Modeling Poroelastic and Electrical Effects in Soft Tissues


“The earth is a living body. Its soul is its ability to grow. This soul, which also provides the earth with its bodily warmth, is located in the inner fires of the earth, which emerge at several places as baths, sulfur mines or volcanoes. Its flesh is the soil, its bones are the strata of rock, its cartilage is the tufa [rock composed of volcanic detritus, fused together by heat], its blood is the underground streams, the reservoir of blood around its heart is the ocean. The systole and diastole of the blood in the arteries and veins appear on the earth as the rising and sinking of the oceans.” (The Codex Leicester, Leonardo da Vinci)


Porous Medium Osmotic Pressure Pore Fluid Entropy Inequality Electrical Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander AE, Johnson P. 1949. Colloidal science. Oxford: OUP.Google Scholar
  2. Ateshian GA, Likhitpanichkulk M, Hung CT. 2005. A mixture theory analysis for passive transport in osmotic loading of cells. J Biomech. In press. Available at Scholar
  3. Atkin RJ, Craine RE. 1976a. Continuum theories of mixtures: basic theory and historical development. Q J Mech Appl Math 29:209–244.MATHCrossRefMathSciNetGoogle Scholar
  4. Atkin RJ, Craine RE. 1976b. Continuum theories of mixtures: applications. J Inst Math Appl 17:153–207.MATHCrossRefMathSciNetGoogle Scholar
  5. Biot MA. 1935. Le probléme de la consolidation des matiéres argileuses sous une charge. Ann Soc Sci Bruxelles B55:110–113.Google Scholar
  6. Biot MA. 1941. General theory of three-dimensional consolidation. J Appl Phys 12:155–164.CrossRefGoogle Scholar
  7. Biot MA. 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid, I: low frequency range. J Acoust Soc Am 28:168–178.CrossRefMathSciNetGoogle Scholar
  8. Biot MA. 1956b. Theory of propagation of elastic waves in a fluid-saturated porous solid, II: higher frequency range. J Acoust Soc Am 28:179–191.CrossRefMathSciNetGoogle Scholar
  9. Biot MA. 1962. Generalized theory of acoustic propagation in porous dissipative media. J Acoust Soc Am 34:1254–1264.CrossRefMathSciNetGoogle Scholar
  10. Biot MA. 1972. Theory of finite deformation of porous solids. Indiana Univ Math J 21:597–620.CrossRefMathSciNetGoogle Scholar
  11. Biot MA. 1982. Generalized Lagrangian equations of non-linear reaction-diffusion. Chem Phys 66:11–26.CrossRefMathSciNetGoogle Scholar
  12. Biot MA, Willis DG. 1957. The elastic coefficients of the theory of consolidation. J Appl Mech 24:594–601.MathSciNetGoogle Scholar
  13. Bowen RM. 1967. Toward a thermodynamics and mechanics of mixtures. Arch Rat Mech Anal 24:370–403.MATHCrossRefMathSciNetGoogle Scholar
  14. Bowen RM. 1976. Theory of mixtures. In Continuum physics, Vol 3: Mixtures and EM field theories, ed. AC Eringen, pp. 1–127. New York: Academic Press.Google Scholar
  15. Bowen RM. 1980. Incompressible porous media models by use of the theory of mixtures. Int J Eng Sci 18:1129–1148.MATHCrossRefGoogle Scholar
  16. Bowen RM. 1982. Compressible porous media models by use of the theory of mixtures. Int J Eng Sci 20:697–735.MATHCrossRefGoogle Scholar
  17. Burridge R, Keller JB. 1981. Poroelasticity equations derived from microstructure. J Acoust Soc Am 70:1140–1146.MATHCrossRefGoogle Scholar
  18. Carroll MM. 1979. An effective stress-strain law for anisotropic elastic deformation. J Geophys Res 84:7510–7512.Google Scholar
  19. Coelho D, Shapiro M, Thovert JF, Adler PM. 1996. Electroosmotic phenomena in porous media. J Colloid Interface Sci 181:169–190.CrossRefGoogle Scholar
  20. Coleman BD, Noll W. 1963. The thermodynamics of elastic materials with heat conduction. Arch Rat Mech Anal 13:167–178.MATHCrossRefMathSciNetGoogle Scholar
  21. Coussy O. 1995. Mechanics of porous continua. New York: Wiley.MATHGoogle Scholar
  22. De Boer R. 1996. Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl Mech Rev 49:201–262.Google Scholar
  23. De Boer R. 2000. Theory of porous media: highlights in the historical development and current state. Berlin: Springer-Verlag.MATHGoogle Scholar
  24. De Groot SR, Mazur P. 1969. Non-equilibrium thermodynamics. Amsterdam: North Holland.Google Scholar
  25. Denbigh KG. 1951. The thermodynamics of the steady state. London: Methuen.Google Scholar
  26. Donnan FG. 1924. The theory of membrane equilibria. Chem Rev 1:73–90.CrossRefGoogle Scholar
  27. Evans DF, Wennerström H. 1999. The colloidal domain, 2nd ed. New York: Wiley-VCH.Google Scholar
  28. Fick A. 1855. über diffusion. Ann Phys 94:59–86.Google Scholar
  29. Friedman MH. 1986. Principles and models of biological transport. Berlin: Springer-Verlag.Google Scholar
  30. Frijns AJH, Huyghe JM, Janssen JD. 1997. A validation of the quadriphasic mixture theory for intervertebral disc tissue. Int J Eng Sci 35:1419–1429.MATHCrossRefGoogle Scholar
  31. Goodman MA, Cowin SC. 1972. A continuum theory for granular materials. Arch Rat Mech Anal 44:249–266.MATHCrossRefMathSciNetGoogle Scholar
  32. Gu WY, Lai WM, Mow VC. 1993. Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage. J Biomech 26:709–723.CrossRefGoogle Scholar
  33. Gu WY, Lai WM, Mow VC. 1997. A triphasic analysis of negative osomotic flows through charged hydrated soft tissues. J Biomech 30:71–78.CrossRefGoogle Scholar
  34. Gu WY, Lai WM, Mow VC. 1998. A mixture theory for charged-hydrated soft tissues containing multi-electrolytes: passive transport and swelling behaviors. J Biomech Eng 120:169–180.Google Scholar
  35. Gu WY, Lai WM, Mow, VC. 1999. Transport of multi-electrolytes in charged hydrated soft tissues. Transport Porous Media 34:143–157.CrossRefGoogle Scholar
  36. Huyghe JM. 2004. Private communication.Google Scholar
  37. Huyghe JM, Bovendeerd PHM. 2003. Biological Mixtures. Lecture notes for course 4A650, Technische Universiteit Eindhoven.Google Scholar
  38. Huyghe JM, Janssen JD. 1997. Quadriphasic mechanics of swelling incompressible porous media. Int J Eng Sci 35:793–802.MATHCrossRefGoogle Scholar
  39. Huyghe JM, Janssen JD. 1999. Thermo-chemo-electro-mechanical formulation of saturated charged porous media. Transp Porous Media 34:120–141.CrossRefGoogle Scholar
  40. Huyghe JM, Oomens CW, van Campen DH, Heethaar RM. 1989. Low Reynolds number steady state flow through a branching network of rigid vessels. Biorheology 26:55–71.Google Scholar
  41. Huyghe JM, van Campen DH. 1995a. Finite deformation theory of hierarchically arranged porous solids, I: balance of mass and momentum. Int J Eng Sci 33:1861–1871.MATHCrossRefGoogle Scholar
  42. Huyghe JM, van Campen DH. 1995b. Finite deformation theory of hierarchically arranged porous solids, II: constitutive behavior. Int J Eng Sci 33:1873–1886.MATHCrossRefGoogle Scholar
  43. Lai WM, Gu WY, Mow VC. 1998. On the conditional equivalence of chemical loading and mechanical loading on articular cartilage. J Biomech 31:1181–1185.CrossRefGoogle Scholar
  44. Lai WM, Hou JS, Mow VC. 1991. A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113:245–258.Google Scholar
  45. Lai WM, Mow VC, Sun DD, Ateshian GA. 2000. On the electric potentials inside a charged soft hydrated biological tissue: streaming potential versus diffusion potential. J Biomech Eng 122:336–346.CrossRefGoogle Scholar
  46. Lakshminarayanaiah N. 1984. Equations of membrane biophysics. Orlando: Academic Press.Google Scholar
  47. Lanir Y. 1987. Biorheology and fluid flux in swelling tissues, I: Bicomponent theory for small deformations, including concentration effects. Biorheology 24:173–187.Google Scholar
  48. Mow VC, Lai WL. 1980. Recent developments in synovial joint mechanics. SIAM Rev 22:275–317.MATHCrossRefMathSciNetGoogle Scholar
  49. Mow VC, Kuei SC, Lai WL, Armstrong C. 1980. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J Biomech Eng 102:73–84.CrossRefGoogle Scholar
  50. Mow VC, Wang CC, Hung CT. 1999. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarth Cart 7:41–58.CrossRefGoogle Scholar
  51. Müller I. 1968. A thermodynamic theory of mixtures. Arch Rat Mech Anal 28:1–39.MATHCrossRefGoogle Scholar
  52. Müller I. 1985. Thermodynamics. Boston: Pitman.MATHGoogle Scholar
  53. Oomens CWJ, van Campen DH, Gorrtenboer HJ. 1987. A mixture approach to the mechanics of skin. J Biomech 20:887–885.Google Scholar
  54. Rice JR, Cleary MP. 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14:227–241.Google Scholar
  55. Skempton AW. 1954. The pore pressure coefficients A and B. Géotechnique 4:143–147.CrossRefGoogle Scholar
  56. Slattery JC. 1967. Flow of viscoelastic fluids through porous media. AIChE J 13:1066–1071.CrossRefGoogle Scholar
  57. Stefan J. 1871. über das gleichgewicht und bewegung, insbesondere die diffusion von gasmengen. Sitzgesber Akad Wiss Wein 632:63–124.Google Scholar
  58. Thompson M, Willis JR. 1991. A reformation of the equations of anisotropic poroelasticity. J Appl Mech 58:612–616.MATHGoogle Scholar
  59. Truesdell CA. 1957. Sulle basi della termomeccania. Rend Lincei 22:33–38, 1158–166.MathSciNetGoogle Scholar
  60. Truesdell CA, Toupin RA. 1960. The classical field theories. In Handbuch der physik, ed. S Flugge, pp. 226–859. Berlin: Springer-Verlag.Google Scholar
  61. Truskey GA, Yuan F, Katz DF. 2004. Transport phenomena in biological systems. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  62. Vankan WJ, Huyghe JM, Janssen JD, Huson A. 1996. Poroelasticity of saturated solids with an application to blood perfusion. Int J Eng Sci 34:1019–1031.MATHCrossRefGoogle Scholar
  63. Vankan WJ, Huyghe JM, Janssen TJD, Huson A, Hacking WJG, Schreiner W. 1997a. Finite element analysis of blood flow through biological tissue. Int J Eng Sci 35:375–385.MATHCrossRefGoogle Scholar
  64. Vankan WJ, Huyghe JM, Drost MR, Janssen JD, Huson A. 1997b. A finite element model for hierarchical porous media. Int J Num Meths Eng 40:1019–1031.Google Scholar
  65. Whitaker S. 1967. Diffusion and dispersion in porous media. AIChE J 13:420–427.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations