Skip to main content

Bone Tissue Adaptation

  • Chapter
Tissue Mechanics

Absract

“A perceptive man, who watches living bone grow or adapt to disease, must realize that he is seeing an exquisitely controlled directionality and metering of the cell behavior responsible for the form, size, and location in space of bone. Similar control of directionality is shown by other human tissues, by all other vertebrate and most non-vertebrate animal tissues and by most botanical tissues.” (Harold Frost, 1964, preface)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brand R, Claes L. 1989. Review of the English translation of the book The Law of Bone Remodelling by J. Wolff. J Biomech 22:185–187.

    Google Scholar 

  • Brown TD. 2001. Devices and techniques for in vitro mechanical stimulation of bone cells. Chapter 27 in Bone mechanics handbook, ed. SC Cowin. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Brown TD, Pedersen DR, Gray ML, Brand RA, et al. 1990. Toward an identification of mechanical parameters initiating periosteal remodeling: a combined experimental and analytic approach. J Biomech 23:893–905.

    Article  Google Scholar 

  • Burger EH. 2001. Experiments on cell mechanosensitivity: bone cells as mechanical engineers. Chapter 28 in Bone mechanics handbook, ed. SC Cowin. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Cowin SC. 1981. Mechanical properties of bones. In Mechanics of Structured Media, ed. APS Selvadurai, pp. 151–184. Philadelphia: Elsevier.

    Google Scholar 

  • Cowin SC, ed. 1989. Bone mechanics. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Cowin SC, ed. 2001. Bone mechanics handbook. Boca Raton, FL: CRC Press (ISBN/ISSN: 0849391172).

    Google Scholar 

  • Cowin SC. 2003. Adaptive elasticity: a review and critique of a bone tissue adaptation model. Eng Trans 51:1–79.

    MathSciNet  Google Scholar 

  • Cowin SC, Hegedus DH. 1976. Bone remodeling, I: theory of adaptive elasticity. J Biomech 6:313–326.

    MATH  MathSciNet  Google Scholar 

  • Cowin SC, Mehrabadi MM. 1989. Identification of the elastic symmetry of bone and other materials. J Biomech 22:503–515.

    Article  Google Scholar 

  • Cowin SC, Moss ML. 2000. Mechanosensory mechanisms in bone. In Textbook of tissue engineering, 2nd ed., ed. R Lanza, R Langer, W Chick, pp. 723–738. San Diego: Academic Press.

    Google Scholar 

  • Cowin SC, Moss ML. 2001. Mechanosensory mechanisms in bone. Bone mechanics handbook, ed. SC Cowin. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Cowin SC, Nachlinger RR. 1978. Bone remodeling, III: uniqueness and stability in adaptive elasticity theory. J Elast 8:285–295.

    Article  MATH  MathSciNet  Google Scholar 

  • Cowin SC, Van Buskirk WC. 1979. Surface bone remodeling induced by a medullary pin. J Biomech 12:269–276.

    Article  Google Scholar 

  • Cowin SC, Hart RT, Balser JR, Kohn DH. 1985. Functional adaptation in long bones: establishing in vivo values for surface remodeling rate coefficients. J Biomech 18:665–684.

    Article  Google Scholar 

  • Cowin SC, Moss-Salentijn L, Moss ML. 1991. Candidates for the mechanosensory system in bone. J Biomech Eng 113:191–197.

    Google Scholar 

  • Culmann K. 1866. Die graphische statik. Zurich: Verlag von Meyer & Zeller.

    Google Scholar 

  • Currey JD. 1960. Differences in the blood supply of bone of different histological type. Q J Microsc Sci 101:351–370.

    Google Scholar 

  • Currey JD. 1979. Changes in the impact energy absorption of bone with age. J Biomech 12:459–470.

    Article  Google Scholar 

  • Currey JD. 1984. The mechanical adaptation of bones. Princeton: Princeton UP.

    Google Scholar 

  • Currey JD. 2002. Bones. Princeton: Princeton UP.

    Google Scholar 

  • D’arcy Thompson W. 1942. On growth and form. Cambridge: Cambridge UP.

    Google Scholar 

  • Dibbets JMH. 1992. One century of Wolff’s law. In Bone biodynamics in orthodontic and orthopaedic treatment, ed. DS Carlson, SA Goldstein, pp. 1–13 (Craniofacial Growth Series, Vol 27). Ann Arbor: U Michigan P.

    Google Scholar 

  • Firoozbakhsh K, Cowin SC. 1980. Devolution of inhomogeneities in bone structure: predictions of adaptive elasticity theory. J Biomech Eng 102:287–293.

    Google Scholar 

  • Frost HM. 1964. The laws of bone structure. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Frost HM. 1969. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 3:211–237.

    Article  Google Scholar 

  • Goodship AE, Cunningham JL. 2001. Pathophysiology of functional adaptation of bone in remodelling and repair in vivo. Chapter 26 in Bone mechanics handbook, ed. S Cowin. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Hart RT. 2001. Bone modeling and remodeling. Chapter 31 in Bone mechanics handbook, ed. SC Cowin. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Hegedus DH, Cowin SC. 1976. Bone remodeling, II: small strain adaptive elasticity. J Elast 6:337–352.

    Article  MATH  MathSciNet  Google Scholar 

  • Jansen M. 1920. On bone formation — its relation to tension and pressure. London: Longmans, Green & Co.

    Google Scholar 

  • Jaworski ZFG, Liskova-Kiar M, Uhthoff HK. 1980. Effect of long-term immobilization an the pattern of bone loss in older dogs. J Bone Joint Surg 62B:104–111.

    Google Scholar 

  • Keith A. 1918. Hunterian lecture on Wolff’s law of bone transformation. Lancet 16:250–252.

    Google Scholar 

  • Koch JC. 1917. Laws of bone architecture. Am J Anat 21:177–298.

    Article  Google Scholar 

  • Lanyon LE. 1984. Functional strain as a determinant for bone remodeling. Calcif Tissue Int 36:S56–S61.

    Article  Google Scholar 

  • Lanyon LE, Goodship AE, Pye CJ, MacFie JH. 1982. Mechanically adaptive bone remodeling. J Biomech 15:141–154.

    Article  Google Scholar 

  • Martin RB, Burr DB. 1989. Structure, function and adaptation of compact bone. New York: Raven Press.

    Google Scholar 

  • Martin RB, Burr DB, Sharkey NA. 1998. Skeletal tissue mechanics. New York: Springer.

    Google Scholar 

  • Murray PDF. 1936. Bones — a study of the development and structure of the vertebrate skeleton. Cambridge: Cambridge UP.

    Google Scholar 

  • Roesler H. 1987. The history of some fundamental concepts in bone biomechanics. J Biomech 20:1025–1034.

    Article  Google Scholar 

  • Roux W. 1885. Beitrage zur morphologie der funktionellen anpassung. Arch Anat Physiol Anat Abt, pp. 120–185.

    Google Scholar 

  • Seireg A, Arvikar RJ. 1975. The prediction of muscular load sharing and joint forces in the lower extremities during walking. J Biomech 8:89–102.

    Article  Google Scholar 

  • Timoshenko S. 1955. Strength of materials, 3rd ed., Vol. 1, Chapter 8. New York: Van Nostrand.

    Google Scholar 

  • Uhthoff HK, Jaworski ZFG. 1978. Bone loss in response to long term immobilization. J Bone Joint Surg 60-B:420–429.

    Google Scholar 

  • VanCochran C. 1982. Primer of orthopaedic biomechanics. New York: Churchill Livingstone.

    Google Scholar 

  • Weinbaum S, Cowin SC, Zeng Yu. 1994. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27:339–360.

    Article  Google Scholar 

  • Wolff J. 1870. Uber der innere architektur der knochen und ihre bedeutung fur die frage vom knochen-wachstum. Arch Path Anat Physiol Med, Virchovs Arch 50:389–453.

    Article  Google Scholar 

  • Wolff J. 1892. Das gesetz der transformation der knochen. Berlin: Hirschwald.

    Google Scholar 

  • Wolff J. 1986. The law of bone remodelling. Berlin: Springer.

    Google Scholar 

  • Woo SLY, Kuei SC, Dillon WA, Amiel D, White FC, et al. 1981. The effect of prolonged physical training on the properties of long bone-a study of Wolff’s Law. J Bone Joint Surg 63-A:780–787.

    Google Scholar 

  • Zhang D, Cowin SC, Weinbaum S. 1997. Electrical signal transmission and gap junction regulation in bone cell network: a cable model for an osteon. Ann Biomed Eng 25:357–374.

    Article  Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Bone Tissue Adaptation. In: Cowin, S.C., Doty, S.B. (eds) Tissue Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49985-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49985-7_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-36825-2

  • Online ISBN: 978-0-387-49985-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics