External Dose Assessment

We now begin two chapters on the measurement or calculation of radiation dose to humans, external and internal dose assessment. Dose assessment is the correct formal name for this process. In day-to-day use, however, most people will refer to this as external and internal dosimetry. This is the classic historical term, in use since at least the Manhattan Project in the 1940s. The term “dosimetry” contains the suffix “metry”, which relates to metrology, which implies the measurement of physical quantities. In the last chapter, we looked at the issue of personnel dose-measuring devices. Much of external dose assessment does have to do with measurements, so the term “dosimetry” is mostly accurate. In this chapter, however, we show that a lot of work done in external dose assessment involves theoretical calculations of dose, generally with later verification using a survey meter or personnel monitoring devices.


Exposure Rate Skin Dose Plane Source Tritiated Water Monte Carlo Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. B. Podgorsak, External photon beams: Physical aspects. Chapter 6,
  2. 2.
    J. J. Fitzgerald, Applied Radiation Protection and Control (Gordon and Breach, New York, 1970) pp. 822, 838.Google Scholar
  3. 3.
    International Commission on Radiological Protection. ICRP Publication 89: Basic Anatomical and Physiological Data for Use in Radiological Protection: Reference Values. (Elsevier, St. Louis, MO, 2003).Google Scholar
  4. 4.
    D. C. Kocher and K. F. Eckerman, Electron dose-rate conversion factors for external exposure of the skin from uniformly deposited activity on the body surface. Health Physics 53(2, August):135-141 (1987).CrossRefGoogle Scholar
  5. 5.
    W. G. Cross, G. Williams, H. Ing, N. O. Freedman, and J. Mainville, Tables of beta ray dose distributions in water, air and other media (Atomic Energy of Canada, AECL-7617, 1982).Google Scholar
  6. 6.
    J. S. Durham, W. D. Reece, and S. E. Merwin, Modelling three-dimensional beta sources for skin dose calculations using VARSKIN Mod 2, Radiat. Prot. Dosim. 37 (2),89-94 (1991).Google Scholar
  7. 7.
  8. 8.
    X. G. Xu, The effective dose equivalent and effective dose for hot particles on the skin. Health Physics 89(1, July), 53-70 (2005).CrossRefGoogle Scholar
  9. 9.
    L. Dillman, Scattered energy spectrum for monoenergetic gamma emitter uniformly distributed in an infinite cloud (ORNL 4584, Health Physics Division Annual Progress Report for Period Ending July 1970, October 1980).Google Scholar
  10. 10.
    J. Poston and W. Synder, Model for exposure to a semiinfinite cloud of a photon emitter, Health Physics 26, 287-293 (1974).CrossRefGoogle Scholar
  11. 11.
    M. Berger, Beta-ray dose in a tissue-equivalent material immersed in a radioactive cloud, Health Physics 26, 1-12 (1974).CrossRefGoogle Scholar
  12. 12.
    D. Kocher and K. Eckerman, Electron dose-rate conversion factors for external exposure of the skin, Health Physics 40, 467-475 (1981).CrossRefGoogle Scholar
  13. 13.
    D. Kocher, Dose-rate conversion factors for external exposure to photon and elec-tron radiation from radionuclides occurring in routine releases from fuel cycle facilities, Health Physics 38, 543-621 (1980).CrossRefGoogle Scholar
  14. 14.
    K. Morgan and J. Turner, Principles of Radiation Protection (Wiley, New York, 1967), p. 285.Google Scholar
  15. 15.
  16. 16.
    D. Kocher and A. L. Sjoreen, Dose-rate conversion factors for external exposure to photon emitters in soil, Health Physics 48, 193-205 (1985).CrossRefGoogle Scholar
  17. 17.
    A. Clouvas, S. Xanthos, M. Antonopoulos-Domis, and J. Silva, Monte Carlo cal-culation of dose rate conversion factors for external exposure to photon emitters in soil. Health Physics 78(3), 295-302 (2000).CrossRefGoogle Scholar
  18. 18.
    F. J. Rutar, S. C. Augustine, D. Colcher, et al., Outpatient treatment with 131I-anti-B1 antibody: radiation exposure to family members, J. Nucl. Med. 42,907-915 (2001).Google Scholar
  19. 19.
    R. L. Ford and W. R. Nelson, The EGS code system: Computer programmes for the Monte Carlo simulation of electromagnetic cascade showers. Report No. SLAC-210, Version 3 (Stanford Linear Accelerator Center, Stanford University, Stanford, CA, 1978).Google Scholar
  20. 20.
    J. Briesmeister, MCNP - A general Monte Carlo n-particle transport code, version 4B. Los Alamos National Laboratory, report LA-12625-M (1997).Google Scholar
  21. 21.
    S. Agostinelliae, J. Allisonas, K. Amako, et al., Geant4—A simulation toolkit, Nuclear Instruments Methods Physics Research A 506, 250-303 (2003).CrossRefADSGoogle Scholar
  22. 22.
    International Commission on Radiological Protection, ICRP Publication 74: Con-version Coefficients For Use In Radiological Protection Against External Radia-tion, 74 (Elsevier, St. Louis, MO, 1997).Google Scholar
  23. 23.
    Y. Yamaguchi, DEEP code to calculate dose eyuivulents in human phantom for external photon exposure by Monte Carlo method. Report No. JAERI-M 90-235 (Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki- Ken, 1991).Google Scholar
  24. 24.
    M. B. Emmett, The MORSE Monte Carlo radiation transport system. Report No. ORNL-4972 (Oak Ridge National Laboratory, Oak Ridge, TN, 1975).CrossRefGoogle Scholar
  25. 25.
    I. Kurochkin, Institute for High Energy Physics, Serpukhov, private communication to the ICRP (1994).Google Scholar
  26. 26.
    R. Kramer, Ermittlung von Konversionsjaktoren zwischen Korperdosen und rel-evanten Struhlungskenngriissen bei externer Riintgen- und Gammabestrahlung, GSF-Bericht S-556. Gesellschaft fiir Strahlen- und Umweltforschung mbH, Munich (1979).Google Scholar
  27. 27.
    R. Veit, M. Zankl, N. Petoussi, E. Mannweiler, G. Williams, and G. Drexler, Tomo-graphic anthropomorphic models. Part I: Construction technique and description of models of an S-week-old baby and a 7-year-old child, GFS-Bericht No. 3/89. Gesellschaft fir Strahlen und Umweltforschung mbH, Munich (1989).Google Scholar
  28. 28.
    G. G. Warner and A. M. Craig, Jr., ALGAM, a computer program for estimating internal dose for gamma-ruy sources in a human phantom. Report No. ORNL-TM-2250 (Oak Ridge National Laboratory, Oak Ridge, TN, 1968).Google Scholar
  29. 29.
    V. T. Golovachik, V. N. Kustrarjov, E. N. Savitskaya, and A. V. Sannikov, Absorbed dose and dose equivalent depth distributions for protons with energies from 2 to 600 MeV. Rudiut. Prot. Dosim. 28, 189-199 (1989).Google Scholar
  30. 30.
    R. A. Hollnagel, Effective dose equivalent and organ doses for neutrons from thermal to 14 MeV. Radiat. Prot. Dosim. 30, 149-159 (1990).Google Scholar
  31. 31.
    Chao TC, Bozkurt A, Xu XG. Conversion coefficients based on the VIP-Man anatomical model and EGS4 Code for external monoenergetic photons from 10 keV to 10 MeV.. Health Phys. 2001 Aug; 81(2):163-83CrossRefGoogle Scholar
  32. 32.
    Bozkurt A, Chao TC, Xu XG. Fluence-to-dose conversion coefficients based on the VIP-Man anatomical model and MCNPX code for monoenergetic neutrons above 20 MeV. Health Phys. 2001 Aug; 81(2):184-202.CrossRefGoogle Scholar

Copyright information

© Springer 2003

Personalised recommendations