“The three principal structures that closely surround, connect, and stabilize the joints of the skeletal system are the tendons, the ligaments, and the joint capsules. Although these structures are passive (i.e., they do not actively produce motion as do the muscles), each plays an essential role in joint motion.” (From Carlstadt and Nordin, 1989)


Anterior Cruciate Ligament Stress Relaxation Posterior Cruciate Ligament Medial Collateral Ligament Stress Relaxation Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amiel D, Woo SL-Y, Harwood FL, Akeson WH. 1982. The effect of immobilization on collagen turnover in connective tissue: a biochemical-biomechanical correlation. Acta Orthop Scand 53:325–333.CrossRefGoogle Scholar
  2. Amiel D, Frank C, Harwood F, Fronek J, Akeson W. 1984. Tendon and ligaments: a morphological comparison. J Orthop Res 1:257–265.CrossRefGoogle Scholar
  3. Banes AJ, Hu P, Xiao H, Sanderson MJ, Boitano S, Brigman B, et al. 1995. Tendon cells of the epitenon and internal tendon compartment communicate mechanical signals through gap junctions and respond differentially to mechanical load and growth factors. In Repetitive motion disorders of the upper extremity, ed. SL Gordon, SJ Blair, LJ Fine LJ, pp. 231–245. Rosemont, IL: American Academy of Orthopedic Surgeons.Google Scholar
  4. Benjamin M, Ralphs JR. 1995. Functional and developmental anatomy of tendons and ligaments. In Repetitive motion disorders of the upper extremity, ed. SL Gordon, SJ Blair, LJ Fine LJ, pp. 185–203. Rosemont, IL: American Academy of Orthopedic Surgeons.Google Scholar
  5. Benjamin M, Ralphs JR. 1998. Fibrocartilage in tendons and ligaments — an adaptation to compressive load. JAnat 193:481–494.Google Scholar
  6. Bonifasi-Lista C, Lake SP, Small MS, Weiss JA. 2005. Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and shear loading. J Orthop Res 23:67–76.CrossRefGoogle Scholar
  7. Butler DL. 1995. Material-structural correlations in ligaments and tendons. Course notes ASE/EM 605, University of Cincinatti.Google Scholar
  8. Butler DL, Sheh MY, Stouffer DC, Samaranayake VA, Levy MS. 1990. Surface strain variation in human patellar tendon and knee cruciate ligaments. ASME J Biomech Eng 112:38–45.Google Scholar
  9. Butler DL, Guan Y, Kay MD, Cummings JF, Feder SM, Levy MS. 1992. Location-dependent variations in the material properties of the anterior cruciate ligament. J Biomech 25:511–518.CrossRefGoogle Scholar
  10. Cabaud HE, Chatty A, Gildengorin V, Feltman RJ. 1980. Exercise effects on the strength of the rat anterior cruciate ligament. Am J Sports Med 8:79–87.CrossRefGoogle Scholar
  11. Carlstedt CA, Nordin M. 1989. Biomechanics of tendons and ligaments. In Basic biomechanics of the musculoskeletal system, 2nd ed., ed. M Nordin, VH Frankel. Philadelphia: Lea & Febiger.Google Scholar
  12. Chimich D, Shrive N, Frank C, Marchuk L, Bray R. 1992. Water content alters viscoelastic behavior of the normal adolescent rabbit medial collateral ligament. J Biomech 25:831–837.CrossRefGoogle Scholar
  13. Chen CT, Malkus DS, Vanderby R. 1998. A fiber matrix model for interstitial fluid flow and permeability in ligaments and tendons. Biorheology 35:103–118.CrossRefGoogle Scholar
  14. Chuong CJ, Sacks MS, Johnson RL, Reynolds R. 1991. On the anisotropy of the canine diaphragmatic central tendon. J Biomech 24:563–576.CrossRefGoogle Scholar
  15. Cohen, B, Lai, WM, Mow VC. 1998. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. J Biomech Eng 120:491–496.Google Scholar
  16. Cooper RR, Misol S. 1970. Tendon and ligament insertion. A light and electron microscopic study. J Bone Joint Surg 52A:1–20.Google Scholar
  17. Diamant J, Keller A, Baer E, Litt M, Arridge RGC. 1972. Collagen: ultrastructure and its relation to mechanical properties as a function of aging. Proc R Soc Lond B 180:293–315.Google Scholar
  18. Dolgo-Saburoff B. 1929. über ursprung und insertion der skeletmuskein. Anat Anz 68:80–87.Google Scholar
  19. Elliott DM, Robinson PS, Gimbel JA, Sarver JJ, et al. 2003. Effect of altered matrix proteins on quasilinear viscoelastic properties in transgenic mouse tail tendons. Ann Biomed Eng 31:599–605.CrossRefGoogle Scholar
  20. Frank C, McDonald D, Lieber R, Sabiston P. 1988. Biochemical heterogeneity within the maturing rabbit medial collateral ligament. Clin Orthop 236:279–285.Google Scholar
  21. Fratzl P, Misof K, Zizak I, Rapp G, Amenitsch H, Bernstorff S. 1997. Fibrillar structure and mechanical properties of collagen. J Struct Biol 122:119–22.CrossRefGoogle Scholar
  22. Fung YC. 1967. Elasticity of soft tissues in simple elongation. Am J Physiol 213:1532–1544.Google Scholar
  23. Fung YC. 1972. Stress-strain history of soft tissues in simple elongation. In Biomechanics, its foundations and objectives, ed. YC Fung, N Perrone, M Anliker, pp. 181–208. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  24. Fung YC. 1993. Biomechanics — mechanical properties of living tissues, 2nd ed., New York: Springer.Google Scholar
  25. Gardner JC, Weiss JA. 2001. Simple shear testing of parallel-fibered planar soft tissues. J Biomech Eng 123:170–175.CrossRefGoogle Scholar
  26. Hannafin JA, Arnoczky SP. 1994. Effect of cyclic and static tensile loading on water content and solute diffusion in canine flexor tendons: an in vitro study. J Orthop Res 12:350–356.CrossRefGoogle Scholar
  27. Hansen KA, Weiss JA, Barton JK. 2002. Recruitment of tendon crimp with applied tensile strain. J Biomech Eng 124:72–77.CrossRefGoogle Scholar
  28. Haut RC, Little RW. 1972. A constitutive equation for collagen fibers. J Biomech 5:423–430.CrossRefGoogle Scholar
  29. Hingorani RV, Provenzano PP, Lakes RS, Escarcega A, Vanderby R. 2004. Nonlinear viscoelasticity in rabbit medial collateral ligament. Ann Biomed Eng 32:306–312.CrossRefGoogle Scholar
  30. Holzapfel GA, Gasser TC, Ogden RW. 2001. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48.CrossRefMathSciNetGoogle Scholar
  31. Jenkins JT. 1976. Mechanical Properties of Tendon. Unpublished MS.Google Scholar
  32. Józsa L, Kannus P. 1997. Human tendons: anatomy, physiology, and pathology. Champaign, IL: Human Kinetics.Google Scholar
  33. Kannus P. 2000. Structure of the tendon connective tissue. Scand J Med Sci Sports 10:312–320.CrossRefGoogle Scholar
  34. Knese K-H, Biermann H. 1958. Die knockenbildung an sehnenund bandsÄtzen im bereich ursprunglich chondraler apophysen. Z Zell Mikrosk Anat 49:142–187.CrossRefGoogle Scholar
  35. Knese K-H. 1979. Stützgewebe und skelettsystem. In Handbuch der mikroskopischen anatomie des menschen il/s, ed. W von Mellendorff, W Bargmann, pp. 1–938. Berlin: Springer.Google Scholar
  36. LeRoux MA, Setton LA. 2002. Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension. J Biomech Eng 124:315–321.CrossRefGoogle Scholar
  37. McNeilly CM, Banes AJ, Benjamin M, Ralphs JR. 1996. Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 189:593–600.Google Scholar
  38. Misof K, Rapp G, Fratzl P. 1997a. A new molecular model for collagen based on synchrotron x-ray scattering evidence. Biophys J 72:1376–1381.CrossRefGoogle Scholar
  39. Misof K, Rapp G, Landis WJ, Klaushofer K, Hulmes DJS, Fratzl P. 1997b. Mechanical properties of normal and defective collagen — implications for osteogenesis imperfecta, Bone 20(Suppl. 4):11S.Google Scholar
  40. Mommersteeg TJ, Blankevoort L, Kooloos JG, Hendriks JC, Kauer JM, Huiskes R. 1994. Nonuniform distribution of collagen density in human knee ligaments. J Orthop Res 12:238–245.CrossRefGoogle Scholar
  41. Nachemson AL, Evans JH. 1968. Some mechanical properties of the third human interlaminar ligament (ligamentum favum). J Biomech 1:211–216.CrossRefGoogle Scholar
  42. Nordin M, Frankel VH. 1989. Basic biomechanics of the musculoskeletal system, 2nd ed. Philadelphia: Lea & Febiger.Google Scholar
  43. Noyes FR. 1977. Functional properties of knee ligaments and alterations induced by immobilization. Clin Orthop 123:210–222.Google Scholar
  44. Noyes FR, Torvik PJ, Hyde WB, De Lucas JL. 1974. Biomechanics of ligament failure, II: an analysis of immobilization, exercise and reconditioning effects in primates. J Bone Joint Surg 56A:1406–1408.Google Scholar
  45. Pipkin AC, Roger TG. 1968. A nonlinear integral representation for viscoelastic behavior. J Mech Phys Solids 16:59–74.MATHCrossRefGoogle Scholar
  46. Provenzano PP, Lakes RS, Keenan T, Vanderby R. 2001. Nonlinear ligament viscoelasticity. Ann Biomed Eng 29:908–914.CrossRefGoogle Scholar
  47. Puso MA, Weiss JA. 1998. Finite-element implementation of anisotropic quasilinear viscoelasticity. J Biomech Eng 120:62–70.Google Scholar
  48. Quapp KM, Weiss JA. 1998. Material characterization of human medial collateral ligament. J Biomech Eng 120:757–763.Google Scholar
  49. Ralphs JR, Benjamin M, Waggett AD, Russell DC, Messner K, Gao J. 1998. Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. J Anat 193:215–222.CrossRefGoogle Scholar
  50. Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, Carpten JD. 2005. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 115:622–631.CrossRefGoogle Scholar
  51. Thornton GM, Oliynyk A, Frank CB, Shrive NG. 1997. Ligament creep cannot be predicted from stress relaxation at low stress: a biomechanical study of the rabbit medial collateral ligament. J Orthop Res 15:652–656.CrossRefGoogle Scholar
  52. Thornton GM, Frank CB, Shrive NG. 2001a. Ligament creep behavior can be predicted from stress relaxation by incorporating fiber recruitment. J Rheol 45:493–507.CrossRefGoogle Scholar
  53. Thornton GM, Shrive NG, Frank CB. 2001b. Altering ligament water content affects ligament pre-stress and creep behavior. J Orthop Res 19:845–851.CrossRefGoogle Scholar
  54. Thornton GM, Shrive NG, Frank CB. 2002. Ligament creep recruits fibers at low stresses and can lead to modulus-reducing fiber damage at higher creep stresses: a study in rabbit medial collateral ligament model. J Orthop Res 20:967–974.CrossRefGoogle Scholar
  55. Tipton CM, Schild RJ, Tomanek RJ. 1967. Influence of physical activity on the strength of knee ligaments in rats. Am J Physiol 212:783–793.Google Scholar
  56. Tipton CM, James SL, Mergner W, Tcheng T. 1970. Influence of exercise on strength of medial collateral ligaments of dogs. Am J Physiol 218:894–905.Google Scholar
  57. Uchiyama S, Amadio PC, Ishikawa JI, An KN. 1997. Boundary lubrication between the tendon and the pulley in the finger. J Bone Joint Surg 79:213–218.CrossRefGoogle Scholar
  58. Untaroiu CK, Darvish J, Crandall J, Deng B, Wang JT. 2005. Characterization of the lower limb soft tissues in pedestrian finite element models. In Proc. 19th International technical conference on the enhanced safety of vehicles conference. Washington, DC: ESV.Google Scholar
  59. Veronda DR, Westmann RA. 1970. Mechanical characterizations of skin — finite deformations. J Biomech 3:111–124.CrossRefGoogle Scholar
  60. Viidik A. 1967. The effect of training on the tensile strength of isolated rabbit tendons. Scand J Plast Reconstr Surg 1:141–150.CrossRefGoogle Scholar
  61. Viidik A. 1979. Biomechanical behavior of soft connective tissues. In Progress in biomechanics, ed. N Akkas, A Aan den Rijn, pp. 75–113. Oslo: Sijthoff and Nordhoff.Google Scholar
  62. Viidik A. 1990. Structure and function of normal and healing tendons and ligaments. In Biomechanics of diarthroidal joints, Vol. 1, ed. VC Mow, A Radcliffe, SL-Y Woo, pp. 1–39. New York: Springer.Google Scholar
  63. Weiss JA. 2005. Private communication.Google Scholar
  64. Weiss JA, Gardiner JC. 2001, Computational modeling of ligament mechanics. Crit Rev Biomed Eng 29:1–70.Google Scholar
  65. Weiss JA, Maakestad BJ. 2006. Permeability of human medial collateral ligament in compression transverse to the collagen fiber direction. J Biomech 39:276–283.CrossRefGoogle Scholar
  66. Weiss JA, Maker BN, Govindjee S. 1996. Finite element implementation of incompressible, transversely isotropic hyperelasticity. Computer Methods Appl Mech Eng 135:107–128.MATHCrossRefGoogle Scholar
  67. Weiss JA, Gardiner JC, Bonifasi-Lista C. 2002. Ligament material behavior is nonlinear, viscoelastic and rate-independent under shear loading. J Biomech 35:943–950.CrossRefGoogle Scholar
  68. Wellen J, Helmer KG, Grigg P, Sotak CH. 2004. Application of porous-media theory to the investigation of water ADC changes in rabbit Achilles tendon caused by tensile loading. J Magn Reson 170:49–55.CrossRefGoogle Scholar
  69. Wellen J, Helmer KG, Grigg P, Sotak CH. 2005. Spatial characterization of T1 and T2 relaxation times and the water apparent diffusion coefficient in rabbit Achilles tendon subjected to tensile loading. Magn Reson Med 53:535–544.CrossRefGoogle Scholar
  70. Woo SL. 1982. Mechanical properties of tendons and ligaments, I: Quasi-static and nonlinear viscoelastic properties. Biorheology 19:385–396.Google Scholar
  71. Woo SL-Y, Maynard J, Butler D, Lyon R, Torzilli P, Akeson W., et al. 1988. Ligament, tendon, and joint capsule insertions to bone. In Injury and repair of the musculoskeletal soft tissues, ed. SL-Y Woo, JA Buckwalter, pp. 133–166. Park Ridge, IL: American Academy of Orthopaedic Surgeons.Google Scholar
  72. Woo SL-Y, Peterson RH, Ohiand KJ, Sites TJ, Danto MI. 1990. The mechanical properties of the medial collateral ligament in skeletally mature rabbits: a biomechanical and histological study. J Orthop Res 8:712–721.CrossRefGoogle Scholar
  73. Yin L, Elliott DM. 2004. A biphasic and transversely isotropic mechanical model for tendon: application to mouse tail fascicles in uniaxial tension. J Biomech 37:907–916.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations