S. J.; Colvin, M. E.; Noy, A. Proc. Natl. Acad. Sci. USA 2005, 102, 16638–16643.CrossRefADSGoogle Scholar
  54. 54.
    Kienberger, F.; Ebner, A.; Gruber, H. J.; Hinterdorfer, P. Acc. Chem. Res 2006, 39, 29–36.CrossRefGoogle Scholar
  55. 55.
    Cleveland, J. P.; Manne, S.; Bocek, D.; Hansma, P. K. Rev. Sci. Instr. 1993, 64, 403–5.CrossRefADSGoogle Scholar
  56. 56.
    Hutter, J. L.; Bechhoefer, J. Rev. Sci. Instr. 1993, 64, 1868–73.CrossRefADSGoogle Scholar
  57. 57.
    Sader, J. E.; Larson, I.; Mulvaney, P.; White, L. R. Rev. Sci. Instr. 1995, 66, 3789–98.CrossRefADSGoogle Scholar
  58. 58.
    Sader, J. E.; Chon, J. W. M.; Mulvaney, P. Rev. Sci. Instr. 1999, 70, 3967–9.CrossRefADSGoogle Scholar
  59. 59.
    Ogletree, D. F.; Carprick, R. W.; Salmeron, M. Rev. Sci. Instr. 1996, 67, 3298.CrossRefADSGoogle Scholar
  60. 60.
    Warmack, R. J.; Zheng, X. Y.; Thundat, T.; Allison, D. P. Rev. Sci. Instr. 1994, 65, 394–9.CrossRefADSGoogle Scholar
  61. 61.
    Neumeister, J. M.; Ducker, W. A. Rev. Sci. Instr. 1994, 65, 2527–31.CrossRefADSGoogle Scholar
  62. 62.
    Hazel, J. L.; Tsukruk, V. V. Thin Solid Films 1999, 339, 249–57.CrossRefADSGoogle Scholar
  63. 63.
    Marti, O. Phys. Scr. Vol. T (Sweden), Physica Scripta Volume T 1993, T49B, 599–604.CrossRefADSGoogle Scholar
  64. 64.
    D’Costa, N. P.; Hoh, J. H. Rev.f Sci. Instr. 1995, 66, 5096–7.CrossRefADSGoogle Scholar
  65. 65.
    Liu, Y.; Wu, T.; Fennel-Evans, D. Langmuir 1994, 10, 2241.CrossRefGoogle Scholar
  66. 66.
    Liu, Y. H.; Evans, D. F.; Song, Q.; Grainger, D. W. Langmuir 1996, 12, 1235–1244.CrossRefGoogle Scholar
  67. 67.
    Schwarz, U. D.; Koster, P.; Wiesendanger, R. Rev. Sci. Instr. 1996, 67, 2560–7.CrossRefADSGoogle Scholar
  68. 68.
    Thomas, R. C.; Houston, J. E.; Crooks, R. M.; Kim, T.; Michalske, T. A. J. Am. Chem. Soc. 1995, 117, 117.Google Scholar
  69. 69.
    Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. J. Coll. Interf. Sci. 1975, 53, 314–26.CrossRefGoogle Scholar
  70. 70.
    Carpick, R. W.; Agrait, N.; Ogletree, D. F.; Salmeron, M. J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct. 1996, 14, 1289–95.CrossRefADSGoogle Scholar
  71. 71.
    Muller, V. M.; Yushchenko, V. S.; Derjaguin, B. V. J. Coll. Interf. Sci. 1980, 77, 91–101.CrossRefGoogle Scholar
  72. 72.
    Maugis, D. Langmuir 1995, 11, 679–682.CrossRefGoogle Scholar
  73. 73.
    Carpick, R. W.; Sasaki, D. Y.; Burns, A. R. Tribology Letters 1999, 7, 79–85.CrossRefGoogle Scholar
  74. 74.
    Johnson, K. L. Proc. Roy.l Soc., London, A 1997, 453, 163–179.CrossRefADSGoogle Scholar
  75. 75.
    Dzyaloshinskii, I. E.; Lifshitz, E. M.; Pitaevskii, L. P. Physics-Uspekhi 1961, 4, 153–176.CrossRefGoogle Scholar
  76. 76.
    London, F. Trans. Faraday Soc 1937, 33, 10.CrossRefGoogle Scholar
  77. 77.
    van Oss, C. J.; Chaudhury, M. K.; Good, R. J. Chem. Rev. 1988, 88, 927–41.CrossRefGoogle Scholar
  78. 78.
    Segeren, L.; Siebum, B.; Karssenberg, F. G.; Van Den Berg, J. W. A.; Vancso, G. J. J. Adh. Sci. Technol. 2002, 16, 793–828.CrossRefGoogle Scholar
  79. 79.
    McKendry, R.; Theoclitou, M.; Abell, C.; Rayment, T. Langmuir 1998, 14, 2846–2849.CrossRefGoogle Scholar
  80. 80.
    Sato, F.; Okui, H.; Akiba, U.; Suga, K.; Fujihira, M. Ultramicroscopy 2003, 97, 303–14.CrossRefGoogle Scholar
  81. 81.
    Williams, P. M. Analytica Chim. Acta 2003, 479, 107–115.CrossRefGoogle Scholar
  82. 82.
    Skulason, H.; Frisbie, C. D. Langmuir 2000, 16, 6294–6297.CrossRefGoogle Scholar
  83. 83.
    Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M. Nature 1998, 394, 52–55.CrossRefADSGoogle Scholar
  84. 84.
    Hafner, J. H.; Cheung, C. L.; Lieber, C. M. J. Am. Chem. Soc. 1999, 121, 9750–9751.CrossRefGoogle Scholar
  85. 85.
    Hafner, J. H.; Cheung, C. L.; Oosterkamp, T. H.; Lieber, C. M. J. Phys. Chem. B 2001, 105, 743–746.CrossRefGoogle Scholar
  86. 86.
    Caprick, R.; Salmeron, M. Chem. Rev. 1997, 97, 1163–1194.CrossRefGoogle Scholar
  87. 87.
    Beake, B. D.; Leggett, G. J.; Shipway, P. H. Surf. Interf. Analysis 1999, 27, 1084–1091.CrossRefGoogle Scholar
  88. 88.
    Brewer, N. J.; Leggett, G. J. Langmuir 2004, 20, 4109–4115.CrossRefGoogle Scholar
  89. 89.
    Leggett, G. J.; Brewer, N. J.; Chong, K. S. L.; Matter, S. Phys. Chem. Chem. Phys 2005, 7, 1107–1120.CrossRefGoogle Scholar
  90. 90.
    Brewer, N. J.; Foster, T. T.; Leggett, G. J.; Alexander, M. R.; McAlpine, E. J Phys. Chem. B, 2004, 108, 4723–4728.CrossRefGoogle Scholar
  91. 91.
    Vezenov, D. V.; Zhuk, A. V.; Whitesides, G. M.; Lieber, C. M. J. Am. Chem. Soc. 2002, 124, 10578–10588.CrossRefGoogle Scholar
  92. 92.
    Duwez, A. S.; Jonas, U.; Klein, H. Chem. Phys. Chem. 2003, 4, 1107–1111.Google Scholar
  93. 93.
    Mckendry, R.; Theoclitou, M.; Rayment, T.; Abell, C. Nature 1998, 391, 566–568.CrossRefADSGoogle Scholar
  94. 94.
    Clear, S. C.; Nealey, P. F. J. Coll. Interf. Sci. 1999, 213, 238–250.CrossRefGoogle Scholar
  95. 95.
    Warszynski, P.; Papastavrou, G.; Wantke, K. D.; Mohwald, H. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003, 214, 61–75.CrossRefGoogle Scholar
  96. 96.
    Evans, E.; Ritchie, K. Biophys. J. 1997, 72, 1541–1555.CrossRefGoogle Scholar
  97. 97.
    Evans, E. Faraday Discussions 1999, 1–16.Google Scholar
  98. 98.
    Evans, E.; Williams, P. In Physics of Bio-Molecules and Cells; Flyvbjerg, H., Jülicher, F., Ormos, P., David, F., Eds.; Springer and EDP Sciences: Heidelberg, 2002; Vol. 75, p 147–185.CrossRefGoogle Scholar
  99. 99.
    Evans, E.; Williams, P. In Physics of Bio-Molecules and Cells; Flyvbjerg, H., Jülicher, F., Ormos, P., David, F., Eds.; Springer and EDP Sciences: Heidelberg, 2002; Vol. 75, p 187–203.CrossRefGoogle Scholar
  100. 100.
    Strunz, T.; Oroszlan, K.; Schafer, R.; Guntherodt, H. J. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 11277–11282.CrossRefADSGoogle Scholar
  101. 101.
    Han, T.; Williams, J. M.; Beebe, T. P., Jr. Anal. Chim. Acta 1995, 307, 365–376.CrossRefGoogle Scholar
  102. 102.
    Ito, T.; Namba, M.; Buehlmann, P. and Umezawa, Y. Langmuir, 1997, 13, 4323–4332.Google Scholar
  103. 103.
    Headrick, J. E. and Berrie, C. L. Langmuir, 2004, 20, 4124–4131.Google Scholar
  104. 104.
    Ara, M. and Tada, H. Appl. Phys. Lett. 2003, 83, 578–580.CrossRefADSGoogle Scholar
  105. 105.
    Vezenov, D. V.; Noy, A.; Ashby, P. J. Adh. Sci. Tech. 2005, 19, 313–364.CrossRefGoogle Scholar
  106. 106.
    Tormoen, G. W.; Drelich, J.; Beach, E. R., J. Adh. Sci. Tech. 2004, 18, 1–17.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Aleksandr Noy
    • 1
  • Dmitry V. Vezenov
    • 2
  • Charles M. Lieber
    • 3
  1. 1.Chemistry, Materials and Life Sciences DirectorateLawrence Livermore National LaboratoryLivermoreUSA
  2. 2.Department of ChemistryLehigh UniversityBethlehemUSA
  3. 3.Department of Chemistry and Chemical BiologyHarvard UniversityCambridgeUSA

Personalised recommendations