Direct Mapping of Intermolecular Interaction Potentials

  • Paul D. Ashby

Atoms and molecules are the building blocks of nature's vast variety of materials, and short range intermolecular interaction potentials govern their structure and movement as they form materials or undergo reactions. Characterizing these interaction potentials and elucidating their scientific principles will not only facilitate a greater understanding of the natural world but also aid development of new technology, from computers built with nanowires1 to less invasive medical devices.2, 3


Spring Constant Thermal Noise Force Curve Flicker Noise Force Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Law, M.; Goldberger, J.; Yang, P. D., Annual Review of Materials Research 2004, 34, 83–122.CrossRefADSGoogle Scholar
  2. 2.
    Jain, K. K., Clinica Chimica Acta 2005, 358, 37–54.CrossRefGoogle Scholar
  3. 3.
    Kubik, T.; Bogunia-Kubik, K.; Sugisaka, M., Current Pharmaceutical Biotechnology 2005, 6, 17–33.Google Scholar
  4. 4.
    Israelachvili, J., Intermolecular and Surface Forces. second ed.; Academic Press: San Diego, CA, 1992.Google Scholar
  5. 5.
    Tabor, D.; Winterton, R. H. S., Proceedings of the Royal Society of London 1969, A312, 435–450.CrossRefADSGoogle Scholar
  6. 6.
    Israelachvili, J.; Tabor, D., Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 1972, 331, 19–38.CrossRefADSGoogle Scholar
  7. 7.
    Binnig, G.; Quate, C. F.; Gerber, C., Physical Review Letters 1986, 56, 930–933.CrossRefADSGoogle Scholar
  8. 8.
    Wong, S. S.; Joselevich, E.; Woolley, A. T.; Cheung, C. L.; Lieber, C. M., Nature 1998, 394, 52–55.CrossRefADSGoogle Scholar
  9. 9.
    Oberhauser, A. F.; Marszalek, P. E.; Erikson, H. P.; Fernandez, J. M., Nature 1998, 393, 181–185.CrossRefADSGoogle Scholar
  10. 10.
    Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E., Science 1997, 276, 1109–1112.CrossRefGoogle Scholar
  11. 11.
    Williams, P. M.; Fowler, S. B.; Best, R. B.; Toca-Herrera, J. L.; Scott, K. A.; Steward, A.; Clarke, J., Nature 2003, 422, 446–449.CrossRefADSGoogle Scholar
  12. 12.
    Ashby, P. D.; Lieber, C. M., Journal of the American Chemical Society 2005, 127, 6814–6818.CrossRefGoogle Scholar
  13. 13.
    Frisbie, C. D.; Rozsnyai, L. F.; Noy, A.; Wrighton, M. S.; Lieber, C. M., Science 1994, 265, 2071–2074.CrossRefADSGoogle Scholar
  14. 14.
    Noy, A.; Sanders, C. H.; Vezenov, D. V.; Wong, S. S.; Lieber, C. M., Langmuir 1998, 14, 1508–1511.CrossRefGoogle Scholar
  15. 15.
    Deen, M. J.; Pascal, F., Iee Proceedings-Circuits Devices and Systems 2004, 151, 125–137.CrossRefGoogle Scholar
  16. 16.
    Gustafsson, M. G. L.; Clarke, J., Journal of Applied Physics 1994, 76, 172–181.CrossRefADSGoogle Scholar
  17. 17.
    Beyder, A.; Sachs, F., Ultramicroscopy 2006, 106, 838–846.CrossRefGoogle Scholar
  18. 18.
    Viani, M. B.; Schaffer, T. E.; Chand, A.; Rief, M.; Gaub, H. E.; Hansma, P. K., Journal of Applied Physics 1999, 86, 2258–2262.CrossRefADSGoogle Scholar
  19. 19.
    Sarid, D., Scanning Force Microscopy: With Applications to electric, magnetic and Atomic Forces. 2nd ed.; Oxford University Press: New York, 1994.Google Scholar
  20. 20.
    Liang, S.; Medich, D.; Czajkowsky, D. M.; Sheng, S.; Yuan, J.-Y.; Shao, Z., Ultramicroscopy 2000, 84, 119–125.CrossRefGoogle Scholar
  21. 21.
    Ashby, P. D.; Chen, L. W.; Lieber, C. M., Journal of the American Chemical Society 2000, 122, 9467–9472.CrossRefGoogle Scholar
  22. 22.
    Jarvis, S. P.; Yamada, H.; Yamamoto, S.-I.; Tokumoto, H.; Pethica, J. B., Nature 1996, 384, 247–249.CrossRefADSGoogle Scholar
  23. 23.
    Ashby, P. D.; Lieber, C. M., Journal of the American Chemical Society 2004, 126, 16973–16980.CrossRefGoogle Scholar
  24. 24.
    Schaffer, T. E.; Hansma, P. K., Journal of Applied Physics 1998, 84, 4661–4666.CrossRefADSGoogle Scholar
  25. 25.
    Proksch, R.; Schaffer, T. E.; Cleveland, J. P.; Callahan, R. C.; Viani, M. B., Nanotechnology 2004, 15, 1344–1350.CrossRefADSGoogle Scholar
  26. 26.
    Hutter, J. L.; Bechhoefer, J., Review of Scientific Instruments 1993, 64, 1868–1873.CrossRefADSGoogle Scholar
  27. 27.
    Sader, J. E., Journal of Applied Physics 1998, 84, 64–76.CrossRefADSGoogle Scholar
  28. 28.
    Cleveland, J. P.; Manne, S.; Bocek, D.; Hansma, P. K., Review of Scientific Instruments 1993, 64, 403–405.CrossRefADSGoogle Scholar
  29. 29.
    Sader, J. E.; Chon, J. W. M.; Mulvaney, P., Review of Scientific Instruments 1999, 70, 3967–3969.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Paul D. Ashby
    • 1
  1. 1.Molecular Foundry, Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations