Skip to main content

Simulation of Nano-CMOS Devices: From Atoms to Architecture

  • Chapter
Nanotechnology for Electronic Materials and Devices

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

The progressive scaling of transistors in complementary metal-oxide-semiconductor (CMOS) technology to achieve faster devices and higher device density and to reduce the cost per function has fueled the phenomenal growth and success of the semiconductor industry—captured over the past 40 years by Moore’s famous law. The International Technology Roadmap for Semiconductors (ITRS) predicts, as illustrated in Table 7.1, that 7-nm physical-gate-length CMOS transistors will be in mass production in 2018. The Roadmap of the leading integrated circuit (IC) manufacturer, IBM, goes further (see Table 7.2), predicting that the physical length of the transistors will reach 3 nm by 2025. Indeed, transistors with a 45-nm channel length are in mass production now in the 90-nm technology node and functioning transistors with a 4-nm channel length have been demonstrated already by NEC at IEDM 2003. Although it is clear that the scaling of the CMOS transistors will continue in the next two decades, it is widely recognized that intrinsic parameter fluctuations introduced by the discreteness of charge and matter will be a major factor limiting the integration of such devices with molecular dimensions in giga-transistor count chips.

Extract from theInternational Technology Roadmap forSemiconductors 2003.

IBMRoadmap, Dec. 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Asenov, A.R. Brown, J.H. Davies and S. Saini, IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems 18, 1558 (1999).

    Article  Google Scholar 

  2. D.J. Frank, Y. Taur, M. Ieong and H.-S.P. Wong, Symposium on VLSI Circuits Digest of Technical Papers, p. 171, (1999).

    Google Scholar 

  3. S. Kaya, A.R. Brown, A. Asenov, D. Magot and T. Linton, Proc. Simulation of Semiconductor Processes and Devices, (Athens, Greece, 2001), p. 78.

    Google Scholar 

  4. A. Asenov, Savas Kaya and Andrew R. Brown, IEEE Transactions on Electron Devices 50, 1254 (2003).

    Article  Google Scholar 

  5. S.M. Goodnick, D.K. Ferry, C.W. Wilmsen, Z. Liliental, D. Fathy and O.L. Krivack, Phys. Rev. B. 32, 8171 (1985).

    Article  Google Scholar 

  6. R.M. Feenstra, M.A. Lutz, F. Stern, K. Ismail, P. Mooney, F.K. LeGoues, C. Stanis, J.O. Chu and B.S. Meyerson, J. Vac. Sci. Technol. B. Microelectron. Process. Phenom. 13, 1608 (1995).

    Article  Google Scholar 

  7. M. Niva, T. Kouzaki, K. Okada, M. Udagawa and R. Sinclair, Jpn. J. Appl. Phys. 33, 388 (1994).

    Article  Google Scholar 

  8. D. Vasileska, W.J. Gross and D.K. Ferry, Extended Abstracts of the 6th International Workshop on Computational Electronics, IEEE Cat. No. 98EX116, (Osaka, Japan, 1998), p. 259.

    Google Scholar 

  9. A. Asenov, IEEE Trans. Electron Dev. 45, 2505 (1998).

    Article  Google Scholar 

  10. H.K. Gummel, IEEE Trans. Electron Dev. 11, 455 (1964).

    Article  Google Scholar 

  11. M.G. Ancona, Phys. Rev. B 42, 1222 (1990).

    Article  Google Scholar 

  12. S. Jin, Y.J. Park and H.S. Min, Journal of Semiconductor Technology and Science 4, 32 (2004).

    Google Scholar 

  13. J.R. Watling, A.R. Brown, A. Asenov and D.K. Ferry, Proc. Simulation of Semiconductor Processes and Devices, (Athens, Greece, 2001), p. 82.

    Google Scholar 

  14. Z. Yu, R.W. Dutton, D.W. Yergeau and M.G. Ancona, Proc. Simulation of Semiconductor Processes and Devices, (Athens, Greece, 2001), p. 1.

    Google Scholar 

  15. J.R. Watling, A.R. Brown, A. Asenov, A. Svizhenko and M.P. Anantram, Proc. Simulation of Semiconductor Processes and Devices, (Kobe, Japan, 2002), p. 267.

    Google Scholar 

  16. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).

    Article  Google Scholar 

  17. S. Jin, Y.J. Park and H.S. Min, Proc. Simulation of Semiconductor Processes and Devices, (Cambridge, MA, USA, 2003), p. 263.

    Google Scholar 

  18. A.T. Fromhold, Jr. Quantum Mechanics for Applied Physics and Engineering, (Dover Publications, Inc., New York, 1981).

    Google Scholar 

  19. A. Svizhenko, M.P. Anantram, T.R. Govindan, B. Biegel and R. Venugopal, J. Appl. Phys. 91, 2343 (2002).

    Article  Google Scholar 

  20. T. Ezaki, T. Ikezawa, A. Notsu, K. Tanaka and M. Hane, Proc. Simulation of Semiconductor Processes and Devices, (Kobe, Japan, 2002), p. 91.

    Google Scholar 

  21. G. Roy, A.R. Brown, A. Asenov and S. Roy, J. Comp. Elec. 2, 323 (2003).

    Article  Google Scholar 

  22. G. Roy, A.R. Brown, A. Asenov and S. Roy, Superlattices and Microstructures 34, 327 (2003).

    Article  Google Scholar 

  23. A. Asenov, M. Jaraiz, S. Roy, G. Roy, F. Adamu-Lema, A.R. Brown, V. Moroz and R. Gafiteanu, Proc. Simulation of Semiconductor Processes and Devices, (Kobe, Japan, 2002), pp. 87.

    Google Scholar 

  24. N. Sano, K. Matsuzawa, M. Mukai and N Nakayama, International Electron Device Meeting (IEDM) Digest Tech. Papers, p. 275 (2000).

    Google Scholar 

  25. Z. Qin and S.T. Dunham, Proc. Mater. Res. Soc. Symp. 717, C3.8 (2002).

    Google Scholar 

  26. Z. Qin and S.T. Dunham, Phys. Rev B 68, 245201 (2003).

    Article  Google Scholar 

  27. R.W. Hockney and J.W. Eastwood, Computer Simulation using Particles (McGraw-Hill, New York, 1981).

    Google Scholar 

  28. A. Asenov, R. Balasubramaniam, A.R. Brown and J.H. Davies, IEEE Trans. Electron Dev. 50, 839 (2003).

    Article  Google Scholar 

  29. P.A. Stolk, F.P. Widdershoven and D.B. M Klaassen, IEEE Trans. Elec. Dev. 45, 1960 (1998).

    Article  Google Scholar 

  30. T. Ezaki, T. Ikezawa and M. Hane, International Electron Device Meeting (IEDM) Digest Tech. Papers, p. 311, 2002.

    Google Scholar 

  31. C. Alexander, J.R. Watling, A.R. Brown and A. Asenov, Superlattices and Microstructures 34, 319 (2003).

    Article  Google Scholar 

  32. W.J. Gross, D. Vasileska and D.K. Ferry, IEEE Trans. Elec. Dev. Lett. 20, 463 (1999).

    Article  Google Scholar 

  33. C.J. Wordelman and U. Ravaioli, IEEE Trans. Elec. Dev. 47, 410 (2000).

    Article  Google Scholar 

  34. S. Barraud, P. Dollfus, S. Galdin and P. Hesto, Solid State Electronics 46, 1061 (2002).

    Article  Google Scholar 

  35. S.M. Ramey and D.K. Ferry, IEEE Trans. Nanotechnology 2, 193 (2003).

    Article  Google Scholar 

  36. H.P. Tuinhout, Proc. 32th European Solid-State Device Research Conference (Florence, Italy, 2002) p. 95.

    Google Scholar 

  37. P.A. Stolk, H.P. Tuinhout, R. Duffy, E. Augendre, L.P. Bellefroid, M.J.B. Bolt, J. Croon, C.J.J. Dachs, F.R.J. Huisman, A.J. Moonen, Y.V. Ponomarev, R.F.M. Roes, M. Da Rold, E. Sevinck, K.N. Sreerambhatla, R. Surdeanu, R.M.D.A. Velghe, M. Vertregt, M.N. Webster, N.K.J. van Winkelhoff, A.G.A. Zegers-Van Duijnhoven, International Electron Device Meeting (IEDM) Digest Tech. Papers, p. 215 (2001).

    Google Scholar 

  38. K. Takeuchi, R. Koh, and T. Mogami, IEEE Trans. Elec. Dev. 48, 1995 (2001).

    Article  Google Scholar 

  39. BSIM software, University of California, Berkeley, CA, USA, http://www-device.eecs.berkeley.edu/~bsim3/.

    Google Scholar 

  40. Aurora User’s Manual, Synopsys Inc., Mountain View, CA, USA, 2002.

    Google Scholar 

  41. E. Seevinck, F.J. List, and J. Lohstroh, IEEE J. Solid-State Circuits 22, 748 (1987).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Asenov, A., Brown, A.R., Cheng, B., Watling, J.R., Roy, G., Alexander, C. (2007). Simulation of Nano-CMOS Devices: From Atoms to Architecture. In: Korkin, A., Gusev, E., Labanowski, J., Luryi, S. (eds) Nanotechnology for Electronic Materials and Devices. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49965-9_7

Download citation

Publish with us

Policies and ethics