Bone Tissue Adaptation


“A perceptive man, who watches living bone grow or adapt to disease, must realize that he is seeing an exquisitely controlled directionality and metering of the cell behavior responsible for the form, size, and location in space of bone. Similar control of directionality is shown by other human tissues, by all other vertebrate and most non-vertebrate animal tissues and by most botanical tissues.” (Harold Frost, 1964, preface)


Fluid Shear Stress Solid Volume Fraction Entropy Transfer Tissue Mechanic Periosteal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brand R, Claes L. 1989. Review of the English translation of the book The Law of Bone Remodelling by J. Wolff. J Biomech 22:185–187.Google Scholar
  2. Brown TD. 2001. Devices and techniques for in vitro mechanical stimulation of bone cells. Chapter 27 in Bone mechanics handbook, ed. SC Cowin. Boca Raton, FL: CRC Press.Google Scholar
  3. Brown TD, Pedersen DR, Gray ML, Brand RA, et al. 1990. Toward an identification of mechanical parameters initiating periosteal remodeling: a combined experimental and analytic approach. J Biomech 23:893–905.CrossRefGoogle Scholar
  4. Burger EH. 2001. Experiments on cell mechanosensitivity: bone cells as mechanical engineers. Chapter 28 in Bone mechanics handbook, ed. SC Cowin. Boca Raton, FL: CRC Press.Google Scholar
  5. Cowin SC. 1981. Mechanical properties of bones. In Mechanics of Structured Media, ed. APS Selvadurai, pp. 151–184. Philadelphia: Elsevier.Google Scholar
  6. Cowin SC, ed. 1989. Bone mechanics. Boca Raton, FL: CRC Press.Google Scholar
  7. Cowin SC, ed. 2001. Bone mechanics handbook. Boca Raton, FL: CRC Press (ISBN/ISSN: 0849391172).Google Scholar
  8. Cowin SC. 2003. Adaptive elasticity: a review and critique of a bone tissue adaptation model. Eng Trans 51:1–79.MathSciNetGoogle Scholar
  9. Cowin SC, Hegedus DH. 1976. Bone remodeling, I: theory of adaptive elasticity. J Biomech 6:313–326.MATHMathSciNetGoogle Scholar
  10. Cowin SC, Mehrabadi MM. 1989. Identification of the elastic symmetry of bone and other materials. J Biomech 22:503–515.CrossRefGoogle Scholar
  11. Cowin SC, Moss ML. 2000. Mechanosensory mechanisms in bone. In Textbook of tissue engineering, 2nd ed., ed. R Lanza, R Langer, W Chick, pp. 723–738. San Diego: Academic Press.Google Scholar
  12. Cowin SC, Moss ML. 2001. Mechanosensory mechanisms in bone. Bone mechanics handbook, ed. SC Cowin. Boca Raton, FL: CRC Press.Google Scholar
  13. Cowin SC, Nachlinger RR. 1978. Bone remodeling, III: uniqueness and stability in adaptive elasticity theory. J Elast 8:285–295.MATHCrossRefMathSciNetGoogle Scholar
  14. Cowin SC, Van Buskirk WC. 1979. Surface bone remodeling induced by a medullary pin. J Biomech 12:269–276.CrossRefGoogle Scholar
  15. Cowin SC, Hart RT, Balser JR, Kohn DH. 1985. Functional adaptation in long bones: establishing in vivo values for surface remodeling rate coefficients. J Biomech 18:665–684.CrossRefGoogle Scholar
  16. Cowin SC, Moss-Salentijn L, Moss ML. 1991. Candidates for the mechanosensory system in bone. J Biomech Eng 113:191–197.Google Scholar
  17. Culmann K. 1866. Die graphische statik. Zurich: Verlag von Meyer & Zeller.Google Scholar
  18. Currey JD. 1960. Differences in the blood supply of bone of different histological type. Q J Microsc Sci 101:351–370.Google Scholar
  19. Currey JD. 1979. Changes in the impact energy absorption of bone with age. J Biomech 12:459–470.CrossRefGoogle Scholar
  20. Currey JD. 1984. The mechanical adaptation of bones. Princeton: Princeton UP.Google Scholar
  21. Currey JD. 2002. Bones. Princeton: Princeton UP.Google Scholar
  22. D’arcy Thompson W. 1942. On growth and form. Cambridge: Cambridge UP.Google Scholar
  23. Dibbets JMH. 1992. One century of Wolff’s law. In Bone biodynamics in orthodontic and orthopaedic treatment, ed. DS Carlson, SA Goldstein, pp. 1–13 (Craniofacial Growth Series, Vol 27). Ann Arbor: U Michigan P.Google Scholar
  24. Firoozbakhsh K, Cowin SC. 1980. Devolution of inhomogeneities in bone structure: predictions of adaptive elasticity theory. J Biomech Eng 102:287–293.Google Scholar
  25. Frost HM. 1964. The laws of bone structure. Springfield, IL: Charles C. Thomas.Google Scholar
  26. Frost HM. 1969. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 3:211–237.CrossRefGoogle Scholar
  27. Goodship AE, Cunningham JL. 2001. Pathophysiology of functional adaptation of bone in remodelling and repair in vivo. Chapter 26 in Bone mechanics handbook, ed. S Cowin. Boca Raton, FL: CRC Press.Google Scholar
  28. Hart RT. 2001. Bone modeling and remodeling. Chapter 31 in Bone mechanics handbook, ed. SC Cowin. Boca Raton, FL: CRC Press.Google Scholar
  29. Hegedus DH, Cowin SC. 1976. Bone remodeling, II: small strain adaptive elasticity. J Elast 6:337–352.MATHMathSciNetCrossRefGoogle Scholar
  30. Jansen M. 1920. On bone formation — its relation to tension and pressure. London: Longmans, Green & Co.Google Scholar
  31. Jaworski ZFG, Liskova-Kiar M, Uhthoff HK. 1980. Effect of long-term immobilization an the pattern of bone loss in older dogs. J Bone Joint Surg 62B:104–111.Google Scholar
  32. Keith A. 1918. Hunterian lecture on Wolff’s law of bone transformation. Lancet 16:250–252.Google Scholar
  33. Koch JC. 1917. Laws of bone architecture. Am J Anat 21:177–298.CrossRefGoogle Scholar
  34. Lanyon LE. 1984. Functional strain as a determinant for bone remodeling. Calcif Tissue Int 36:S56–S61.CrossRefGoogle Scholar
  35. Lanyon LE, Goodship AE, Pye CJ, MacFie JH. 1982. Mechanically adaptive bone remodeling. J Biomech 15:141–154.CrossRefGoogle Scholar
  36. Martin RB, Burr DB. 1989. Structure, function and adaptation of compact bone. New York: Raven Press.Google Scholar
  37. Martin RB, Burr DB, Sharkey NA. 1998. Skeletal tissue mechanics. New York: Springer.Google Scholar
  38. Murray PDF. 1936. Bones — a study of the development and structure of the vertebrate skeleton. Cambridge: Cambridge UP.Google Scholar
  39. Roesler H. 1987. The history of some fundamental concepts in bone biomechanics. J Biomech 20:1025–1034.CrossRefGoogle Scholar
  40. Roux W. 1885. Beitrage zur morphologie der funktionellen anpassung. Arch Anat Physiol Anat Abt, pp. 120–185.Google Scholar
  41. Seireg A, Arvikar RJ. 1975. The prediction of muscular load sharing and joint forces in the lower extremities during walking. J Biomech 8:89–102.CrossRefGoogle Scholar
  42. Timoshenko S. 1955. Strength of materials, 3rd ed., Vol. 1, Chapter 8. New York: Van Nostrand.Google Scholar
  43. Uhthoff HK, Jaworski ZFG. 1978. Bone loss in response to long term immobilization. J Bone Joint Surg 60-B:420–429.Google Scholar
  44. VanCochran C. 1982. Primer of orthopaedic biomechanics. New York: Churchill Livingstone.Google Scholar
  45. Weinbaum S, Cowin SC, Zeng Yu. 1994. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27:339–360.CrossRefGoogle Scholar
  46. Wolff J. 1870. Uber der innere architektur der knochen und ihre bedeutung fur die frage vom knochen-wachstum. Arch Path Anat Physiol Med, Virchovs Arch 50:389–453.CrossRefGoogle Scholar
  47. Wolff J. 1892. Das gesetz der transformation der knochen. Berlin: Hirschwald.Google Scholar
  48. Wolff J. 1986. The law of bone remodelling. Berlin: Springer.Google Scholar
  49. Woo SLY, Kuei SC, Dillon WA, Amiel D, White FC, et al. 1981. The effect of prolonged physical training on the properties of long bone-a study of Wolff’s Law. J Bone Joint Surg 63-A:780–787.Google Scholar
  50. Zhang D, Cowin SC, Weinbaum S. 1997. Electrical signal transmission and gap junction regulation in bone cell network: a cable model for an osteon. Ann Biomed Eng 25:357–374.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations