“During the daily activities of life the bones of the skeleton, individually and collectively, are subjected to a variety of force systems. The response of the bones to these systems is a function, to a large extent, of the mechanical properties of the bones. Of course, the type, magnitude, direction, and point of application of the force as well as whether or not it is applied slowly, rapidly, repetitively, or for a long duration must also be considered. Additional variables include whether the bone is living or dead, embalmed or fresh, and the age, sex, race, and species of animal from which the bone is obtained. The specific bone and part of the bone being studied as well as its microscopic structure influence its mechanical properties as do the amount of moisture in it and the temperature at which the mechanical properties are determined.” (F. Gaynor Evans, 1973, preface)


Bone Tissue Cortical Bone Elastic Constant Cancellous Bone Solid Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashman RB, Cowin SC, Van Buskirk WC, Rice JC. 1984. A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17:349–361.CrossRefGoogle Scholar
  2. Atkinson PJ, Hallsworth AS. 1983. The changing structure of aging human mandibular bone. Gerodontology 2:57–66.CrossRefGoogle Scholar
  3. Baylink D, Wergedal J. 1971. Bone formation and resorption by osteocytes. In Cellular mechanisms for calcium transfer and homeostasis, ed. G Nichols Jr, pp. 257–289. New York: Academic Press.Google Scholar
  4. Bell JF. 1973. The experimental methods of solid mechanics. In Handbuch der physik, Vol. Via/1, ed. C Truesdell, pp. 1–813. Berlin: Springer-Verlag.Google Scholar
  5. Brooks M, Revell W. 1998. Blood supply of bone. London: Springer.Google Scholar
  6. Brown TD, Pedersen DR, Gray ML, Brand RA, Rubin CT. 1990. Toward an identification of mechanical parameters initiating periosteal remodeling: a combined experimental and analytic approach. J Biomech 23:893–905.CrossRefGoogle Scholar
  7. Cezayirlioglu H, Bahniuk E, Davy DT, Heiple KG. 1985. Anisotropic behavior of bone under combined axial force and torque. J Biomech 18:61–72.CrossRefGoogle Scholar
  8. Cormack DM. 1987. Ham’s histology, 9th ed. Chapter 12. Philadelphia: Lippincott.Google Scholar
  9. Cowin SC. 1981. Mechanical properties of bones. In Mechanics of structured media, ed. APS Selvadurai, pp. 151–184. Philadelphia: Elsevier.Google Scholar
  10. Cowin SC. 1985. The relationship between the elasticity tensor and the fabric tensor. Mech Mater 4:137–147.CrossRefGoogle Scholar
  11. Cowin SC. 1989. Bone mechanics. Boca Raton, FL: CRC Press.Google Scholar
  12. Cowin SC. 1999. Bone poroelasticity. J Biomech 32:218–238.CrossRefGoogle Scholar
  13. Currey JD. 2002. Bones. Princeton: Princeton UP.Google Scholar
  14. Cowin SC, ed. 2001. Bone mechanics handbook. Boca Raton, FL: CRC Press (ISBN/ISSN: 0849391172).Google Scholar
  15. Cowin SC. 2003. Adaptive elasticity: A review and critique of a bone tissue adaptation model. Eng Trans 51:1–79.MathSciNetGoogle Scholar
  16. Cowin SC, Hegedus DH. 1976. Bone remodeling, I: theory of adaptive elasticity. J Biomech 6:313–326.MATHMathSciNetGoogle Scholar
  17. Cowin SC, Mehrabadi MM. 1989. Identification of the elastic symmetry of bone and other materials. J Biomech 22:503–515.CrossRefGoogle Scholar
  18. Cowin SC, Moss ML. 2000. Mechanosensory mechanisms in bone. In Textbook of tissue engineering, 2nd ed., ed. R Lanza, R Langer, W Chick, pp. 723–738. San Diego: Academic Press.Google Scholar
  19. Cowin SC, Van Buskirk WC, Ashman RB. 1987. The properties of bone. In Handbook of bioengineering, ed. R Skalak, S Chien, pp. 2-1–2-27. New York: McGraw-Hill.Google Scholar
  20. Cowin SC, Weinbaum S, Yu Zeng. 1995. A case for bone canaliculi as the anatomical site of straingenerated potentials. J Biomech 28:1281–1296.CrossRefGoogle Scholar
  21. Cowin SC, Yang G. 1997. Averaging anisotropic elastic constant data. J Elast 46:151–180.MATHCrossRefMathSciNetGoogle Scholar
  22. Currey JD. 1960. Differences in the blood supply of bone of different histological type. Q J Microsc Sci 101:351–370.Google Scholar
  23. Currey JD. 1979. Changes in the impact energy absorption of bone with age. J Biomech 12:459–470.CrossRefGoogle Scholar
  24. Currey JD. 1984. The mechanical adaptation of bones. Princeton: Princeton UP.Google Scholar
  25. Currey JD. 2002. Bones. Princeton: Princeton UP.Google Scholar
  26. De Groot SR, Mazur P. 1969. Non-equilibrium thermodynamics. Amsterdam: North Holland.Google Scholar
  27. Detournay E, Cheng H-DA. 1993. Fundamentals of poroelasticity. In Comprehensive rock engineering: principles, practice and projects. ed. JA Hudson, pp. 113–171. Oxford: Pergamon.Google Scholar
  28. Evans FG. 1973. Mechanical properties of bone. Springfield, IL: Charles C. Thomas.Google Scholar
  29. Frost HM. 1960. Measurement of osteocytes per unit volume and volume components of osteocytes and canaliculae [sic] in man. Henry Ford Hosp Med Bull 8:208–211.Google Scholar
  30. Frost HM. 1962. Specific surface and specific volume of normal human lamellar bone. Henry Ford Hosp Med Bull 10:35–41.Google Scholar
  31. Frost HM. 1964. The laws of bone structure. Springfield, IL: Charles C. Thomas.Google Scholar
  32. Frost HM. 1969. Tetracycline-based histological analysis of bone remodeling. Calcif Tissue Res 3:211–237.CrossRefGoogle Scholar
  33. Harrigan T, Mann RW. 1984. Characterization of microstructural anisotropy in orthotropic materials using a second rank tensor. J Mater Sci 19:761–767.CrossRefGoogle Scholar
  34. Hegedus DH, Cowin SC. 1976. Bone remodeling, II: small strain adaptive elasticity. J Elast 6:337–352.MATHMathSciNetCrossRefGoogle Scholar
  35. Hodgskinson R, Currey JD. 1990a. Effects of structural variation on Young’s modulus of non-human cancellous bone. J Eng Med, Proc. Inst Mech Eng 204:43–52.Google Scholar
  36. Hodgskinson R, Currey JD. 1990b. The effect of variation in the structure on Young’s modulus of cancellous bone: a comparison of human and non-human material. J Eng Med, Proc Inst Mech Eng 204:115–121.Google Scholar
  37. Hollister SJ, Fyhrie DP, Jepsen KJ, Goldstein SA. 1991. Application of homogenization theory to the study of trabecular bone mechanics. J Biomech 24:825–839.CrossRefGoogle Scholar
  38. Jaworski ZFG, Liskova-Kiar M, Uhthoff HK. 1980. Effect of long-term immobilization on the pattern of bone loss in older dogs. J Bone Joint Surg 62B:104–111.Google Scholar
  39. Jee WSS. 1983. The skeletal tissues. In Cell and tissue biology, 6th ed., ed. L. Weiss, pp. 200–255. Baltimore: Urban and Schwartzenberg.Google Scholar
  40. Kabel J, van Rietbergen B, Dalstra M, Odgaard A, Huiskes R. 1999. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone. Submitted to J Biomech 32:673–680.CrossRefGoogle Scholar
  41. Keaveny TM, Pinilla TP, Crawford RP, Kopperdahl DL, Lou A. 1997. Systematic and random errors in the testing of trabecular bone. J Orthop Res 15:101–110.CrossRefGoogle Scholar
  42. Knets I, Malmeister A. 1977. Deformability and strength of human compact bone tissue: mechanics of Biological Solids. Sofia: Bulgarian Academy of Sciences.Google Scholar
  43. Lanyon LE, Goodship AE, Pye CJ, MacFie JH. 1982. Mechanically adaptive bone remodeling. J Biomech 15:141–154.CrossRefGoogle Scholar
  44. Li G, Bronk JT, An KN, Kelly PJ. 1987. Permeability of cortical bone of canine tibiae. Microcirc Res 34:302–311.CrossRefGoogle Scholar
  45. Macaulay MA. 1987. Introduction to impact engineering, pp. 201–30. London: Chapman and Hall.Google Scholar
  46. Martin RB, Burr DB. 1989. Structure, function and adaptation of compact bone. New York: Raven Press.Google Scholar
  47. Martin RB, Burr DB, Sharkey NA. 1998. Skeletal tissue mechanics. New York: Springer.Google Scholar
  48. Morris MA, Lopez-Curato JA, Hughes SPF, An KN, Bassingthwaighte JB, et al. 1982. Fluid spaces in canine bone and marrow. Microvasc Res 23:188–200.CrossRefGoogle Scholar
  49. Meyer GH. 1867. Die architectur der spongiosa. Arch Anat Physiol Wiss Med, Reich DuBois-Reymon Arch 34:615–628.Google Scholar
  50. Odgaard A. 1997. Three-dimensional methods for quantification of cancellous bone architecture. Bone 20:315–328.CrossRefGoogle Scholar
  51. Odgaard A, Kabel J, van Rietbergen B, Dalstra M, Huiskes R. 1997. Fabric and elastic principal directions of cancellous bone are closely related. J Biomech 30:487–495.CrossRefGoogle Scholar
  52. Pollack SR, Salzstein R, Pienkowski D. 1984. The electric double layer in bone and its influence on stress-generated potentials. Calcif Tissue Int 36:S77–S81.CrossRefGoogle Scholar
  53. Reid SE, Reid SE Jr. 1984. Head and neck injuries in sports, p. 54. Springfield, IL: Charles C. Thomas.Google Scholar
  54. Reilly DT, Burstein AH, Frankel VH. 1974. The elastic modulus for bone. J Biomech 7:271–281.CrossRefGoogle Scholar
  55. Reilly DT, Burstein AH. 1975. The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405.CrossRefGoogle Scholar
  56. Rice JC, Cowin SC, Bowman JA. 1988. On the dependence of the elasticity and the strength of cancellous bone on apparent density. J Biomech 22:155–168.CrossRefGoogle Scholar
  57. Rice JR, Cleary MP. 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Rev Geophys Space Phys 14:227–241.Google Scholar
  58. Rouhana SW, Johnson MW, Chakkalakal DR, Harper RA, Katz JL. 1981. Permeability of compact bone. Joint ASME-ASCE Conf Biomech Symp 43:169–172.Google Scholar
  59. Salzstein RA, Pollack SR. 1987. Electromechanical potentials in cortical bone, II: experimental analysis. J Biomech 20:271–280.CrossRefGoogle Scholar
  60. Salzstein RA, Pollack SR, Mak AFT, Petrov N. 1987. Electromechanical potentials in cortical bone, I: a continuum approach. J Biomech 20:261–270.CrossRefGoogle Scholar
  61. Schaffler MB, Burr DB. 1988. Stiffness of compact bone: effects of porosity and density. J Biomech 21:13–16.CrossRefGoogle Scholar
  62. Siperko LM, Landis WJ. 2001. Aspects of mineral structure in normally calcifying avian tendon. J Struct Biol 135:313–320.CrossRefGoogle Scholar
  63. Smit TH, Huyghe JM, Cowin SC. 2002. Estimation of the poroelastic parameters of bone. J Biomech 35:829–836.CrossRefGoogle Scholar
  64. Starkebaum W, Pollack SR, Korostoff E. 1979. Microelectrode studies of stress-generated potentials in four-point bending of bone. J Biomed Mater Res 13:729–751.CrossRefGoogle Scholar
  65. Turner CH, Cowin SC, Rho JY, Ashman RB, Rice JC. 1990. The fabric dependence of the orthotropic elastic properties of cancellous bone. J Biomech 23:549–561.CrossRefGoogle Scholar
  66. Uhthoff HK, Jaworski ZFG. 1978. Bone loss in response to long-term immobilization. J Bone Joint Surg 60-B:420–429.Google Scholar
  67. Van Leeuwenhoeck A. 1678. Microscopical observations on the structure of teeth and other bones. Phil Trans Roy Soc 12:1002–1003.Google Scholar
  68. Van Rietbergen B, Odgaard A, Kabel J, Huiskes R. 1996. Direct mechanical assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech 29:1653–1657.CrossRefGoogle Scholar
  69. Van Rietbergen B, Odgaard A, Kabel J, Huiskes R. 1998. Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J Orthop Res 16:23–28.CrossRefGoogle Scholar
  70. Wang L, Fritton SP, Cowin SC, Weinbaum S. 1999. Fluid pressure relaxation depends upon osteonal microstructure: modeling of an oscillatory bending experiment. J Biomech 32:663–672.CrossRefGoogle Scholar
  71. Weinbaum S, Cowin SC, Zeng Yu. 1991. A model for the fluid shear stress excitation of membrane ion channels in osteocytic processes due to bone strain. 1991 advances in bioengineering, pp. 317–20, ed. R Vanderby. New York: American Society of Mechanical Engineers.Google Scholar
  72. Wertheim G. 1847. Mémorie sur lélasticité et la cohésion des principaux tissues du corps humain. Annals de chemie et de physique (3rd ser) 21:385–414.Google Scholar
  73. Weinbaum S, Cowin SC, Zeng Yu. 1994. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27:339–360.CrossRefGoogle Scholar
  74. Whitehouse WJ. 1974. The quantitative morphology of anisotropic trabecular bone. J Microsc 101:153–168.Google Scholar
  75. Whitehouse WJ, Dyson ED. 1974. Scanning electron microscope studies of trabecular bone in the proximal end of the human femur. J Anat 118:417–444.Google Scholar
  76. Williams EA, Fitzgerald RHJ, Kelly PJ. 1984. Microcirculation in bone. In The physiology and pharmacology of the microcirculation, ed. NA Mortillaro. New York: Academic Press.Google Scholar
  77. Wolff J. 1870. Uber der innere Architektur der Knochen und ihre Bedeutung fur die Frage vom Knochenwachstum. Arch Path Anat Physiol Med, Virchovs Arch 50:389–453.CrossRefGoogle Scholar
  78. Wolff J. 1892. Das gesetz der transformation der knochen. Berlin: Hirschwald.Google Scholar
  79. Wolff J. 1986. The law of bone remodelling. Berlin: Springer.Google Scholar
  80. Woo SLY, Kuei SC, Dillon WA, Amiel D, White FC, et al. 1981. The effect of prolonged physical training on the properties of long bone — a study of Wolff’s Law. J Bone Joint Surg 63-A:780–787.Google Scholar
  81. Yang G, Kabel J, van Rietbergen B, Odgaard A, Huiskes R, et al. 1999. The anisotropic Hooke’s law for cancellous bone and wood. J Elast 53:125–146.MATHCrossRefGoogle Scholar
  82. Yoon HS, Katz JL. 1976. Ultrasonic wave propagation in human cortical bone, II: measurements of elastic properties and micro-hardness. J Biomech 9:459–470.CrossRefGoogle Scholar
  83. Zhang D, Cowin SC, Weinbaum S. 1997. Electrical signal transmission and gap junction regulation in bone cell network: a cable model for an osteon. Ann Biomed Eng 25:357–374.CrossRefGoogle Scholar
  84. Zhang D, Weinbaum S, Cowin SC. 1998. Estimates of the peak pressures in the bone pore water. J Biomech Eng 120:697–703.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations