Advertisement

Force Spectroscopy with Optical and Magnetic Tweezers

  • Richard Conroy

Micromanipulation of individual cells and molecules is increasingly important for a wide range of biophysical research because, although ensemble biochemical analysis provides excellent qualitative and quantitative descriptions, it seldom describes phenomena at the molecular level. By observing the force spectroscopy of single molecules, the kinetics, mechanics, and variation of structure, function, and interactions can be fully explored to provide a more complete physiological picture.

Keywords

Optical Tweezer Persistence Length Physical Review Letter Spatial Light Modulator Optical Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crick, F. H. C.; Hughes, A. F. W., The physical properties of cytoplasm. Experimental Cell Research 1950, (1), 37–80.Google Scholar
  2. 2.
    Ashkin, A., Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 24, 156–159 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    Lebedev, P. N., Experimental Examination of Light Pressure. Annalen der Physik 1901, 6, 433–458.ADSCrossRefGoogle Scholar
  4. 4.
    Ashkin, A.; Dziedzic, J. M.; Bjorkholm, J. E.; Chu, S., Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Optics Letters 1986, 11, (5), 288–290.ADSCrossRefGoogle Scholar
  5. 5.
    Ashkin, A.; Dziedzic, J. M., Optical Trapping and Manipulation of Viruses and Bacteria. Science 1987, 235, (4795), 1517–1520.ADSCrossRefGoogle Scholar
  6. 6.
    Ashkin, A.; Dziedzic, J. M.; Yamane, T., Optical Trapping and Manipulation of Single Cells Using Infrared-Laser Beams. Nature 1987, 330, (6150), 769–771.ADSCrossRefGoogle Scholar
  7. 7.
    Burke, P. J., Encyclopedia of Nanoscience and Nanotechnology. American Scientific: Stevenson Ranch, CA, 2004; Vol. 6, p 623–641.Google Scholar
  8. 8.
    Markelz, A. G.; Roitberg, A.; Heilweil, E. J., Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chemical Physics Letters 2000, 320, (1–2), 42–48.ADSCrossRefGoogle Scholar
  9. 9.
    Naumann, D., Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd: Chichester, 2000; p 102–131.Google Scholar
  10. 10.
    Buican, T. N.; Smyth, M. J.; Crissman, H. A.; Salzman, G. C.; Stewart, C. C.; Martin, J. C., Automated Single-Cell Manipulation and Sorting by Light Trapping. Applied Optics 1987, 26, (24), 5311–5316.ADSCrossRefGoogle Scholar
  11. 11.
    Ashkin, A.; Dziedzic, J. M., Internal Cell Manipulation Using Infrared-Laser Traps. Proceedings of the National Academy of Sciences of the United States of America 1989, 86, (20), 7914–7918.ADSCrossRefGoogle Scholar
  12. 12.
    Liang, H.; Wright, W. H.; Cheng, S.; He, W.; Berns, M. W., Micromanipulation of Chromosomes in Ptk2 Cells Using Laser Microsurgery (Optical Scalpel) in Combination with Laser-Induced Optical Force (Optical Tweezers). Experimental Cell Research 1993, 204, (1), 110–120.CrossRefGoogle Scholar
  13. 13.
    Yodh, A. G.; Lin, K. H.; Crocker, J. C.; Dinsmore, A. D.; Verma, R.; Kaplan, P. D., Entropically driven self-assembly and interaction in suspension. Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 2001, 359, (1782), 921–937.ADSGoogle Scholar
  14. 14.
    Galajda, P.; Ormos, P., Complex micromachines produced and driven by light. Applied Physics Letters 2001, 78, (2), 249–251.ADSCrossRefGoogle Scholar
  15. 15.
    Wang, G. M.; Sevick, E. M.; Mittag, E.; Searles, D. J.; Evans, D. J., Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Physical Review Letters 89, (5): Art No. 050601 JUL 29 2002.Google Scholar
  16. 16.
    Crocker, J. C.; Grier, D. G., Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Physical Review Letters 1994, 73, (2), 352–355.ADSCrossRefGoogle Scholar
  17. 17.
    Molloy, J. E.; Padgett, M. J., Lights, action: optical tweezers. Contemporary Physics 2002, 43, (4), 241–258.ADSCrossRefGoogle Scholar
  18. 18.
    Lang, M. J.; Block, S. M., Resource letter: LBOT-1: Laser-based optical tweezers. American Journal of Physics 2003, 71, (3), 201–215.ADSCrossRefGoogle Scholar
  19. 19.
    Williams, M. C., Optical Tweezers: Measuring Piconewton Forces. In http://www.biophysics.org/education/williams.pdf: 1992.
  20. 20.
    Ashkin, A., Forces of a Single-Beam Gradient Laser Trap on a Dielectric Sphere in the Ray Optics Regime. Biophysical Journal 1992, 61, (2), 569–582.ADSCrossRefGoogle Scholar
  21. 21.
    Svoboda, K.; Block, S. M., Biological Applications of Optical Forces. Annual Review of Biophysics and Biomolecular Structure 1994, 23, 247–285.Google Scholar
  22. 22.
    Tlusty, T.; Meller, A.; Bar-Ziv, R., Optical gradient forces of strongly localized fields. Physical Review Letters 1998, 81, (8), 1738–1741.ADSCrossRefGoogle Scholar
  23. 23.
    Cox, A. J.; DeWeerd, A. J.; Linden, J., An experiment to measure Mie and Rayleigh total scattering cross sections. American Journal of Physics 2002, 70, (6), 620–625.ADSCrossRefGoogle Scholar
  24. 24.
    Smith, S. B.; Cui, Y.; Bustamante, C., Optical-trap force transducer that operates by direct measurement of light momentum. Methods Enzymol 2003, 361, 134–62.CrossRefGoogle Scholar
  25. 25.
    Conroy, R. S.; Mayers, B. T.; Vezenov, D. V.; Wolfe, D. B.; Prentiss, M. G.; Whitesides, G. M., Optical waveguiding in suspensions of dielectric particles. Applied Optics 2005, 44, (36), 7853–7857.ADSCrossRefGoogle Scholar
  26. 26.
    Svoboda, K.; Block, S. M., Optical Trapping of Metallic Rayleigh Particles. Optics Letters 1994, 19, (13), 930–932.ADSCrossRefGoogle Scholar
  27. 27.
    Stamper-Kurn, D. M.; Andrews, M. R.; Chikkatur, A. P.; Inouye, S.; Miesner, H. J.; Stenger, J.; Ketterle, W., Optical confinement of a Bose-Einstein condensate. Physical Review Letters 1998, 80, (10), 2027–2030.ADSCrossRefGoogle Scholar
  28. 28.
    Nieminen, T. A.; Rubinsztein-Dunlop, H.; Heckenberg, N. R., Calculation and optical measurement of laser trapping forces on non-spherical particles. Journal of Quantitative Spectroscopy & Radiative Transfer 2001, 70, (4–6), 627–637.ADSCrossRefGoogle Scholar
  29. 29.
    Harada, Y.; Asakura, T., Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Optics Communications 1996, 124, (5–6), 529–541.ADSCrossRefGoogle Scholar
  30. 30.
    Rohrbach, A.; Stelzer, E. H., Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. Appl Opt 2002, 41, (13), 2494–507.ADSCrossRefGoogle Scholar
  31. 31.
    Pralle, A.; Florin, E. L.; Stelzer, E. H. K.; Horber, J. K. H., Localized diffusion measurements by 3D-SPT provide support for membrane microdomains. Biophysical Journal 1999, 76, (1), A390-a390.Google Scholar
  32. 32.
    Guck, J.; Ananthakrishnan, R.; Mahmood, H.; Moon, T. J.; Cunningham, C. C.; Kas, J., The optical stretcher: A novel laser tool to micromanipulate cells. Biophysical Journal 2001, 81, (2), 767–784.ADSCrossRefGoogle Scholar
  33. 33.
    Guck, J.; Schinkinger, S.; Lincoln, B.; Wottawah, F.; Ebert, S.; Romeyke, M.; Lenz, D.; Erickson, H. M.; Ananthakrishnan, R.; Mitchell, D.; Kas, J.; Ulvick, S.; Bilby, C., Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophysical Journal 2005, 88, (5), 3689–3698.ADSCrossRefGoogle Scholar
  34. 34.
    Smith, S. B.; Cui, Y. J.; Bustamante, C., Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 1996, 271, (5250), 795–799.ADSCrossRefGoogle Scholar
  35. 35.
    Williams, M. C.; Wenner, J. R.; Rouzina, I.; Bloomfield, V. A., Entropy and heat capacity of DNA melting from temperature dependence of single molecule stretching. Biophysical Journal 2001, 80, (4), 1932–1939.ADSCrossRefGoogle Scholar
  36. 36.
    Visscher, K.; Brakenhoff, G. J.; Krol, J. J., Micromanipulation by Multiple Optical Traps Created by a Single Fast Scanning Trap Integrated with the Bilateral Confocal Scanning Laser Microscope. Cytometry 1993, 14, (2), 105–114.CrossRefGoogle Scholar
  37. 37.
    Visscher, K.; Gross, S. P.; Block, S. M., Construction of multiple-beam optical traps with nanometer-resolution position sensing. Ieee Journal of Selected Topics in Quantum Electronics 1996, 2, (4), 1066–1076.CrossRefGoogle Scholar
  38. 38.
    Sasaki, K.; Koshioka, M.; Misawa, H.; Kitamura, N.; Masuhara, H., Pattern-Formation and Flow-Control of Fine Particles by Laser-Scanning Micromanipulation. Optics Letters 1991, 16, (19), 1463–1465.ADSCrossRefGoogle Scholar
  39. 39.
    Dufresne, E. R.; Spalding, G. C.; Dearing, M. T.; Sheets, S. A.; Grier, D. G., Computer-generated holographic optical tweezer arrays. Review of Scientific Instruments 2001, 72, (3), 1810–1816.ADSCrossRefGoogle Scholar
  40. 40.
    Liesener, J.; Reicherter, M.; Haist, T.; Tiziani, H. J., Multi-functional optical tweezers using computer-generated holograms. Optics Communications 2000, 185, (1–3), 77–82.ADSCrossRefGoogle Scholar
  41. 41.
    Curtis, J. E.; Koss, B. A.; Grier, D. G., Dynamic holographic optical tweezers. Optics Communications 2002, 207, (1–6), 169–175.ADSCrossRefGoogle Scholar
  42. 42.
    Sanford, J. L.; Greier, P. F.; Yang, K. H.; Lu, M.; Olyha, R. S.; Narayan, C.; Hoffnagle, J. A.; Alt, P. M.; Melcher, R. L., A one-megapixel reflective spatial light modulator system for holographic storage. Ibm Journal of Research and Development 1998, 42, (3–4), 411–426.CrossRefGoogle Scholar
  43. 43.
    Kawata, S.; Sugiura, T., Movement of Micrometer-Sized Particles in the Evanescent Field of a Laser-Beam. Optics Letters 1992, 17, (11), 772–774.ADSCrossRefGoogle Scholar
  44. 44.
    Taylor, R. S.; Hnatovsky, C., Particle trapping in 3-D using a single fiber probe with an annular light distribution. Optics Express 2003, 11, (21), 2775–2782.ADSCrossRefGoogle Scholar
  45. 45.
    Garces-Chavez, V.; Dholakia, K.; Spalding, G. C., Extended-area optically induced organization of microparticies on a surface. Applied Physics Letters 2005, 86, (3), -.Google Scholar
  46. 46.
    Moothoo, D. N.; Arlt, J.; Conroy, R. S.; Akerboom, F.; Voit, A.; Dholakia, K., Beth’s experiment using optical tweezers. American Journal of Physics 69, (3): 271–276 MAR 2001.ADSCrossRefGoogle Scholar
  47. 47.
    Konig, K.; Liang, H.; Berns, M. W.; Tromberg, B. J., Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption. Optics Letters 1996, 21, (14), 1090–1092.ADSCrossRefGoogle Scholar
  48. 48.
    O’Neil, A. T.; Padgett, M. J., Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner. Optics Communications 2000, 185, (1–3), 139–143.ADSCrossRefGoogle Scholar
  49. 49.
    Rubinsztein-Dunlop, H.; Nieminen, T. A.; Friese, M. E. J.; Heckenberg, N. R., Optical trapping of absorbing particles. Advances in Quantum Chemistry, Vol 30 1998, 30, 469–492.CrossRefGoogle Scholar
  50. 50.
    Gahagan, K. T.; Swartzlander, G. A., Trapping of low-index microparticles in an optical vortex. Journal of the Optical Society of America B-Optical Physics 1998, 15, (2), 524–534.ADSCrossRefGoogle Scholar
  51. 51.
    O’Neill, A. T.; Padgett, M. J., Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers. Optics Communications 2001, 193, (1–6), 45–50.ADSCrossRefGoogle Scholar
  52. 52.
    Allen, L.; Beijersbergen, M. W.; Spreeuw, R. J. C.; Woerdman, J. P., Orbital Angular-Momentum of Light and the Transformation of Laguerre-Gaussian Laser Modes. Physical Review A 1992, 45, (11), 8185–8189.ADSCrossRefGoogle Scholar
  53. 53.
    Gahagan, K. T.; Swartzlander, G. A., Optical vortex trapping of particles. Optics Letters 1996, 21, (11), 827–829.ADSCrossRefGoogle Scholar
  54. 54.
    Simpson, N. B.; Allen, L.; Padgett, M. J., Optical tweezers and optical spanners with Laguerre-Gaussian modes. Journal of Modern Optics 1996, 43, (12), 2485–2491.ADSCrossRefGoogle Scholar
  55. 55.
    Arlt, J.; Padgett, M. J., Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Optics Letters 2000, 25, (4), 191–193.ADSCrossRefGoogle Scholar
  56. 56.
    Arlt, J.; Garces-Chavez, V.; Sibbett, W.; Dholakia, K., Optical micromanipulation using a Bessel light beam. Optics Communications 2001, 197, (4–6), 239–245.ADSCrossRefGoogle Scholar
  57. 57.
    McGloin, D.; Dholakia, K., Bessel beams: diffraction in a new light. Contemporary Physics 2005, 46, (1), 15–28.ADSCrossRefGoogle Scholar
  58. 58.
    Garces-Chavez, V.; McGloin, D.; Melville, H.; Sibbett, W.; Dholakia, K., Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 2002, 419, (6903), 145–147.ADSCrossRefGoogle Scholar
  59. 59.
    Ke, P. C.; Gu, M., Characterization of trapping force on metallic Mie particles. Applied Optics 1999, 38, (1), 160–167.ADSCrossRefGoogle Scholar
  60. 60.
    Plewa, J.; Tanner, E.; Mueth, D. M.; Grier, D. G., Processing carbon nanotubes with holographic optical tweezers. Optics Express 2004, 12, (9), 1978–1981.ADSCrossRefGoogle Scholar
  61. 61.
    Gardel, M. L.; Valentine, M. T.; Weitz, D. A., Microscale Diagnostic Techniques. Springer-Verlag: Berlin, 2005.Google Scholar
  62. 62.
    Advances in Biomagnetic Separation. Eaton Publishing Company: Natick, 1994.Google Scholar
  63. 63.
    Shapiro, E. M.; Skrtic, S.; Sharer, K.; Hill, J. M.; Dunbar, C. E.; Koretsky, A. P., MRI detection of single particles for cellular imaging. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, (30), 10901–10906.ADSCrossRefGoogle Scholar
  64. 64.
    Bulte, J. W. M.; Kraitchman, D. L., Iron oxide MR contrast agents for molecular and cellular imaging. Nmr in Biomedicine 2004, 17, (7), 484–499.CrossRefGoogle Scholar
  65. 65.
    Berry, C. C.; Curtis, A. S. G., Functionalisation of magnetic nanoparticles for applications in biomedicine. Journal of Physics D-Applied Physics 2003, 36, (13), R198-R206.ADSCrossRefGoogle Scholar
  66. 66.
    Takahashi, T.; Dimitrov, A. S.; Nagayama, K., Two-dimensional patterns of magnetic particles at air-water or glass-water interfaces induced by an external magnetic field: Theory and simulation of the formation process. Journal of Physical Chemistry 1996, 100, (8), 3157–3162.CrossRefGoogle Scholar
  67. 67.
    Assi, F.; Jenks, R.; Yang, J.; Love, C.; Prentiss, M., Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers. Journal of Applied Physics 2002, 92, (9), 5584–5586.ADSCrossRefGoogle Scholar
  68. 68.
    Rife, J. C.; Miller, M. M.; Sheehan, P. E.; Tamanaha, C. R.; Tondra, M.; Whitman, L. J., Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors. Sensors and Actuators a-Physical 2003, 107, (3), 209–218.CrossRefGoogle Scholar
  69. 69.
    Besse, P. A.; Boero, G.; Demierre, M.; Pott, V.; Popovic, R., Detection of a single magnetic microbead using a miniaturized silicon Hall sensor. Applied Physics Letters 2002, 80, (22), 4199–4201.ADSCrossRefGoogle Scholar
  70. 70.
    Barbic, M., Magnetic wires in MEMS and bio-medical applications. Journal of Magnetism and Magnetic Materials 2002, 249, (1–2), 357–367.ADSCrossRefGoogle Scholar
  71. 71.
    Kim, K. S.; Park, J. K., Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab on a Chip 2005, 5, (6), 657–664.CrossRefGoogle Scholar
  72. 72.
    Romano, G.; Sacconi, L.; Capitanio, M.; Pavone, F. S., Force and torque measurements using magnetic micro beads for single molecule biophysics. Optics Communications 2003, 215, (4–6), 323–331.ADSCrossRefGoogle Scholar
  73. 73.
    van der Heijden, T.; van Noort, J.; van Leest, H.; Kanaar, R.; Wyman, C.; Dekker, N.; Dekker, C., Torque-limited RecA polymerization on dsDNA. Nucleic Acids Research 2005, 33, (7), 2099–2105.CrossRefGoogle Scholar
  74. 74.
    Strick, T. R.; Charvin, G.; Dekker, N. H.; Allemand, J. F.; Bensimon, D.; Croquette, V., Tracking enzymatic steps of DNA topoisomerases using single-molecule micromanipulation. Comptes Rendus Physique 2002, 3, (5), 595–618.ADSCrossRefGoogle Scholar
  75. 75.
    Charvin, G.; Allemand, J. F.; Strick, T. R.; Bensimon, D.; Croquette, V., Twisting DNA: single molecule studies. Contemporary Physics 2004, 45, (5), 383–403.ADSCrossRefGoogle Scholar
  76. 76.
    Strick, T. R.; Allemand, J. F.; Bensimon, D.; Croquette, V., Behavior of supercoiled DNA. Biophysical Journal 1998, 74, (4), 2016–2028.ADSCrossRefGoogle Scholar
  77. 77.
    Simson, D. A.; Ziemann, F.; Strigl, M.; Merkel, R., Micropipet-based pico force transducer: In depth analysis and experimental verification. Biophysical Journal 1998, 74, (4), 2080–2088.ADSCrossRefGoogle Scholar
  78. 78.
    Haber, C.; Wirtz, D., Magnetic tweezers for DNA micromanipulation. Review of Scientific Instruments 2000, 71, (12), 4561–4570.ADSCrossRefGoogle Scholar
  79. 79.
    Gosse, C.; Croquette, V., Magnetic tweezers: Micromanipulation and force measurement at the molecular level. Biophysical Journal 2002, 82, (6), 3314–3329.ADSCrossRefGoogle Scholar
  80. 80.
    Strick, T.; Allemand, J. F. O.; Croquette, V.; Bensimon, D., The manipulation of single biomolecules. Physics Today 2001, 54, (10), 46–51.CrossRefGoogle Scholar
  81. 81.
    Matthews, B. D.; Overby, D. R.; Alenghat, F. J.; Karavitis, J.; Numaguchi, Y.; Allen, P. G.; Ingber, D. E., Mechanical properties of individual focal adhesions probed with a magnetic microneedle. Biochemical and Biophysical Research Communications 2004, 313, (3), 758–764.CrossRefGoogle Scholar
  82. 82.
    Meyer, A.; Hansen, D. B.; Gomes, C. S. G.; Hobley, T. J.; Thomas, O. R. T.; Franzreb, M., Demonstration of a strategy for product purification by high-gradient magnetic fishing: Recovery of superoxide dismutase from unconditioned whey. Biotechnology Progress 2005, 21, (1), 244–254.CrossRefGoogle Scholar
  83. 83.
    Matthews, B. D.; LaVan, D. A.; Overby, D. R.; Karavitis, J.; Ingber, D. E., Electromagnetic needles with submicron pole tip radii for nanomanipulation of biomolecules and living cells. Applied Physics Letters 2004, 85, (14), 2968–2970.ADSCrossRefGoogle Scholar
  84. 84.
    Mirowski, E.; Moreland, J.; Russek, S. E.; Donahue, M. J., Integrated microfluidic isolation platform for magnetic particle manipulation in biological systems. Applied Physics Letters 2004, 84, (10), 1786–1788.ADSCrossRefGoogle Scholar
  85. 85.
    Vengalattore, M.; Conroy, R. S.; Rooijakkers, W.; Prentiss, M., Ferromagnets for integrated atom optics. Journal of Applied Physics 2004, 95, (8), 4404–4407.ADSCrossRefGoogle Scholar
  86. 86.
    de Vries, A. H. B.; Krenn, B. E.; van Driel, R.; Kanger, J. S., Micro magnetic tweezers for nanomanipulation inside live cells. Biophysical Journal 2005, 88, (3), 2137–2144.ADSCrossRefGoogle Scholar
  87. 87.
    Amblard, F.; Yurke, B.; Pargellis, A.; Leibler, S., A magnetic manipulator for studying local rheology and micromechanical properties of biological systems. Review of Scientific Instruments 1996, 67, (3), 818–827.ADSCrossRefGoogle Scholar
  88. 88.
    Ziemann, F.; Radler, J.; Sackmann, E., Local Measurements of Viscoelastic Moduli of Entangled Actin Networks Using an Oscillating Magnetic Bead Micro-Rheometer. Biophysical Journal 1994, 66, (6), 2210–2216.ADSCrossRefGoogle Scholar
  89. 89.
    Bausch, A. R.; Ziemann, F.; Boulbitch, A. A.; Jacobson, K.; Sackmann, E., Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophysical Journal 1998, 75, (4), 2038–2049.ADSCrossRefGoogle Scholar
  90. 90.
    Bausch, A. R.; Moller, W.; Sackmann, E., Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophysical Journal 1999, 76, (1), 573–579.ADSCrossRefGoogle Scholar
  91. 91.
    Bausch, A. R.; Hellerer, U.; Essler, M.; Aepfelbacher, M.; Sackmann, E., Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: A magnetic bead microrheology study. Biophysical Journal 2001, 80, (6), 2649–2657.ADSCrossRefGoogle Scholar
  92. 92.
    Moore, L. R.; Zborowski, M.; Nakamura, M.; McCloskey, K.; Gura, S.; Zuberi, M.; Margel, S.; Chalmers, J. J., The use of magnetite-doped polymeric microspheres in calibrating cell tracking velocimetry. Journal of Biochemical and Biophysical Methods 2000, 44, (1–2), 115–130.CrossRefGoogle Scholar
  93. 93.
    Todd, P.; Cooper, R. P.; Doyle, J. F.; Dunn, S.; Vellinger, J.; Deuser, M. S., Multistage magnetic particle separator. Journal of Magnetism and Magnetic Materials 2001, 225, (1–2), 294–300.ADSCrossRefGoogle Scholar
  94. 94.
    Ghiringhelli, F.; Schmitt, E., Cellular and molecular purification processes based on the use of magnetic micro- and nanobeads. Annales De Biologie Clinique 2004, 62, (1), 73–78.Google Scholar
  95. 95.
    Tibbe, A. G. J.; de Grooth, B. G.; Greve, J.; Liberti, P. A.; Dolan, G. J.; Terstappen, L. W. M. M., Optical tracking and detection of immunomagnetically selected and aligned cells. Nature Biotechnology 1999, 17, (12), 1210–1213.CrossRefGoogle Scholar
  96. 96.
    Zigeuner, R. E.; Riesenberg, R.; Pohla, H.; Hofstetter, A.; Oberneder, R., Isolation of circulating cancer cells from whole blood by immunomagnetic cell enrichment and unenriched immunocytochemistry in vitro. Journal of Urology 2003, 169, (2), 701–705.CrossRefGoogle Scholar
  97. 97.
    Morisada, S.; Miyata, N.; Iwahori, K., Immunomagnetic separation of scum-forming bacteria using polyclonal antibody that recognizes mycolic acids. Journal of Microbiological Methods 2002, 51, (2), 141–148.CrossRefGoogle Scholar
  98. 98.
    Mura, C. V.; Becker, M. L.; Orellana, A.; Wolff, D., Immunopurification of Golgi vesicles by magnetic sorting. Journal of Immunological Methods 2002, 260, (1–2), 263–271.CrossRefGoogle Scholar
  99. 99.
    Winkleman, A.; Gudiksen, K. L.; Ryan, D.; Whitesides, G. M.; Greenfield, D.; Prentiss, M., A magnetic trap for living cells suspended in a paramagnetic buffer. Applied Physics Letters 2004, 85, (12), 2411–2413.ADSCrossRefGoogle Scholar
  100. 100.
    Simon, M. D.; Geim, A. K., Diamagnetic levitation: Flying frogs and floating magnets (invited). Journal of Applied Physics 2000, 87, (9), 6200–6204.ADSCrossRefGoogle Scholar
  101. 101.
    Toussaint, R.; Akselvoll, J.; Helgesen, G.; Skjeltorp, A. T.; Flekkoy, E. G., Interaction model for magnetic holes in a ferrofluid layer. Physical Review 69, (1): Art No. 011407 Part 1 JAN 2004.Google Scholar
  102. 102.
    Lyuksyutov, I. F.; Lyuksyutova, A.; Naugle, D. G.; Rathnayaka, K. D. D., Trapping microparticles with strongly inhomogeneous magnetic fields. Modern Physics Letters B 2003, 17, (17), 935–940.ADSCrossRefGoogle Scholar
  103. 103.
    Lecommandoux, S. B.; Sandre, O.; Checot, F.; Rodriguez-Hernandez, J.; Perzynski, R., Magnetic nanocomposite micelles and vesicles. Advanced Materials 2005, 17, (6), 712-+.CrossRefGoogle Scholar
  104. 104.
    Gatteschi, D.; Caneschi, A.; Pardi, L.; Sessoli, R., Large Clusters of Metal-Ions - the Transition from Molecular to Bulk Magnets. Science 1994, 265, (5175), 1054–1058.ADSCrossRefGoogle Scholar
  105. 105.
    Genç, S. Synthesis and Properties of Magnetorheological (MR) Fluids. University of Pittsburgh, Pittsburgh, 2002.Google Scholar
  106. 106.
    Hatch, A.; Kamholz, A. E.; Holman, G.; Yager, P.; Bohringer, K. F., A ferrofluidic magnetic micropump. Journal of Microelectromechanical Systems 2001, 10, (2), 215–221.CrossRefGoogle Scholar
  107. 107.
    Smith, S. P.; Bhalotra, S. R.; Brody, A. L.; Brown, B. L.; Boyda, E. K.; Prentiss, M., Inexpensive optical tweezers for undergraduate laboratories. American Journal of Physics 1999, 67, (1), 26–35.ADSCrossRefGoogle Scholar
  108. 108.
    Laser Tweezers in Cell Biology. Academic Press: San Diego, 1998.Google Scholar
  109. 109.
    Bechhoefer, J.; Wilson, S., Faster, cheaper, safer optical tweezers for the undergraduate laboratory. American Journal of Physics 2002, 70, (4), 393–400.ADSCrossRefGoogle Scholar
  110. 110.
    Neuman, K. C.; Block, S. M., Optical trapping. Review of Scientific Instruments 2004, 75, (9), 2787–2809.ADSCrossRefGoogle Scholar
  111. 111.
    Schmidt, T.; Schutz, G. J.; Baumgartner, W.; Gruber, H. J.; Schindler, H., Imaging of single molecule diffusion. Proceedings of the National Academy of Sciences of the United States of America 1996, 93, (7), 2926–2929.ADSCrossRefGoogle Scholar
  112. 112.
    Thompson, R. E.; Larson, D. R.; Webb, W. W., Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal 2002, 82, (5), 2775–2783.ADSCrossRefGoogle Scholar
  113. 113.
    Ghislain, L. P.; Switz, N. A.; Webb, W. W., Measurement of Small Forces Using an Optical Trap. Review of Scientific Instruments 1994, 65, (9), 2762–2768.ADSCrossRefGoogle Scholar
  114. 114.
    Jonas, A.; Zemanek, P.; Florin, E. L., Single-beam trapping in front of reflective surfaces. Optics Letters 2001, 26, (19), 1466–1468.ADSCrossRefGoogle Scholar
  115. 115.
    Clapp, A. R.; Ruta, A. G.; Dickinson, R. B., Three-dimensional optical trapping and evanescent wave light scattering for direct measurement of long range forces between a colloidal particle and a surface. Review of Scientific Instruments 1999, 70, (6), 2627–2636.ADSCrossRefGoogle Scholar
  116. 116.
    Rohrbach, A.; Kress, H.; Stelzer, E. H. K., Three-dimensional tracking of small spheres in focused laser beams: influence of the detection angular aperture. Optics Letters 2003, 28, (6), 411–413.ADSCrossRefGoogle Scholar
  117. 117.
    Svoboda, K.; Schmidt, C. F.; Schnapp, B. J.; Block, S. M., Direct Observation of Kinesin Stepping by Optical Trapping Interferometry. Nature 1993, 365, (6448), 721–727.ADSCrossRefGoogle Scholar
  118. 118.
    Gittes, F.; Schmidt, C. F., Interference model for back-focal-plane displacement detection in optical tweezers. Optics Letters 1998, 23, (1), 7–9.ADSCrossRefGoogle Scholar
  119. 119.
    Visscher, K.; Block, S. M., Versatile optical traps with feedback control. Methods Enzymol 1998, 298, 460–89.CrossRefGoogle Scholar
  120. 120.
    Rice, S. E.; Purcell, T. J.; Spudich, J. A., Building and using optical traps to study properties of molecular motors. Biophotonics, Pt B 2003, 361, 112–133.CrossRefGoogle Scholar
  121. 121.
    Ashkin, A.; Dziedzic, J. M., Optical Trapping and Manipulation of Single Living Cells Using Infrared-Laser Beams. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 1989, 93, (3), 254–260.Google Scholar
  122. 122.
    Liu, Y.; Sonek, G. J.; Berns, M. W.; Tromberg, B. J., Physiological monitoring of optically trapped cells: Assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. Biophysical Journal 1996, 71, (4), 2158–2167.ADSCrossRefGoogle Scholar
  123. 123.
    Neuman, K. C.; Chadd, E. H.; Liou, G. F.; Bergman, K.; Block, S. M., Characterization of photodamage to Escherichia coli in optical traps. Biophysical Journal 1999, 77, (5), 2856–2863.ADSCrossRefGoogle Scholar
  124. 124.
    Wuite, G. J. L.; Davenport, R. J.; Rappaport, A.; Bustamante, C., An integrated laser trap/flow control video microscope for the study of single biomolecules. Biophysical Journal 2000, 79, (2), 1155–1167.ADSCrossRefGoogle Scholar
  125. 125.
    Schmitt, K. E. Optical neuronal guiding on the hypothalamic GnRH cell line GT1. The University of Texas at Austin, Austin, 2003.Google Scholar
  126. 126.
    Liu, Y.; Cheng, D. K.; Sonek, G. J.; Berns, M. W.; Chapman, C. F.; Tromberg, B. J., Evidence for Localized Cell Heating Induced by Infrared Optical Tweezers. Biophysical Journal 1995, 68, (5), 2137–2144.ADSCrossRefGoogle Scholar
  127. 127.
    Berns, M. W.; Aist, J. R.; Wright, W. H.; Liang, H., Optical Trapping in Animal and Fungal Cells Using a Tunable, near-Infrared Titanium-Sapphire Laser. Experimental Cell Research 1992, 198, (2), 375–378.CrossRefGoogle Scholar
  128. 128.
    Underhill, P. T.; Doyle, P. S., Development of bead-spring polymer models using the constant extension ensemble. Journal of Rheology 2005, 49, (5), 963–987.ADSCrossRefGoogle Scholar
  129. 129.
    Evans, E.; Ritchie, K., Dynamic strength of molecular adhesion bonds. Biophysical Journal 1997, 72, (4), 1541–1555.ADSCrossRefGoogle Scholar
  130. 130.
    Molloy, J. E.; Burns, J. E.; Kendrickjones, J.; Tregear, R. T.; White, D. C. S., Movement and Force Produced by a Single Myosin Head. Nature 1995, 378, (6553), 209–212.ADSCrossRefGoogle Scholar
  131. 131.
    Wright, W. H.; Sonek, G. J.; Berns, M. W., Parametric Study of the Forces on Microspheres Held by Optical Tweezers. Applied Optics 1994, 33, (9), 1735–1748.ADSCrossRefGoogle Scholar
  132. 132.
    Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J., Applications of magnetic nanoparticles in biomedicine. Journal of Physics D-Applied Physics 2003, 36, (13), R167-R181.ADSCrossRefGoogle Scholar
  133. 133.
    Wang, M. D.; Yin, H.; Landick, R.; Gelles, J.; Block, S. M., Stretching DNA with optical tweezers. Biophysical Journal 1997, 72, (3), 1335–1346.ADSCrossRefGoogle Scholar
  134. 134.
    Noji, H.; Yasuda, R.; Yoshida, M.; Kinosita, K., Direct observation of the rotation of F-1-ATPase. Nature 1997, 386, (6622), 299–302.ADSCrossRefGoogle Scholar
  135. 135.
    Guthold, M.; Mullin, J.; Lord, S.; Superfine, R.; Taylor, R.; Erie, D., Investigating the mechanical properties of individual fibrin fibers with the nanomanipulator AFM. Biophysical Journal 2001, 80, (1), 307A-307A.Google Scholar
  136. 136.
    Dammer, U.; Popescu, O.; Wagner, P.; Anselmetti, D.; Guntherodt, H. J.; Misevic, G. N., Binding Strength between Cell-Adhesion Proteoglycans Measured by Atomic-Force Microscopy. Science 1995, 267, (5201), 1173–1175.ADSCrossRefGoogle Scholar
  137. 137.
    Piran, U.; Riordan, W. J., Dissociation Rate-Constant of the Biotin-Streptavidin Complex. Journal of Immunological Methods 1990, 133, (1), 141–143.CrossRefGoogle Scholar
  138. 138.
    Merkel, R.; Nassoy, P.; Leung, A.; Ritchie, K.; Evans, E., Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 1999, 397, (6714), 50–53.ADSCrossRefGoogle Scholar
  139. 139.
    Yuan, C. B.; Chen, A.; Kolb, P.; Moy, V. T., Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy. Biochemistry 2000, 39, (33), 10219–10223.CrossRefGoogle Scholar
  140. 140.
    Danilowicz, C.; Greenfield, D.; Prentiss, M., Dissociation of ligand-receptor complexes using magnetic tweezers. Analytical Chemistry 2005, 77, (10), 3023–3028.CrossRefGoogle Scholar
  141. 141.
    Helmerson, K.; Kishore, R.; Phillips, W. D.; Weetall, H. H., Optical tweezers-based immunosensor detects femtomolar concentrations of antigens. Clinical Chemistry 1997, 43, (2), 379–383.Google Scholar
  142. 142.
    Kulin, S.; Kishore, R.; Hubbard, J. B.; Helmerson, K., Real-time measurement of spontaneous antigen-antibody dissociation. Biophysical Journal 2002, 83, (4), 1965–1973.ADSCrossRefGoogle Scholar
  143. 143.
    Round, A. N.; Berry, M.; McMaster, T. J.; Stoll, S.; Gowers, D.; Corfield, A. P.;Miles, M. J., Heterogeneity and persistence length in human ocular mucins. Biophysical Journal 2002, 83, (3), 1661–1670.ADSCrossRefGoogle Scholar
  144. 144.
    Sagis, L. M. C.; Veerman, C.; van der Linden, E., Mesoscopic properties of semiflexible amyloid fibrils. Langmuir 2004, 20, (3), 924–927.CrossRefGoogle Scholar
  145. 145.
    Smith, S. B.; Finzi, L.; Bustamante, C., Direct Mechanical Measurements of the Elasticity of Single DNA-Molecules by Using Magnetic Beads. Science 1992, 258, (5085), 1122–1126.ADSCrossRefGoogle Scholar
  146. 146.
    Leger, J. F.; Romano, G.; Sarkar, A.; Robert, J.; Bourdieu, L.; Chatenay, D.; Marko, J. F., Structural transitions of a twisted and stretched DNA molecule. Physical Review Letters 1999, 83, (5), 1066–1069.ADSCrossRefGoogle Scholar
  147. 147.
    Allemand, J. F.; Bensimon, D.; Croquette, V., Stretching DNA and RNA to probe their interactions with proteins. Current Opinion in Structural Biology 2003, 13, (3), 266–274.CrossRefGoogle Scholar
  148. 148.
    Tinland, B.; Pluen, A.; Sturm, J.; Weill, G., Persistence length of single-stranded DNA. Macromolecules 1997, 30, (19), 5763–5765.ADSCrossRefGoogle Scholar
  149. 149.
    Bustamante, C.; Smith, S. B.; Liphardt, J.; Smith, D., Single-molecule studies of DNA mechanics. Current Opinion in Structural Biology 2000, 10, (3), 279–285.CrossRefGoogle Scholar
  150. 150.
    Conroy, R. S.; Danilowicz, C., Unravelling DNA. Contemporary Physics 2004, 45, (4), 277–302.ADSCrossRefGoogle Scholar
  151. 151.
    Bockelmann, U., Single-molecule manipulation of nucleic acids. Current Opinion in Structural Biology 2004, 14, (3), 368–373.CrossRefGoogle Scholar
  152. 152.
    Bustamante, C.; Bryant, Z.; Smith, S. B., Ten years of tension: single-molecule DNA mechanics. Nature 2003, 421, (6921), 423–427.ADSCrossRefGoogle Scholar
  153. 153.
    Marko, J.; Propperova, A., Environmental Monitoring within the Slovak Republic. Environmental Monitoring and Assessment 1995, 34, (2), 131–136.CrossRefGoogle Scholar
  154. 154.
    Strick, T. R.; Bensimon, D.; Croquette, V., Micro-mechanical measurement of the torsional modulus of DNA. Genetica 1999, 106, (1–2), 57–62.CrossRefGoogle Scholar
  155. 155.
    Bryant, Z.; Stone, M. D.; Gore, J.; Smith, S. B.; Cozzarelli, N. R.; Bustamante, C., Structural transitions and elasticity from torque measurements on DNA. Nature 2003, 424, (6946), 338–341.ADSCrossRefGoogle Scholar
  156. 156.
    Charvin, G.; Vologodskii, A.; Bensimon, D.; Croquette, V., Braiding DNA: Experiments, simulations, and models. Biophysical Journal 2005, 88, (6), 4124–4136.ADSCrossRefGoogle Scholar
  157. 157.
    Revyakin, A.; Ebright, R. H.; Strick, T. R., Single-molecule DNA nanomanipulation: Improved resolution through use of shorter DNA fragments. Nature Methods 2005, 2, (2), 127–138.CrossRefGoogle Scholar
  158. 158.
    Bockelmann, U.; Thomen, P.; Essevaz-Roulet, B.; Viasnoff, V.; Heslot, F., Unzipping DNA with optical tweezers: high sequence sensitivity and force flips. Biophysical Journal 2002, 82, (3), 1537–1553.ADSCrossRefGoogle Scholar
  159. 159.
    Danilowicz, C.; Coljee, V. W.; Bouzigues, C.; Lubensky, D. K.; Nelson, D. R.; Prentiss, M., DNA unzipped under a constant force exhibits multiple metastable intermediates. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, (4), 1694–1699.ADSCrossRefGoogle Scholar
  160. 160.
    Danilowicz, C.; Conroy, R.; Kafri, Y.; Coljee, V.; Prentiss, M., Measurement of the phase diagram of DNA unzipping in the temperature-force plane. Physical Review Letters 2004, 93, (7), 078101.ADSCrossRefGoogle Scholar
  161. 161.
    Vorobjev, I. A.; Hong, L.; Wright, W. H.; Berns, M. W., Optical Trapping for Chromosome Manipulation - a Wavelength Dependence of Induced Chromosome Bridges. Biophysical Journal 1993, 64, (2), 533–538.ADSCrossRefGoogle Scholar
  162. 162.
    Bennink, M. L.; Leuba, S. H.; Leno, G. H.; Zlatanova, J.; de Grooth, B. G.; Greve, J., Unfolding individual nucleosomes by stretching single chromatin fibers with optical tweezers. Nature Structural Biology 2001, 8, (7), 606–610.CrossRefGoogle Scholar
  163. 163.
    Brower-Toland, B. D.; Smith, C. L.; Yeh, R. C.; Lis, J. T.; Peterson, C. L.; Wang, M. D., Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (4), 1960–1965.ADSCrossRefGoogle Scholar
  164. 164.
    Storz, G., An expanding universe of noncoding RNAs. Science 2002, 296, (5571), 1260–1263.ADSCrossRefGoogle Scholar
  165. 165.
    Hagerman, P. J., Flexibility of RNA. Annual Review of Biophysics and Biomolecular Structure 1997, 26, 139–156.CrossRefGoogle Scholar
  166. 166.
    Abels, J. A.; Moreno-Herrero, F.; van der Heijden, T.; Dekker, C.; Dekker, N. H., Single-molecule measurements of the persistence length of double- stranded RNA. Biophysical Journal 2005, 88, (4), 2737–2744.ADSCrossRefGoogle Scholar
  167. 167.
    Ha, T.; Zhuang, X. W.; Kim, H. D.; Orr, J. W.; Williamson, J. R.; Chu, S., Ligand-induced conformational changes observed in single RNA molecules. Proceedings of the National Academy of Sciences of the United States of America 1999, 96, (16), 9077–9082.ADSCrossRefGoogle Scholar
  168. 168.
    Zhuang, X. W., Single-molecule RNA science. Annual Review of Biophysics and Biomolecular Structure 2005, 34, 399–414.MathSciNetCrossRefGoogle Scholar
  169. 169.
    Liphardt, J.; Onoa, B.; Smith, S. B.; Tinoco, I.; Bustamante, C., Reversible unfolding of single RNA molecules by mechanical force. Science 2001, 292, (5517), 733–737.ADSCrossRefGoogle Scholar
  170. 170.
    Onoa, B.; Dumont, S.; Liphardt, J.; Smith, S. B.; Tinoco, I.; Bustamante, C., Identifying kinetic barriers to mechanical unfolding of the T-thermophila ribozyme. Science 2003, 299, (5614), 1892–1895.ADSCrossRefGoogle Scholar
  171. 171.
    Ott, A.; Magnasco, M.; Simon, A.; Libchaber, A., Measurement of the Persistence Length of Polymerized Actin Using Fluorescence Microscopy. Physical Review E 1993, 48, (3), R1642-R1645.ADSCrossRefGoogle Scholar
  172. 172.
    Tsuda, Y.; Yasutake, H.; Ishijima, A.; Yanagida, T., Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proceedings of the National Academy of Sciences of the United States of America 1996, 93, (23), 12937–12942.ADSCrossRefGoogle Scholar
  173. 173.
    Amblard, F.; Maggs, A. C.; Yurke, B.; Pargellis, A. N.; Leibler, S., Subdiffusion and anomalous local viscoelasticity in actin networks. Physical Review Letters 1996, 77, (21), 4470–4473.ADSCrossRefGoogle Scholar
  174. 174.
    Arai, Y.; Yasuda, R.; Akashi, K.; Harada, Y.; Miyata, H.; Kinosita, K.; Itoh, H., Tying a molecular knot with optical tweezers. Nature 1999, 399, (6735), 446–448.ADSCrossRefGoogle Scholar
  175. 175.
    Kurachi, M.; Hoshi, M.; Tashiro, H., Buckling of a Single Microtubule by Optical Trapping Forces - Direct Measurement of Microtubule Rigidity. Cell Motility and the Cytoskeleton 1995, 30, (3), 221–228.CrossRefGoogle Scholar
  176. 176.
    Felgner, H.; Frank, R.; Schliwa, M., Flexural rigidity of microtubules measured with the use of optical tweezers. Journal of Cell Science 1996, 109, 509–516.Google Scholar
  177. 177.
    Gittes, F.; Mickey, B.; Nettleton, J.; Howard, J., Flexural Rigidity of Microtubules and Actin-Filaments Measured from Thermal Fluctuations in Shape. Journal of Cell Biology 1993, 120, (4), 923–934.CrossRefGoogle Scholar
  178. 178.
    Janson, M. E.; Dogterom, M., A bending mode analysis for growing microtubules: Evidence for a velocity-dependent rigidity. Biophysical Journal 2004, 87, (4), 2723–2736.ADSCrossRefGoogle Scholar
  179. 179.
    Tolic-Norrelykke, I. M.; Sacconi, L.; Stringari, C.; Raabe, I.; Pavone, F. S., Nuclear and division-plane positioning revealed by optical micromanipulation. Current Biology 2005, 15, (13), 1212–1216.CrossRefGoogle Scholar
  180. 180.
    Mucke, N.; Kreplak, L.; Kirmse, R.; Wedig, T.; Herrmann, H.; Aebi, U.; Langowski, J., Assessing the flexibility of intermediate filaments by atomic force microscopy. Journal of Molecular Biology 2004, 335, (5), 1241–1250.CrossRefGoogle Scholar
  181. 181.
    Wang, N.; Stamenovic, D., Contribution of intermediate filaments to cell stiffness, stiffening, and growth. American Journal of Physiology-Cell Physiology 2000, 279, (1), C188-C194.Google Scholar
  182. 182.
    Bright, J. N.; Hoh, J. H.; Woolf, T. B., Computational investigation of confined unstructured proteins. Biophysical Journal 2001, 80, (1), 407A-408A.Google Scholar
  183. 183.
    Kellermayer, M. S. Z., Visualizing and manipulating individual protein molecules. Physiological Measurement 2005, 26, (4), R119-R153.ADSCrossRefGoogle Scholar
  184. 184.
    Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E., Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997, 276, (5315), 1109–1112.CrossRefGoogle Scholar
  185. 185.
    Tskhovrebova, L.; Trinick, J.; Sleep, J. A.; Simmons, R. M., Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature 1997, 387, (6630), 308–312.ADSCrossRefGoogle Scholar
  186. 186.
    Kellermayer, M. S. Z.; Smith, S. B.; Bustamante, C.; Granzier, H. L., Complete unfolding of the titin molecule under external force. Journal of Structural Biology 1998, 122, (1–2), 197–205.CrossRefGoogle Scholar
  187. 187.
    Kellermayer, M. S. Z.; Smith, S. B.; Bustamante, C.; Granzier, H. L., Mechanical fatigue in repetitively stretched single molecules of titin. Biophysical Journal 2001, 80, (2), 852–863.ADSCrossRefGoogle Scholar
  188. 188.
    Svoboda, K.; Schmidt, C. F.; Branton, D.; Block, S. M., Conformation and Elasticity of the Isolated Red-Blood-Cell Membrane Skeleton. Biophysical Journal 1992, 63, (3), 784–793.ADSCrossRefGoogle Scholar
  189. 189.
    Li, J.; Dao, M.; Lim, C. T.; Suresh, S., Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophysical Journal 2005, 88, (5), 3707–3719.ADSCrossRefGoogle Scholar
  190. 190.
    Luo, Z. P.; Bolander, M. E.; An, K. N., A method for determination of stiffness of collagen molecules. Biochemical and Biophysical Research Communications 1997, 232, (1), 251–254.CrossRefGoogle Scholar
  191. 191.
    Sun, Y. L.; Luo, Z. P.; An, K. N., Stretching short biopolymers using optical tweezers. Biochemical and Biophysical Research Communications 2001, 286, (4), 826–830.CrossRefGoogle Scholar
  192. 192.
    Luo, Z. P.; Sun, Y. L.; Fujii, T.; An, K. N., Single molecule mechanical properties of type II collagen and hyaluronan measured by optical tweezers. Biorheology 2004, 41, (3–4), 247–254.Google Scholar
  193. 193.
    Oesterhelt, F.; Oesterhelt, D.; Pfeiffer, M.; Engel, A.; Gaub, H. E.; Muller, D. J., Unfolding pathways of individual bacteriorhodopsins. Science 2000, 288, (5463), 143–146.ADSCrossRefGoogle Scholar
  194. 194.
    Storm, C.; Pastore, J. J.; MacKintosh, F. C.; Lubensky, T. C.; Janmey, P. A., Nonlinear elasticity in biological gels. Nature 2005, 435, (7039), 191–194.ADSCrossRefGoogle Scholar
  195. 195.
    Mueller, H.; Butt, H. J.; Bamberg, E., Force measurements on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscope. Biophysical Journal 1999, 76, (2), 1072–1079.ADSCrossRefGoogle Scholar
  196. 196.
    Krigbaum, W. R.; Hsu, T. S., Molecular-Conformation of Bovine a-1 Basic-Protein, a Coiling Macromolecule in Aqueous-Solution. Biochemistry 1975, 14, (11), 2542–2546.CrossRefGoogle Scholar
  197. 197.
    Oberdorfer, Y.; Schrot, S.; Fuchs, H.; Galinski, E.; Janshoff, A., Impact of compatible solutes on the mechanical properties of fibronectin: a single molecule analysis. Physical Chemistry Chemical Physics 2003, 5, (9), 1876–1881.CrossRefGoogle Scholar
  198. 198.
    Sharon, N.; Lis, H., Carbohydrates in Cell Recognition. Scientific American 1993, 268, (1), 82–89.CrossRefGoogle Scholar
  199. 199.
    Picout, D. R.; Ross-Murphy, S. B.; Errington, N.; Harding, S. E., Pressure cell assisted solubilization of xyloglucans: Tamarind seed polysaccharide and detarium gum. Biomacromolecules 2003, 4, (3), 799–807.CrossRefGoogle Scholar
  200. 200.
    Sletmoen, M.; Maurstad, G.; Sikorski, P.; Paulsen, B. S.; Stokke, B. T., Characterisation of bacterial polysaccharides: steps towards single-molecular studies. Carbohydrate Research 2003, 338, (23), 2459–2475.CrossRefGoogle Scholar
  201. 201.
    Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H. E., Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 1997, 275, (5304), 1295–1297.CrossRefGoogle Scholar
  202. 202.
    Janicijevic, A.; Ristic, D.; Wyman, C., The molecular machines of DNA repair: scanning force microscopy analysis of their architecture. Journal of Microscopy-Oxford 2003, 212, 264–272.MathSciNetCrossRefGoogle Scholar
  203. 203.
    Dong, C.; So, P. T. C.; Mahadevan, L.; Kaizuka, Y.; Sutin, J. D.; Graton, E., Control of exonuclease digestion activities by microscopic mechanical forces. Biophysical Journal 1999, 76, (1), A132-a132.Google Scholar
  204. 204.
    van Oijen, A. M.; Blainey, P. C.; Crampton, D. J.; Richardson, C. C.; Ellenberger, T.; Xie, X. S., Single-molecule kinetics of lambda exonuclease reveal base dependence and dynamic disorder. Science 2003, 301, (5637), 1235–1238.ADSCrossRefGoogle Scholar
  205. 205.
    Perkins, T. T.; Dalal, R. V.; Mitsis, P. G.; Block, S. M., Sequence-dependent pausing of single lambda exonuclease molecules. Science 2003, 301, (5641), 1914–1918.ADSCrossRefGoogle Scholar
  206. 206.
    Werner, J. H.; Cai, H.; Keller, R. A.; Goodwin, P. M., Exonuclease I hydrolyzes DNA with a distribution of rates. Biophysical Journal 2005, 88, (2), 1403–1412.ADSCrossRefGoogle Scholar
  207. 207.
    Yin, H.; Wang, M. D.; Svoboda, K.; Landick, R.; Block, S. M.; Gelles, J., Transcription against an Applied Force. Science 1995, 270, (5242), 1653–1657.ADSCrossRefGoogle Scholar
  208. 208.
    Wuite, G. J. L.; Smith, S. B.; Young, M.; Keller, D.; Bustamante, C., Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 2000, 404, (6773), 103–106.ADSCrossRefGoogle Scholar
  209. 209.
    Thomen, P.; Lopez, P. J.; Heslot, F., Unravelling the mechanism of RNA-polymerase forward motion by using mechanical force. Physical Review Letters 2005, 94, (12), -.Google Scholar
  210. 210.
    Wang, M. D.; Schnitzer, M. J.; Yin, H.; Landick, R.; Gelles, J.; Block, S. M., Force and velocity measured for single molecules of RNA polymerase. Science 1998, 282, (5390), 902–907.ADSCrossRefGoogle Scholar
  211. 211.
    Skinner, G. M.; Baumann, C. G.; Quinn, D. M.; Molloy, J. E.; Hoggett, J. G., Promoter binding, initiation, and elongation by bacteriophage T7 RNA polymerase - A single-molecule view of the transcription cycle. Journal of Biological Chemistry 2004, 279, (5), 3239–3244.CrossRefGoogle Scholar
  212. 212.
    Wang, H. Y.; Elston, T.; Mogilner, A.; Oster, G., Force generation in RNA polymerase. Biophysical Journal 1998, 74, (3), 1186–1202.ADSCrossRefGoogle Scholar
  213. 213.
    Forde, N. R.; Izhaky, D.; Woodcock, G. R.; Wuite, G. J. L.; Bustamante, C., Using mechanical force to probe the mechanism of pausing and arrest during continuous elongation by Escherichia coli RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (18), 11682–11687.ADSCrossRefGoogle Scholar
  214. 214.
    Waksman, G.; Lanka, E.; Carazo, J. M., Helicases as nucleic acid unwinding machines. Nature Structural Biology 2000, 7, (1), 20–22.CrossRefGoogle Scholar
  215. 215.
    Bianco, P. R.; Brewer, L. R.; Corzett, M.; Balhorn, R.; Yeh, Y.; Kowalczykowski, S. C.; Baskin, R. J., Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 2001, 409, (6818), 374–378.ADSCrossRefGoogle Scholar
  216. 216.
    Perkins, T. T.; Li, H. W.; Dalal, R. V.; Gelles, J.; Block, S. M., Forward and reverse motion of single RecBCD molecules on DNA. Biophysical Journal 2004, 86, (3), 1640–1648.ADSCrossRefGoogle Scholar
  217. 217.
    Dawid, A.; Croquette, V.; Grigoriev, M.; Heslot, F., Single-molecule study of RuvAB-mediated Holliday-junction migration. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, (32), 11611–11616.Google Scholar
  218. 218.
    Amit, R.; Gileadi, O.; Stavans, J., Direct observation of RuvAB-catalyzed branch migration of single Holliday junctions. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, (32), 11605–11610.ADSCrossRefGoogle Scholar
  219. 219.
    Dessinges, M. N.; Lionnet, T.; Xi, X. G.; Bensimon, D.; Croquette, V., Single-molecule assay reveals strand switching and enhanced processivity of UvrD. Proceedings of the National Academy of Sciences of the United States of America 2004, 101, (17), 6439–6444.ADSCrossRefGoogle Scholar
  220. 220.
    Champoux, J. J., DNA topoisomerases: Structure, function, and mechanism. Annual Review of Biochemistry 2001, 70, 369–413.CrossRefGoogle Scholar
  221. 221.
    Charvin, G.; Strick, T. R.; Bensimon, D.; Croquette, V., Tracking topoisomerase activity at the single-molecule level. Annual Review of Biophysics and Biomolecular Structure 2005, 34, 201–219.CrossRefGoogle Scholar
  222. 222.
    Dekker, N. H.; Rybenkov, V. V.; Duguet, M.; Crisona, N. J.; Cozzarelli, N. R.; Bensimon, D.; Croquette, V., The mechanism of type IA topoisomerases. Proceedings of the National Academy of Sciences of the United States of America 2002, 99, (19), 12126–12131.ADSCrossRefGoogle Scholar
  223. 223.
    Koster, D. A.; Croquette, V.; Dekker, C.; Shuman, S.; Dekker, N. H., Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 2005, 434, (7033), 671–674.ADSCrossRefGoogle Scholar
  224. 224.
    Strick, T. R.; Croquette, V.; Bensimon, D., Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 2000, 404, (6780), 901–904.ADSCrossRefGoogle Scholar
  225. 225.
    Charvin, G.; Bensimon, D.; Croquette, V., Single-molecule study of DNA unlinking by eukaryotic and prokaryotic type-II topoisomerases. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, (17), 9820–9825.ADSCrossRefGoogle Scholar
  226. 226.
    Crisona, N. J.; Strick, T. R.; Bensimon, D.; Croquette, V.; Cozzarelli, N. R., Preferential relaxation of positively supercoiled DNA by E-coli topoisomerase IV in single-molecule and ensemble measurements. Genes & Development 2000, 14, (22), 2881–2892.CrossRefGoogle Scholar
  227. 227.
    Smith, D. E.; Tans, S. J.; Smith, S. B.; Grimes, S.; Anderson, D. L.; Bustamante, C., The bacteriophage phi 29 portal motor can package DNA against a large internal force. Nature 2001, 413, (6857), 748–752.ADSCrossRefGoogle Scholar
  228. 228.
    Sabbert, D.; Engelbrecht, S.; Junge, W., Functional and idling rotatory motion within F-1-ATPase. Proceedings of the National Academy of Sciences of the United States of America 1997, 94, (9), 4401–4405.ADSCrossRefGoogle Scholar
  229. 229.
    Yasuda, R.; Noji, H.; Kinosita, K.; Yoshida, M., F-1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degrees steps. Cell 1998, 93, (7), 1117–1124.CrossRefGoogle Scholar
  230. 230.
    Itoh, H.; Takahashi, A.; Adachi, K.; Noji, H.; Yasuda, R.; Yoshida, M.; Kinosita, K., Mechanically driven ATP synthesis by F-1-ATPase. Nature 2004, 427, (6973), 465–468.ADSCrossRefGoogle Scholar
  231. 231.
    Ueno, H.; Suzuki, T.; Kinosita, K.; Yoshida, M., ATP-driven stepwise rotation of FOF1,-ATP synthase. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, (5), 1333–1338.ADSCrossRefGoogle Scholar
  232. 232.
    Kull, F. J.; Sablin, E. P.; Lau, R.; Fletterick, R. J.; Vale, R. D., Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 1996, 380, (6574), 550–555.ADSCrossRefGoogle Scholar
  233. 233.
    Finer, J. T.; Simmons, R. M.; Spudich, J. A., Single Myosin Molecule Mechanics - Piconewton Forces and Nanometer Steps. Nature 1994, 368, (6467), 113–119.ADSCrossRefGoogle Scholar
  234. 234.
    Mehta, A. D.; Finer, J. T.; Spudich, J. A., Detection of single-molecule interactions using correlated thermal diffusion. Proceedings of the National Academy of Sciences of the United States of America 1997, 94, (15), 7927–7931.ADSCrossRefGoogle Scholar
  235. 235.
    Ishijima, A.; Kojima, H.; Higuchi, H.; Harada, Y.; Funatsu, T.; Yanagida, T., Multiple- and single-molecule analysis of the actomyosin motor by nanometer piconewton manipulation with a microneedle: Unitary steps and forces. Biophysical Journal 1996, 70, (1), 383–400.ADSCrossRefGoogle Scholar
  236. 236.
    Tanaka, H.; Ishijima, A.; Honda, M.; Saito, K.; Yanagida, T., Orientation dependence of displacements by a single one-headed myosin relative to the actin filament. Biophysical Journal 1998, 75, (4), 1886–1894.ADSCrossRefGoogle Scholar
  237. 237.
    Geeves, M. A.; Holmes, K. C., Structural mechanism of muscle contraction. Annual Review of Biochemistry 1999, 68, 687–728.CrossRefGoogle Scholar
  238. 238.
    Vale, R. D., Myosin V motor proteins: marching stepwise towards a mechanism. Journal of Cell Biology 2003, 163, (3), 445–450.CrossRefGoogle Scholar
  239. 239.
    Schott, D. H.; Collins, R. N.; Bretscher, A., Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. Journal of Cell Biology 2002, 156, (1), 35–39.CrossRefGoogle Scholar
  240. 240.
    Rief, M.; Rock, R. S.; Mehta, A. D.; Mooseker, M. S.; Cheney, R. E.; Spudich, J. A., Myosin-V stepping kinetics: A molecular model for processivity. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, (17), 9482–9486.ADSCrossRefGoogle Scholar
  241. 241.
    Yildiz, A.; Forkey, J. N.; McKinney, S. A.; Ha, T.; Goldman, Y. E.; Selvin, P. R., Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 2003, 300, (5628), 2061–2065.ADSCrossRefGoogle Scholar
  242. 242.
    Snyder, G. E.; Sakamoto, T.; Hammer, J. A.; Sellers, J. R.; Selvin, P. R., Nanometer localization of single green fluorescent proteins: Evidence that myosin V walks hand-over-hand via telemark configuration. Biophysical Journal 2004, 87, (3), 1776–1783.ADSCrossRefGoogle Scholar
  243. 243.
    Warshaw, D. M.; Kennedy, G. G.; Work, S. S.; Krementsova, E. B.; Beck, S.; Trybus, K. M., Differential Labeling of myosin V heads with quantum dots allows direct visualization of hand-over-hand processivity. Biophysical Journal 2005, 88, (5), L30-L32.CrossRefGoogle Scholar
  244. 244.
    Rock, R. S.; Ramamurthy, B.; Dunn, A. R.; Beccafico, S.; Rami, B. R.; Morris, C.; Spink, B. J.; Franzini-Armstrong, C.; Spudich, J. A.; Sweeney, H. L., A flexible domain is essential for the large step size and processivity of myosin VI. Molecular Cell 2005, 17, (4), 603–609.CrossRefGoogle Scholar
  245. 245.
    Veigel, C.; Coluccio, L. M.; Jontes, J. D.; Sparrow, J. C.; Milligan, R. A.; Molloy, J. E., The motor protein myosin-I produces its working stroke in two steps. Nature 1999, 398, (6727), 530–533.ADSCrossRefGoogle Scholar
  246. 246.
    Tyska, M. J.; Warshaw, D. M., The myosin power stroke. Cell Motility and the Cytoskeleton 2002, 51, (1), 1–15.CrossRefGoogle Scholar
  247. 247.
    De La Cruz, E. M.; Ostap, E. M., Relating biochemistry and function in the myosin superfamily. Current Opinion in Cell Biology 2004, 16, (1), 61–67.CrossRefGoogle Scholar
  248. 248.
    Howard, J., Molecular motors: structural adaptations to cellular functions. Nature 1997, 389, (6651), 561–567.ADSCrossRefGoogle Scholar
  249. 249.
    Howard, J.; Hudspeth, A. J.; Vale, R. D., Movement of Microtubules by Single Kinesin Molecules. Nature 1989, 342, (6246), 154–158.ADSCrossRefGoogle Scholar
  250. 250.
    Kojima, H.; Muto, E.; Higuchi, H.; Yanagida, T., Mechanics of single kinesin molecules measured by optical trapping nanometry. Biophys J 1997, 73, (4), 2012–22.CrossRefGoogle Scholar
  251. 251.
    Hua, W.; Young, E. C.; Fleming, M. L.; Gelles, J., Coupling of kinesin steps to ATP hydrolysis. Nature 1997, 388, (6640), 390–393.ADSCrossRefGoogle Scholar
  252. 252.
    Schnitzer, M. J.; Block, S. M., Kinesin hydrolyses one ATP per 8-nm step. Nature 1997, 388, (6640), 386–390.ADSCrossRefGoogle Scholar
  253. 253.
    Yildiz, A.; Tomishige, M.; Vale, R. D.; Selvin, P. R., Kinesin walks hand-over-hand. Science 2004, 303, (5658), 676–678.ADSCrossRefGoogle Scholar
  254. 254.
    Higuchi, H.; Bronner, C. E.; Park, H. W.; Endow, S. A., Rapid double 8-nm steps by a kinesin mutant. Embo Journal 2004, 23, (15), 2993–2999.CrossRefGoogle Scholar
  255. 255.
    Yildiz, A.; Selvin, P. R., Kinesin: walking, crawling or sliding along? Trends in Cell Biology 2005, 15, (2), 112–120.CrossRefGoogle Scholar
  256. 256.
    Kuo, S. C.; Gelles, J.; Steuer, E.; Sheetz, M. P., A Model for Kinesin Movement from Nanometer-Level Movements of Kinesin and Cytoplasmic Dynein and Force Measurements. Journal of Cell Science 1991, 135–138.Google Scholar
  257. 257.
    Wang, Z. H.; Khan, S.; Sheetz, M. P., Different Patterns of Kinesin and Cytoplasmic Dynein Movement - a Single Mechanism. Biophysical Journal 1995, 68, (4), S328-S328.Google Scholar
  258. 258.
    Wang, Z. H.; Sheetz, M. P., One-dimensional diffusion on microtubules of particles coated with cytoplasmic dynein an immunoglobulins. Cell Structure and Function 1999, 24, (5), 373–383.CrossRefGoogle Scholar
  259. 259.
    Mallik, R.; Carter, B. C.; Lex, S. A.; King, S. J.; Gross, S. P., Cytoplasmic dynein functions as a gear in response to load. Nature 2004, 427, (6975), 649–652.ADSCrossRefGoogle Scholar
  260. 260.
    Sakakibara, H.; Kojima, H.; Sakai, Y.; Katayama, E.; Oiwa, K., Inner-arm dynein c of Chlamydomonas flagella is a single-headed processive motor. Nature 1999, 400, (6744), 586–590.ADSCrossRefGoogle Scholar
  261. 261.
    Gee, M.; Vallee, R., The role of the dynein stalk in cytoplasmic and flagellar motility. European Biophysics Journal with Biophysics Letters 1998, 27, (5), 466–473.Google Scholar
  262. 262.
    Block, S. M.; Blair, D. F.; Berg, H. C., Compliance of Bacterial Flagella Measured with Optical Tweezers. Nature 1989, 338, (6215), 514–518.ADSCrossRefGoogle Scholar
  263. 263.
    Berry, R. M.; Berg, H. C., Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers. Proceedings of the National Academy of Sciences of the United States of America 1997, 94, (26), 14433–14437.ADSCrossRefGoogle Scholar
  264. 264.
    Tadir, Y.; Wright, W. H.; Vafa, O.; Ord, T.; Asch, R. H.; Berns, M. W., Force Generated by Human Sperm Correlated to Velocity and Determined Using a Laser Generated Optical Trap. Fertility and Sterility 1990, 53, (5), 944–947.Google Scholar
  265. 265.
    McCord, R. P.; Yukich, J. N.; Bernd, K. K., Analysis of force generation during flagellar assembly through optical trapping of free-swimming Chlamydomonas reinhardtii. Cell Motility and the Cytoskeleton 2005, 61, (3), 137–144.CrossRefGoogle Scholar
  266. 266.
    Gilad, R.; Porat, A.; Trachtenberg, S., Motility modes of Spiroplasma melliferum BC3: a helical, wall-less bacterium driven by a linear motor. Molecular Microbiology 2003, 47, (3), 657–669.CrossRefGoogle Scholar
  267. 267.
    Konig, K.; Svaasand, L.; Liu, Y. G.; Sonek, G.; Patrizio, P.; Tadir, Y.; Berns, M. W.; Tromberg, B. J., Determination of motility forces of human spermatozoa using an 800膗nm optical trap. Cellular and Molecular Biology 1996, 42, (4), 501–509.Google Scholar
  268. 268.
    Schutze, K.; Clementsengewald, A.; Ashkin, A., Zona Drilling and Sperm Insertion with Combined Laser Microbeam and Optical Tweezers. Fertility and Sterility 1994, 61, (4), 783–786.Google Scholar
  269. 269.
    Patrizio, P.; Liu, Y. G.; Sonek, G. J.; Berns, M. W.; Tadir, Y., Effect of pentoxifylline on the intrinsic swimming forces of human sperm assessed by optical tweezers. Journal of Andrology 2000, 21, (5), 753–756.Google Scholar
  270. 270.
    Yagi, K., The mechanical and colloidal properties of Amoeba protoplasm and their relations to the mechanism of amoeboid movement. Comp Biochem Physiol 1961, 3, 73–91.CrossRefGoogle Scholar
  271. 271.
    Cohen, D., Ferromagnetic Contamination in Lungs and Other Organs of Human Body. Science 1973, 180, (4087), 745–748.ADSCrossRefGoogle Scholar
  272. 272.
    Valberg, P. A.; Meyrick, B.; Brain, J. D.; Brigham, K. L., Phagocytic and Motile Properties of Endothelial-Cells Measured Magnetometrically - Effects of Endotoxin. Tissue & Cell 1988, 20, (3), 345–354.CrossRefGoogle Scholar
  273. 273.
    Valberg, P. A.; Butler, J. P., Magnetic Particle Motions within Living Cells - Physical Theory and Techniques. Biophysical Journal 1987, 52, (4), 537–550.ADSCrossRefGoogle Scholar
  274. 274.
    Wang, N.; Butler, J. P.; Ingber, D. E., Mechanotransduction across the Cell-Surface and through the Cytoskeleton. Science 1993, 260, (5111), 1124–1127.ADSCrossRefGoogle Scholar
  275. 275.
    Huang, H. D.; Kamm, R. D.; Lee, R. T., Cell mechanics and mechanotransduction: pathways, probes, and physiology. American Journal of Physiology-Cell Physiology 2004, 287, (1), C1-C11.Google Scholar
  276. 276.
    Ikai, A.; Afrin, R.; Sekiguchi, H.; Okajima, T.; Alam, M. T.; Nishida, S., Nano-mechanical methods in biochemistry using atomic force microscopy. Current Protein & Peptide Science 2003, 4, (3), 181–193.CrossRefGoogle Scholar
  277. 277.
    Galbraith, C. G.; Yamada, K. M.; Sheetz, M. P., The relationship between force and focal complex development. Journal of Cell Biology 2002, 159, (4), 695–705.CrossRefGoogle Scholar
  278. 278.
    Choquet, D.; Felsenfeld, D. P.; Sheetz, M. P., Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 1997, 88, (1), 39–48.CrossRefGoogle Scholar
  279. 279.
    Kusumi, A.; Sako, Y.; Fujiwara, T.; Tomishige, M., Application of laser tweezers to studies of the fences and tethers of the membrane skeleton that regulate the movements of plasma membrane proteins. Methods in Cell Biology, Vol 55 1998, 55, 173–194.CrossRefGoogle Scholar
  280. 280.
    Peters, I. M.; van Kooyk, Y.; van Vliet, S. J.; de Grooth, B. G.; Figdor, C. G.; Greve, J., 3D single-particle tracking and optical trap measurements on adhesion proteins. Cytometry 1999, 36, (3), 189–194.CrossRefGoogle Scholar
  281. 281.
    Falk, J.; Thoumine, O.; Dequidt, C.; Choquet, D.; Faivre-Sarrailh, C., NrCAM coupling to the cytoskeleton depends on multiple protein domains and partitioning into lipid rafts. Molecular Biology of the Cell 2004, 15, (10), 4695–4709.CrossRefGoogle Scholar
  282. 282.
    Sako, Y.; Nagafuchi, A.; Tsukita, S.; Takeichi, M.; Kusumi, A., Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: Corralling and tethering by the membrane skeleton. Journal of Cell Biology 1998, 140, (5), 1227–1240.CrossRefGoogle Scholar
  283. 283.
    Oddershede, L.; Flyvbjerg, H.; Berg-Sorensen, K., Single-molecule experiment with optical tweezers: improved analysis of the diffusion of the lambda-receptor in E-coli’s outer membrane. Journal of Physics-Condensed Matter 2003, 15, (18), S1737-S1746.ADSCrossRefGoogle Scholar
  284. 284.
    Sako, Y.; Kusumi, A., Barriers for Lateral Diffusion of Transferrin Receptor in the Plasma-Membrane as Characterized by Receptor Dragging by Laser Tweezers - Fence Versus Tether. Journal of Cell Biology 1995, 129, (6), 1559–1574.CrossRefGoogle Scholar
  285. 285.
    Tomishige, M.; Sako, Y.; Kusumi, A., Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. Journal of Cell Biology 1998, 142, (4), 989–1000.CrossRefGoogle Scholar
  286. 286.
    Arya, M.; Lopez, J. A.; Romo, G. M.; Cruz, A. A.; Kasirer-Friede, A.; Shattil, S. J.; Anvari, B., Glycoprotein Ib-IX-mediated activation of integrin alpha(IIb)beta(3): effects of receptor clustering and von Willebrand factor adhesion. Journal of Thrombosis and Haemostasis 2003, 1, (6), 1150–1157.CrossRefGoogle Scholar
  287. 287.
    Stoltz, J. F.; Dumas, D.; Wang, X.; Payan, E.; Mainard, D.; Paulus, F.; Maurice, G.; Netter, P.; Muller, S., Influence of mechanical forces on cells and tissues. Biorheology 2000, 37, (1–2), 3–14.Google Scholar
  288. 288.
    Ermilov, S. A.; Murdock, D. R.; El-Daye, D.; Brownell, W. E.; Anvari, B., Effects of salicylate on plasma membrane mechanics. Journal of Neurophysiology 2005, 94, (3), 2105–2110.CrossRefGoogle Scholar
  289. 289.
    Zahn, M.; Seeger, S., Optical tweezers in pharmacology. Cellular and Molecular Biology 1998, 44, (5), 747–761.Google Scholar
  290. 290.
    Ashkin, A.; Schutze, K.; Dziedzic, J. M.; Euteneuer, U.; Schliwa, M., Force Generation of Organelle Transport Measured Invivo by an Infrared-Laser Trap. Nature 1990, 348, (6299), 346–348.ADSCrossRefGoogle Scholar
  291. 291.
    Welte, M. A.; Gross, S. P.; Postner, M.; Block, S. M.; Wieschaus, E. F., Developmental regulation of vesicle transport in Drosophila embryos: Forces and kinetics. Cell 1998, 92, (4), 547–557.CrossRefGoogle Scholar
  292. 292.
    Schneckenburger, H.; Hendinger, A.; Sailer, R.; Strauss, W. S. L.; Schmitt, M., Laser-assisted optoporation of single cells. Journal of Biomedical Optics 2002, 7, (3), 410–416.ADSCrossRefGoogle Scholar
  293. 293.
    Aufderheide, K. J.; Du, Q.; Fry, E. S., Directed Positioning of Micronuclei in Paramecium-Tetraurelia with Laser Tweezers - Absence of Detectable Damage after Manipulation. Journal of Eukaryotic Microbiology 1993, 40, (6), 793–796.CrossRefGoogle Scholar
  294. 294.
    Liu, X.; Wang, H.; Li, Y.; Tang, Y.; Liu, Y.; Hu, X.; Jia, P.; Ying, K.; Feng, Q.; Guan, J.; Jin, C.; Zhang, L.; Lou, L.; Zhou, Z.; Han, B., Preparation of single rice chromosome for construction of a DNA library using a laser microbeam trap. J Biotechnol 2004, 109, (3), 217–26.Google Scholar
  295. 295.
    Conia, J.; Voelkel, S., Optical Manipulations of Human Gametes. Biotechniques 1994, 17, (6), 1162–1165.Google Scholar
  296. 296.
    Leitz, G.; Weber, G.; Seeger, S.; Greulich, K. O., The Laser Microbeam Trap as an Optical Tool for Living Cells. Physiological Chemistry and Physics and Medical Nmr 1994, 26, (1), 69–88.Google Scholar
  297. 297.
    Thalhammer, S.; Lahr, G.; Clement-Sengewald, A.; Heckl, W. M.; Burgemeister, R.; Schutze, K., Laser microtools in cell biology and molecular medicine. Laser Physics 2003, 13, (5), 681–691.Google Scholar
  298. 298.
    Leitz, G.; Schnepf, E.; Greulich, K. O., Micromanipulation of Statoliths in Gravity-Sensing Chara Rhizoids by Optical Tweezers. Planta 1995, 197, (2), 278–288.CrossRefGoogle Scholar
  299. 299.
    Lee, H.; Purdon, A. M.; Westervelt, R. M., Micromanipulation of biological systems with microelectromagnets. Ieee Transactions on Magnetics 2004, 40, (4), 2991–2993.ADSCrossRefGoogle Scholar
  300. 300.
    Thoumine, O.; Kocian, P.; Kottelat, A.; Meister, J. J., Short-term binding of fibroblasts to fibronectin: optical tweezers experiments and probabilistic analysis. European Biophysics Journal with Biophysics Letters 2000, 29, (6), 398–408.Google Scholar
  301. 301.
    Liang, M. N.; Smith, S. P.; Metallo, S. J.; Choi, I. S.; Prentiss, M.; Whitesides, G. M., Measuring the forces involved in polyvalent adhesion of uropathogenic Escherichia coli to mannose-presenting surfaces. Proceedings of the National Academy of Sciences of the United States of America 2000, 97, (24), 13092–13096.ADSCrossRefGoogle Scholar
  302. 302.
    Grimbergen, J. A.; Visscher, K.; Demesquita, D. S. G.; Brakenhoff, G. J., Isolation of Single Yeast-Cells by Optical Trapping. Yeast 1993, 9, (7), 723–732.CrossRefGoogle Scholar
  303. 303.
    Huber, R.; Burggraf, S.; Mayer, T.; Barns, S. M.; Rossnagel, P.; Stetter, K. O., Isolation of a Hyperthermophilic Archaeum Predicted by in-Situ Rna Analysis. Nature 1995, 376, (6535), 57–58.ADSCrossRefGoogle Scholar
  304. 304.
    Bronkhorst, P. J. H.; Streekstra, G. J.; Grimbergen, J.; Nijhof, E. J.; Sixma, J. J.; Brakenhoff, G. J., A new method to study shape recovery of red blood cells using multiple optical trapping. Biophysical Journal 1995, 69, (5), 1666–1673.ADSCrossRefGoogle Scholar
  305. 305.
    Bayoudh, S.; Mehta, M.; Rubinsztein-Dunlop, H.; Heckenberg, N. R.; Critchley, C., Micromanipulation of chloroplasts using optical tweezers. Journal of Microscopy-Oxford 2001, 203, 214–222.MathSciNetCrossRefGoogle Scholar
  306. 306.
    Brandao, M. M.; Fontes, A.; Barjas-Castro, M. L.; Barbosa, L. C.; Costa, F. F.; Cesar, C. L.; Saad, S. T. O., Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease. European Journal of Haematology 2003, 70, (4), 207–211.CrossRefGoogle Scholar
  307. 307.
    Barjas-Castro, M. L.; Brandao, M. M.; Fontes, A.; Costa, F. F.; Cesar, C. L.; Saad, S. T. O., Elastic properties of irradiated RBCs measured by optical tweezers. Transfusion 2002, 42, (9), 1196–1199.CrossRefGoogle Scholar
  308. 308.
    Yin, S. H.; Zhang, X. Q.; Zhan, C.; Wu, J. T.; Xu, J. C.; Cheung, J., Measuring single cardiac myocyte contractile force via moving a magnetic bead. Biophysical Journal 2005, 88, (2), 1489–1495.ADSCrossRefGoogle Scholar
  309. 309.
    Curtis, J. E.; Grier, D. G., Structure of optical vortices. Physical Review Letters 90, (13): Art. No. 133901 APR 4 2003.Google Scholar
  310. 310.
    Edelstein, R. L.; Tamanaha, C. R.; Sheehan, P. E.; Miller, M. M.; Baselt, D. R.; Whitman, L. J.; Colton, R. J., The BARC biosensor applied to the detection of biological warfare agents. Biosensors & Bioelectronics 2000, 14, (10–11), 805–813.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Richard Conroy
    • 1
  1. 1.National Institute of Neurological Disorders and Stroke (NINDS)National Institutes of Health LFMI-10 Center Drive Bldg. 10BethesdaUSA

Personalised recommendations