Advertisement

Silicon Nanocrystal Nonvolatile Memory

  • R. A. Rao
  • M. A. Sadd
  • R. F. Steimle
  • C. T. Swift
  • H. Gasquet
  • M. Stoker
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Silicon nanocrystal memory devices [1],[2] such as shown in Fig. 4.1, offer the potential to solve the challenging problem of scaling nonvolatile memories. Scaling of floating-gate (FG) nonvolatile memory cells has been limited to bottom oxide thicknesses in the range of 80–110 Å primarily because of the vulnerability to charge loss from the conducting FG through isolated defects in the tunnel oxide that arise after repeated write/erase operations. As a result the FG, operating voltages are in the range of 16–20 V required for erasing the memory cell by Fowler-Nordheim tunneling of carriers from the FG to the channel. This voltage is sometimes split as ±8 to ±10 V using fully isolated wells. Silicon nanocrystal memory cells that store charge in isolated centers inside a gate dielectric are less susceptible to charge loss through isolated defect paths in the tunnel oxide due to their discontinuous nature of charge storage. In other words, an underlying oxide defect leads to charge loss only from charge storage sites in its immediate proximity. Once the impact of defect-mediated charge loss is mitigated, charge loss is primarily due to tunneling and the tunnel oxide in these devices can be scaled down to about 50–60 Å based on retention-time requirements. The scaling of the tunnel oxide results in embedded memory modules that can operate with a maximum on-chip voltage of ±6 V, allowing reduction of the memory module size by up to a factor of 2 at the 90-nm technology node, as shown in Fig. 4.2 [3]. Furthermore, this reduction in operating voltage enables sharing of logic I/O device implants with the high-voltage periphery devices, which are used to charge and discharge the memory bitcells in the array.
FIGURE 4.1

Silicon nanocrystal nonvolatile memory bitcell showing the floating silicon nanocrystals used for isolated charge storage. A cross-section transmission electron microscopic image through the gate stack of a bitcell and a plan view scanning electron microscopic image of the nanocrystals is also shown.

FIGURE 4.2

Memory module size for both conventional FG nonvolatile memory (NVM) and nanocrystal-based NVM showing the approximate factor-of-2 reduction in memory module size for nanocrystal-based NVM.

Keywords

Gate Bias Silicon NANOCRYSTAL Memory Window Threshold Voltage Shift Charge Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbe, and K. Chan, “A silicon nanocrystals based memory”, Appl. Phys. Lett. 68, 1377 (1996).CrossRefGoogle Scholar
  2. 2.
    J. De Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Trans. Nanotech. 1, 72 (2002).CrossRefGoogle Scholar
  3. 3.
    R. Muralidhar, R.F. Steimle, M. Sadd, R. Rao, C.T. Swift, E.J. Prinz, J. Yater, L. Grieve, K. Harber, B. Hradsky, S. Straub, B. Acred, W. Paulson, W. Chen, L. Parker, S.G.H. Anderson, M. Rossow, T. Merchant, M. Paransky, T. Huynh, D. Hadad, K.-M. Chang, and B.E. White Jr., “A 6 V embedded 90 nm silicon nanocrystal nonvolatile memory”, IEEE International Electron Devices Meeting IEDM 2003 Tech. Digest, p. 26.2.1, (2003).Google Scholar
  4. 4.
    C.T. Swift, G.L. Chindalore, K. Harber, T.S. Harp, A. Hoefler, C.M. Hong, P.A. Ingersoll, C.B. Li, E.J. Prinz, and J.A. Yater, “An embedded 90 nm SONOS nonvolatile memory utilizing hot electron programming and uniform tunnel erase”, IEEE International Electron Devices Meeting IEDM 2002 Tech. Digest, p. 927 (2002).Google Scholar
  5. 5.
    M.H. White, in Nonvolatile Semiconductor Memory Technology, edited by W.D. Brown and J.E. Brewer, IEEE, New York (1998).Google Scholar
  6. 6.
    B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, and D. Finzi, “NROM: A novel localized trapping, 2-bit nonvolatile memory cell”, IEEE Elec. Dev. Lett. 21, 543 (2000).CrossRefGoogle Scholar
  7. 7.
    M. Sadd, J.A. Yater, J. Bu, C.M. Hong, W.M. Paulson, C.T. Swift, R. Singh, L. Parker, and M.G. Khazhinsky, “Validation of a Predictive SONOS Model”, Proceedings of the IEEE Non-volatile Semiconductor Memory Workshop, (2003).Google Scholar
  8. 8.
    M. Sadd, J.A. Yater, B.E. White, C.T. Swift, S. Straub, R.F. Steimle, R. Rao, E.J. Prinz, R. Muralidhar, B. Hradsky, K. Harber, B. Acred, S. Bagchi, Proceedings of the IEEE Nonvolatile Semiconductor Memory Workshop, (2004).Google Scholar
  9. 9.
    S.S. Ang, Y.J. Shi, and W.D. Brown, “Electrical characterization of rapid thermal nitrided and re-oxidized low-pressure chemical-vapor-deposited silicon dioxide metal-oxide-silicon structures”, J. Appl. Phys. 79, 1968 (1996).CrossRefGoogle Scholar
  10. 10.
    L.D. Landau and E.M. Lifshitz, Quantum Mechanics. (Pergamon Press, Oxford, 1977), p. 559.Google Scholar
  11. 11.
    F. Rana, S. Tiwari, and J.J. Weiser, “Kinetic modelling of electron tunneling processes in quantum dots coupled to field-effect transistors”, Superlattices and Microstructures 23, 757 (1998).CrossRefGoogle Scholar
  12. 12.
    Y. Shi, K. Saito, H. Ishikuro, and T. Hiramoto, “Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals”, J. Appl. Phys. 84, 2358 (1998).CrossRefGoogle Scholar
  13. 13.
    M. Sadd, R. Muralidhar, S. Madhukar, K. Scheer, D. Gentile, B. Hradsky, M. Rossow, R. Rao, M. Ramon, A. Konkar, J. Conner, S. Bagchi, B.E. White, A. Thean, J.P. Leburton, “Physical Modeling of the Reliability of a Nano-crystalline Memory Cell”, Proceedings of the IEEE Non-volatile Semiconductor Memory Workshop, (2001).Google Scholar
  14. 14.
    M. Rosmeulen, E. Sleeckx, and K. De Meyer, “Silicon-rich-oxides as an alternative charge-trapping medium in Fowler-Nordheim and hot carrier type non-volatile-memory cells”, IEEE International Electron Devices Meeting IEDM 2002 Tech. Digest, p. 189 (2002).Google Scholar
  15. 15.
    F. Mazen, T. Baron, G. Bremond, N. Buffet, N. Rochat, P. Mur and M.N. Semeria, “Influence of the chemical properties of the substrate on silicon quantum dot nucleation”, J. Electrochem. Soc. 150, G203, (2003).CrossRefGoogle Scholar
  16. 16.
    R.A. Rao, R.F. Steimle, M. Sadd, C.T. Swift, B. Hradsky, S. Straub, T. Merchant, M. Stoker, S.G.H. Anderson, M. Rossow, J. Yater, B. Acred, K. Harber, E.J. Prinz, B.E. White Jr., and R. Muralidhar, “Silicon nanocrystal based memory devices for NVM and DRAM applications”, Solid-State Electronics 48, 1463 (2004).CrossRefGoogle Scholar
  17. 17.
    T. Baron, A. Fernandes, J.F. Damlencourt, B. De Salvo, F. Martin, F. Mazen, and F.S. Haukka, “Growth of Si nanocrystals on alumina and integration in memory devices”, Appl. Phys. Lett. 82, 4151 (2003).CrossRefGoogle Scholar
  18. 18.
    J.A. Venables, Introduction to Surface and Thin Film Processes, (Cambridge University, Cambridge, 2000).Google Scholar
  19. 19.
    S. Lombardo, R.A. Puglisi, I. Crupi, D. Corso, G. Nicotra, L. Perniola, B. DeSalvo, and C. Gerardi, “Distribution of the Threshold Voltage Window in Nanocrystal Memories with Si Dots formed by Chemical Vapor Deposition: Effect of Partial Self Ordering”, Proceedings of the IEEE Non-volatile Semiconductor Memory Workshop, (2004).Google Scholar
  20. 20.
    M.W. Stoker, T.P. Merchant, R. Rao, R. Muralidhar, S. Straub, and B.E. White Jr., “A model of silicon nanocrystal nucleation and growth on SiO2 by CVD”, in Materials and Processes for Nonvolatile Memories, edited by A. Claverie, D. Tsoukalas, T-J. King, and J.M. Slaughter (Materials Research. Society. Symposium. Proceedings.Vol 830, Materials Research Society, Warrendale, PA, 2005, p. D5.7.Google Scholar
  21. 21.
    K.C. Scheer, R.A. Rao, R. Muralidhar, S. Bagchi, J. Conner, L. Lozano, C. Perez, M. Sadd, and B.E. White Jr.,. “Thermal oxidation of silicon nanocrystals in O2 and NO ambient”, J. Appl. Phys. 93, 5637, (2003).CrossRefGoogle Scholar
  22. 22.
    J.E. Hayes, US Patent #4,173,766 (1979).Google Scholar
  23. 23.
    R.F. Steimle, R. Rao, C.T. Swift, K. Harber, S. Straub R. Muralidhar, B. Hradsky, J.A. Yater, E.J. Prinz, W. Paulson, M. Sadd, C. Parikh, S.G.H. Anderson, T. Huynh, B. Acred, L. Grieve, M. Rossow, R. Mora, B. Darlington, K.-M. Chang, and B.E. White Jr., “Integration of Si nanocrystals into a 6V 4Mb Nonvolatile Memory Array”, Proceedings of the IEEE Non-volatile Semiconductor Memory Workshop, (2004).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • R. A. Rao
    • 1
  • M. A. Sadd
  • R. F. Steimle
  • C. T. Swift
  • H. Gasquet
  • M. Stoker
  1. 1.Technology Solutions OrganizationFreescale Semiconductor, Inc.Austin

Personalised recommendations