Advertisement

Body Surface Laplacian Mapping of Bioelectric Sources

  • Bin He
  • Jie Lian
Part of the Bioelectric Engineering book series (BEEG)

Abstract

Targeting two of the most life-critical organs, the heart and brain, the electrocardiogram (ECG) and the electroencephalogram (EEG) are the two important bioelectric recordings to study the cardiac and neural activity.

Keywords

Volume Conductor Realistic Geometry Body Surface Potential Radial Dipole Electrical Source Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, M., Okamoto, Y., Musha, T., and Harumi, K.: Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials: normal heart and bundle branch block. IEEE Trans. Biomed. Eng., 34: 454–462, 1987.CrossRefGoogle Scholar
  2. Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Onorati, P., and Urbano. A.: Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model. Electroenceph. clin. Neurophysiol., 98: 363–373, 1996.CrossRefGoogle Scholar
  3. Babiloni, F., Carducci, F., Babiloni, C., and Urbano, A.: Improved realistic Laplacian estimate of highly-sampled EEG potentials by regularization techniques. Electroenceph. Clin. Neurophysiol., 106: 336–343, 1998.CrossRefGoogle Scholar
  4. Babiloni, F., Babiloni, C., Locche, L., Cincotti, F., Rossini, P.M., and Carducci, F.: High-resolution electroencephalogram: source estimates of Laplacian-transformed somatosensory-evoked potentials using a realistic subject head model constructed from magnetic resonance images. Med. Biol. Eng. Comput., 38: 512–519, 2000.CrossRefGoogle Scholar
  5. Barr, R.C., Ramsey, M. III, and Spach, M.S.: Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans. Biomed. Eng., 24: 1–11, 1977.CrossRefGoogle Scholar
  6. Barrett, G., Blumhardt, L., Halliday, A.M., Halliday, E., and Kriss, A.: A paradox in the lateralisation of the visual evoked response. Nature, 261: 253–255, 1976.CrossRefGoogle Scholar
  7. Besio, W.G., Lu, C.C., and Tarjan, P.P.: A feasibility study for body surface cardiac propagation maps of humans from Laplacian moments of activation. Electromagnetics, 21: 621–632, 2001.CrossRefGoogle Scholar
  8. Blumhardt, L.D., Barrett, G., and Halliday, A.M.: The asymmetrical visual evoked potential to pattern reversal in one half field and its significance for the analysis of visual field defects. British J. Ophthalmology, 61: 454–461, 1977.CrossRefGoogle Scholar
  9. Bradshaw, L.A., and Wikswo, J.P.Jr.: Spatial filter approach for evaluation of the surface Laplacian of the electroencephalogram and magnetoencephalogram. Ann. Biomed. Eng., 29: 202–213, 2001.CrossRefGoogle Scholar
  10. Courant, R. and Hilbert, D.: Methods of mathematical physics. New York: Interscience. 1966.Google Scholar
  11. Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. R.A.I.R.O. Anal. Num., 10: 5–12, 1976.MathSciNetGoogle Scholar
  12. Fattorusso, V., Thaon, M., Tilmant, J.: Contribution of l’etude de l’electrocardiogramme precordial. Acta Cardiologica., 4: 464–487, 1949.Google Scholar
  13. Harder, R. and Desmarais, R.: Interpolation using surface spline. J. Aircraft, 9: 189–191, 1972.CrossRefGoogle Scholar
  14. He, B. and Cohen, R.J.: Body surface Laplacian ECG mapping. IEEE Trans. Biomed. Eng., 39: 1179–1191, 1992a.CrossRefGoogle Scholar
  15. He, B. and Cohen, R.J.: Body surface Laplacian mapping of cardiac electrical activity. Am. J. Cardiol., 70: 1617–1620, 1992b.CrossRefGoogle Scholar
  16. He, B., Kirby, D., Mullen, T., and Cohen, R.J.: Body surface Laplacian mapping of cardiac excitation in intact pigs. Pacing Clin. Electrophysiol., 16: 1017–1026, 1993.CrossRefGoogle Scholar
  17. He, B.: On the Laplacian inverse electrocardiography. Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 145–146, 1994.Google Scholar
  18. He, B., Chernyak, Y., and Cohen, R.J.: An equivalent body surface charge model representing three dimensional bioelectrical activity. IEEE Trans. Biomed. Eng., 42: 637–646, 1995.CrossRefGoogle Scholar
  19. He, B. and Cohen, R.J.: Body surface Laplacian ECG mapping—A review. Crit. Rev. Biomed. Eng., 23: 475–510, 1997.Google Scholar
  20. He, B.: Principles and applications of the Laplacian electrocardiogram. IEEE Eng. Med. Biol. Mag., 16: 133–138, 1997.Google Scholar
  21. He, B. and Wu, D.: A bioelectric inverse imaging technique based on surface Laplacians. IEEE Trans. Biomed. Eng., 44: 529–538, 1997.CrossRefGoogle Scholar
  22. He, B., Yu, X., Wu, D., and Mehdi, N.: Body surface Laplacian mapping of bioelectrical activity. Methods Inf. Med., 36: 326–328, 1997.Google Scholar
  23. He, B.: Theory and applications of body-surface Laplacian ECG mapping. IEEE Eng. Med. Biol. Mag., 17: 102–109, 1998a.CrossRefGoogle Scholar
  24. He, B.: High resolution source imaging of brain electrical activity. IEEE Eng. Med. Biol. Mag., 17: 123–129, 1998b.CrossRefGoogle Scholar
  25. He, B.: Brain electrical source imaging: Scalp Laplacian mapping and cortical imaging. Crit. Rev. Biomed. Eng., 27: 149–188, 1999.Google Scholar
  26. He, B. and Hu, D.: Laplacian electrocardiography. Crit. Rev. Biomed. Eng., 27: 285–338, 1999.Google Scholar
  27. He, B., Lian, J., and Li, G.: High-resolution EEG: a new realistic geometry spline Laplacian estimation technique. Clin. Neurophysiol., 112: 845–852, 2001.CrossRefGoogle Scholar
  28. He, B., Li, G., and Lian, J.: A spline Laplacian ECG estimator in a realistic geometry volume conductor. IEEE Trans. Biomed. Eng., 49: 110–117, 2002.CrossRefGoogle Scholar
  29. He, B., Lian, J.: Spatio-temporal Functional Neuroimaging of Brain Electric Activity. Critical Review of Biomedical Engineering, 30: 283–306, 2002.CrossRefGoogle Scholar
  30. Hjorth, B.: An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroenceph. Clin. Neurophysiol., 39: 526–530, 1975.CrossRefGoogle Scholar
  31. Johnston, P.R.: The Laplacian inverse problem of electrocardiography: an eccentric spheres study. IEEE Trans. Biomed. Eng., 44: 539–48, 1997.CrossRefGoogle Scholar
  32. Law, S.K., Nunez, P.L., and Wijesinghe, R.S.: High-resolution EEG using spline generated surface on spherical and ellipsoidal surfaces. IEEE Trans. Biomed. Eng., 40: 145–153, 1993.CrossRefGoogle Scholar
  33. Le, J., Menon, V., and Gevins, A.: Local estimate of surface Laplacian derivation on a realistically shaped scalp surface and its performance on noisy data. Electroenceph. Clin. Neurophysiol., 92: 433–441, 1994.CrossRefGoogle Scholar
  34. Lian, J., Srinivasan, S., Tsai, H., and He, B.: Comments on “Is accurate recording of the ECG surface Laplacian feasible?” IEEE Trans. Biomed. Eng., 48: 610–613, 2001.CrossRefGoogle Scholar
  35. Lian, J., Srinivasan, S., Tsai, H., Wu, D., and He, B.: On the estimation of noise level and signal to noise ratio of Laplacian ECG during ventricular depolarization and repolarization. Pacing Clin. Electrophysiol., 25(10): 1474–1487, 2002.CrossRefGoogle Scholar
  36. Lian, J., Li, G., Cheng, J., Avitall, B., and He, B.: Body surface Laplacian mapping of atrial depolarization in healthy human subjects. Med. Biol. Eng. Comput., 40(6): 650–659, 2002b.CrossRefGoogle Scholar
  37. Li, G., Lian, J., He, B.: On the Spatial Resolution of Body Surface Potential and Laplacian Pace Mapping. Pacing and Clinical Electrophysiology, 25: 420–429, 2002.CrossRefGoogle Scholar
  38. Li, G., Lian, J., Salla, P., Cheng, J., Ramachandra, I., Shah, P., Avitall, B., and He, B.: Body surface Laplacian electrogram of ventricular depolarization in normal human subjects. J. Cardiovasc. Electrophysiol., 140): 16–27, 2003.CrossRefGoogle Scholar
  39. Mirvis, D.M., Keller, F.W., Ideker, R.E., Cox, J.W., Zettergren, D.G., and Dowdie, R.J.: Values and limitations of surface isopotential mapping techniques in the detection and localization of multiple discrete epicardial events. J. Electrocardiol., 10: 347–358, 1977.CrossRefGoogle Scholar
  40. Morozov, V.A.: Methods for solving incorrectly posed problems. Berlin: Springer-Verlag, 1984.Google Scholar
  41. Nunez, P.L.: Electric field of the brain. London: Oxford University Press, 1981.Google Scholar
  42. Nunez P.L.: Neocortical dynamics and human EEG rhythms. New York: Oxford University Press, 1995.Google Scholar
  43. Nunez, P.L., Silibertein, R.B., Cdush, P.J., Wijesinghe, R.S., Westdrop, A.F., and Srinivasan, R.: A theoretical and experimental study of high resolution EEG based on surface Laplacian and cortical imaging. Electroenceph. Clin. Neurophysiol., 90: 40–57, 1994.CrossRefGoogle Scholar
  44. Oostendorp, T.F. and van Oosterom, A.: The surface Laplacian of the potential: theory and application. IEEE Trans. Biomed. Eng., 43: 394–403, 1996.CrossRefGoogle Scholar
  45. Perrin, F., Bertrand, O., and Pernier, J.: Scalp current density mapping: value and estimation from potential data. IEEE Trans. Biomed Eng., 34: 283–288, 1987a.CrossRefGoogle Scholar
  46. Perrin, F., Pernier, J., Bertrand, O., Giard, M.H., and Echallier, J.F.: Mapping of scalp potentials by surface spline interpolation. Electroenceph. Clin. Neurophysiol., 66: 75–81, 1987b.CrossRefGoogle Scholar
  47. Perrin, F., Pernier, J., Bertrand, O., and Echallier, J.F.: Spherical splines for scalp potential and current density mapping. Electroenceph. Clin. Neurophysiol., 72: 184–187, 1989.CrossRefGoogle Scholar
  48. Rudy, Y. and Plonsey, R.: A comparison of volume conductor and source geometry effects on body surface and epicardial potentials. Circ. Res., 46: 283–291, 1980.Google Scholar
  49. Rush, S. and Driscoll, D.A.: EEG electrode sensitivity—an application of reciprocity. IEEE Trans. Biomed. Eng., 16: 15–22, 1969.CrossRefGoogle Scholar
  50. Shim, Y.S. and Cho, Z.H.: SVD pseudoinversion image reconstruction. IEEE Trans. Acoust. Speech. Processing, 29: 904–909, 1981.CrossRefGoogle Scholar
  51. Spach, M.S., Barr, R.C., Lanning, C.F., and Tucek, P.C.: Origin of body surface QRS and T-wave potentials from epicardial potential distributions in the intact chimpanzee. Circulation, 55: 268–278, 1977.Google Scholar
  52. Srinivasan, R., Nunez, P.L., Tucker, D.M., Silberstein, R.B., Cadusch, P.J.: Spatial sampling and filtering of EEG with spline Laplacian to estimate cortical potential. Brain Topography, 8(4): 355–366, 1996.CrossRefGoogle Scholar
  53. Srinivasan, R., Nunez, P.L. and Silberstein, R.B.: Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Trans. Biomed. Eng., 45: 814–826, 1998.CrossRefGoogle Scholar
  54. Throne, R.D. and Olson, L.G.: Fusion of body surface potential and body surface Laplacian signals for electrocardiographic imaging. IEEE Trans. Biomed. Eng., 47: 452–462, 2000.CrossRefGoogle Scholar
  55. Towle, V.L., Cakmur, R., Cao, Y., Brigell, M., and Parmeggiani, L. Locating VEP equivalent dipoles in magnetic resonance images. Int. J. Neurosci., 80: 105–116, 1995a.CrossRefGoogle Scholar
  56. Tsai, H., Ceccoli, H., Avitall, B., and He, B.: Body surface Laplacian mapping of anterior myocardial infarction in man. Electromagnetics, 21: 607–619, 2001.CrossRefGoogle Scholar
  57. Umetani, K., Okamoto, Y., Mashima, S., Ono, K., Hosaka, H., and He, B.: Body Surface Laplacian mapping in patients with left or right ventricular bundle branch block. Pacing Clin. Electrophysiol., 21: 2043–2054, 1998.CrossRefGoogle Scholar
  58. Wang, K. and Begleiter, H.: Local polynomial estimate of surface Laplacian. Brain Topogr., 12: 19–29, 1999.MATHCrossRefGoogle Scholar
  59. Wei, D., Harasawa, E., and He, B.: Simulated body surface potential and Laplacian maps during the left ventricular breakthrough. Proc. of the Ann. Int. Conf. Of IEEE Eng. In Med. & Biol. Soc., 223–224, 1995.Google Scholar
  60. Wei, D., Mashima, S.: Prediction of accessory pathway locations in Wolff-Parkinson-White syndrome with body surface potential Laplacian maps: A simulation study. Jpn Heart J. 40: 451–459, 1999.CrossRefGoogle Scholar
  61. Wei, D.: Laplacian electrocardiograms simulated using realistically shaped heart-torso model during normal and abnormal ventricular depolarization. Electromagnetics, 21: 593–605, 2001.CrossRefGoogle Scholar
  62. Wu, D., Saul, J.P., and He, B.: Epicardial Inverse Solutions from Body Surface Laplacian Maps: A Model Study. Proc. of the Ann. Int. Conf. Of IEEE Eng. In Med. & Biol. Soc., Montreal, 1995.Google Scholar
  63. Wu, D., Wang, Y., and He, B.: Reconstruction of epicardial potentials from body surface Laplacian maps by using a realistically shaped heart-torso model. Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., 83–85, 1998.Google Scholar
  64. Wu, D., Tsai, H.C., and He, B.: On the estimation of the Laplacian electrocardiogram during ventricular activation. Ann. Biomed. Eng., 27: 731–745, 1999.CrossRefGoogle Scholar
  65. Zhao, F. and He, B.: A new algorithm for estimating scalp Laplacian EEG and its application to visual-evoked potentials. Electromagnetics, 21: 633–640, 2001.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Bin He
    • 1
    • 2
  • Jie Lian
    • 1
  1. 1.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolis

Personalised recommendations