Three-Dimensional Electrocardiographic Tomographic Imaging

Part of the Bioelectric Engineering book series (BEEG)


Cardiac electrical activity is distributed over the three dimensional (3D) myocardium. It is of significance to noninvasively image distributed cardiac electrical activity throughout the 3D volume of the myocardium. Such knowledge of the source distribution would play an important role in our effort to relate the electrocardiographic inverse solutions with regional cardiac activity.


Activation Imaging Dipole Source Heart Model Inverse Solution Current Dipole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki, M., Okamoto, Y., Musha, T., and Harumi, K.: Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials: normal heart and bundle branch block. IEEE Trans. Biomed. Eng., 34: 454–462, 1987.CrossRefGoogle Scholar
  2. Barber, M.R., Fischman, E.J.: Heart dipole regions and the measurement of dipole moment. Nature, 192: 141–142, 1961.CrossRefGoogle Scholar
  3. Barr, R.C., Ramsey, M., Spach, M.S.: Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans. Biomed. Eng., 24: 1–11, 1977.CrossRefGoogle Scholar
  4. Bellman, R., Collier, C., Kagiwada, H., Kalaba, R., Selvester, R.: Estimation of heart parameters using skin potential measurements. Comm. ACM, 7: 666–668, 1964.CrossRefGoogle Scholar
  5. Burnes, J.E., Taccardi, B., MacLeod, R.S., Rudy, Y.: Noninvasive ECG imaging of electrophysiologically abnormal substrates in infarcted hearts: a model study. Circulation, 101: 533–540, 2000.Google Scholar
  6. Cuppen, J.J.M., Van Oosterom, A.: Model studies with inversely calculated isochrones of ventricular depolarization. IEEE Trans. Biomed. Eng., 31: 652–659, 1984.CrossRefGoogle Scholar
  7. de Guise, J., Gulrajani, R.M., Savard, P., Guardo, R., Roberge, F.A.: Inverse recovery of two moving dipoles from simulated surface potential distributions on a realistic human torso model. IEEE Trans. Biomed. Eng., 32: 126–135, 1985.CrossRefGoogle Scholar
  8. Fischer, G., Tilg, B., Modre, R., Huiskamp, G.J., Fetzer, J., Rucker, W., Wach, P.: A bidomain model based BEM-FEM coupling formulation for anisotropic cardiac tissue. Ann Biomed Eng., 28: 1229–1243, 2000.CrossRefGoogle Scholar
  9. Flowers, N.C., Horan, L.G.: Body surface potential mapping. In: Cardiac Electrophysiology, edited by Zipes, D.P., Jalife, J. 2nd Edition. W.B. Saunders Company, pp. 1049–1067, 1995.Google Scholar
  10. Frazone, P.C., Taccardi, B., Viganotti, C.: An approach to the inverse calculation of epicardial potentials from body surface maps. Adv. Cardiol., 21: 50–54, 1978.Google Scholar
  11. Franzone, P.C., Guerri, L., Pennacchio, M., Taccardi, B.: Spread of excitation in 3-D models of the anisotropic cardiac tissue. III. Effects of ventricular geometry and fiber structure on the potential distribution. Math. Biosci., 151: 51–98, 1998.MATHCrossRefGoogle Scholar
  12. Geselowitz, D.B.: Multipole representation for an equivalent cardiac generator. Proc. IRE., 48: 75–79, 1960.CrossRefGoogle Scholar
  13. Gorodnitsky, I.F., George, J.S., Rao, B.D.: Neuromagnetic source imaging with FOCUS: a recursive weighted minimum norm algorithm. Electroenceph. & clin. Neurophysiol., 95: 231–251, 1995.CrossRefGoogle Scholar
  14. Greensite, F., Huiskamp, G.: An improved method for estimating epicardial potentials from the body surface. IEEE Trans. Biomed. Eng., 45: 1–7, 1998.CrossRefGoogle Scholar
  15. Greensite, F.: Myocardial Activation Imaging. In: Computational Inverse Problems in Electrocardiography, edited by Johnston, P. WIT Press Brisol, 143–190, 2001.Google Scholar
  16. Gulrajani, R., Roberge, F.A., Savard, P.: Moving dipole inverse ECG and EEG solutions. IEEE Trans. Biomed. Eng., 31: 903–910, 1984.CrossRefGoogle Scholar
  17. Gulrajani, R.M., Trudel, M.C., Leon, L.J.: A membrane-based computer heart model employing parallel processing. Biomedizinische Technik, Brand 46, Erganzungsband, 2: 20–22, 2001.Google Scholar
  18. Hamalainen, M., Ilmoniemi, R.: Interpreting measured magnetic fields of the brain: estimates of current distributions. Helsinki University of Technology Report, TKK-F-A559, 1984.Google Scholar
  19. He, B., Wu, D.: A bioelectric inverse imaging technique based on surface Laplacians. IEEE Trans. Biomed. Eng., 44: 529–538, 1997.CrossRefGoogle Scholar
  20. He, B., Wu, D.: Three-dimensional source imaging of cardiac electric activity. Proc. of World Congress on Medical Physics and Biomedical Engineering, CD-ROM, 2000.Google Scholar
  21. He, B., Wu, D.: Imaging and visualization of 3-D cardiac electric activity. IEEE Trans. Inf. Technol. Biomed., 5: 181–186, 2001.CrossRefGoogle Scholar
  22. He, B., Li, G., Zhang, X.: Noninvasive Three-dimensional Activation Time Imaging of Ventricular Excitation by Means of a Heart-Excitation-Model. Physics in Medicine and Biology, 47: 4063–4078, 2002.CrossRefGoogle Scholar
  23. He, B., Li, G.: Noninvasive three-dimensional myocardial activation time imaging by means of a heart-excitation-model. Int. J. of Bioelectromagnetism, 4(2): 87–88, 2002.Google Scholar
  24. He, B., Li, G., Zhang, X.: Noninvasive Imaging of Ventricular Transmembrane Potentials within Three-dimensional Myocardium by Means of a Realistic Geometry Anisotropic Heart Model. IEEE Trans. Biomed. Eng., 50(10): 1190–1202, 2003.CrossRefGoogle Scholar
  25. Hlavin, J.M., Plonsey, R.: An experimental determination of a multipole representation of a turtle heart. IEEE Trans. Bimed. Eng., 10: 98, 1963.Google Scholar
  26. Huiskamp, G., Greensite, F.: A new method for myocardial activation imaging. IEEE Trans. Biomed. Eng., 44: 433–446, 1997.CrossRefGoogle Scholar
  27. Huiskamp, G.: Simulation of depolarization in a membrane-equations-based model of the anisotropic ventricle. IEEE Trans. Biomed. Eng., 45: 847–855, 1998.CrossRefGoogle Scholar
  28. Jeffs, B., Leahy, R., Singh, M.: An evaluation of methods for neuromagnetic image reconstruction. IEEE Trans. Biomed. Eng., 34: 713–723, 1987.CrossRefGoogle Scholar
  29. Johnston, P.R., Gulrajani, R.M.: A new method for regularization parameter determination in the inverse problem of electrocardiography. IEEE Trans. Biomed. Eng., 44: 19–39, 1997.CrossRefGoogle Scholar
  30. Li, G., He, B.: Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach. IEEE Trans. Biomed. Eng., 48: 660–669, 2001.CrossRefGoogle Scholar
  31. Li, G., He, B.: Noninvasive Estimation of Myocardial Infarction by Means of a Heart-Model-Based Imaging Approach.: simulation study Med. Biol. Eng. & Comput., In press.Google Scholar
  32. Lorange, M., Gulrajani, R.M.: A computer heart model incorporating anisotropic propagation. I. Model construction and simulation of normal activation. J. Electrocardiol., 26: 245–261, 1993.CrossRefGoogle Scholar
  33. Lu, W., Xu, Z., Fu, Y. Microcomputer-based cardiac field simulation model. Med. Bio. Eng. Comput., 31: 384–387, 1993.CrossRefGoogle Scholar
  34. Malmivuo, J., Plonsey, R.: Bioelectromagnetism. Oxford University Press, 1995.Google Scholar
  35. Gulrajani, R.M.: Bioelectricity and Biomagnetism. John Wiley & Sons 1998.Google Scholar
  36. Martin, R.O., Cox, J.W., Keller, F.W., Terry, F.H., Brody, D.A.: Equivalent cardiac generators; Two moving dipoles and moving dipole and quadripole. Ann. Biomed. Eng., 2: 164–183, 1974.CrossRefGoogle Scholar
  37. Miller, W.T., Geselowitz, D.B.: Simulation studies of the electrocardiogram I. The normal heart. Circ. Res., 43: 301–323, 1978.Google Scholar
  38. Mirvis, D.M., Keller, F.W., Ideker, R.E., Cox, J.W., Dowdie, R.J., Zettergren, D.G.: Detection and localization of multiple epicardial electrical generators by a two-dipole ranging technique. Circ. Res., 41: 551–557, 1977.Google Scholar
  39. Modre, R., Tilg, B., Fischer, G., Wach, P.: An iterative algorithm for myocardial activation time imaging. Computer Methods and Programs in Biomedicine, 64: 1–7, 2001.CrossRefGoogle Scholar
  40. Nenonen, J., Edens, J., Leon, L.J., Horacek, B.M.: Computer model of propagated excitation in the anisotropic human heart: I. Implementation and algorithms. In: Compter in Cardiology, 545–548, 1991.Google Scholar
  41. Okamoto, Y., Teramachi, Y., Musha, T.: Limitation of the inverse problem in body surface potential Mapping. IEEE Trans. Biomed. Eng., 30: 749–754, 1983.CrossRefGoogle Scholar
  42. Ohyu, S., Okamoto, Y., Kuriki, S.: Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrophysiological properties. IEEE Trans. Biomed. Eng., 49: 509–519, 2002.CrossRefGoogle Scholar
  43. Oster, H.S., Taccardi, B., Lux, R.L., Ershler, P.R., Rudy, Y.: Noninvasive electrocardiographic imaging: reconstruction of epicardial potentials, electrograms, and isochrones and localization of single and multiple electrocardiac events. Circulation, 96: 1012–1024, 1997.Google Scholar
  44. Pascual-Marqui, R.D., Michel, C.M., Lehmann, D.: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol., 18: 49–65, 1994.CrossRefGoogle Scholar
  45. Pilkington, T.C., Morrow, M.N.: The usefulness of multipoles in electrocardiography. CRC Crit. Rev. Biomed. Eng., 7: 175, 1982.Google Scholar
  46. Pullan, A.J., Cheng, L.K., Nash, M.P., Bradley, C.P., Paterson, D.J.: Noninvasive electrical imaging of the heart: theory and model development. Ann. Biomed. Eng., 29: 817–36, 2001.CrossRefGoogle Scholar
  47. Savard, P., Roberge, F.A., Perry, J., Nadeau, R.A.: Representation of cardiac electrical activity by a moving dipole for normal and ectopic beats in the intact dog. Circ. Res. 46: 415–425, 1980.Google Scholar
  48. Selvester, R.H.S.: Recommendation for nomenclature of myocardial subdivisions. J. Electrocardil., 25: 161–162, 1992.CrossRefGoogle Scholar
  49. Shahidi, A.V., Savard, P., Nadeau, R.: Forward and inverse problems of electrocardiography: modeling and recovery of epicardial potentials in humans. IEEE Trans. Biomed. Eng., 41: 249–256, 1994.CrossRefGoogle Scholar
  50. Skipa, O., Sachse, N.F., Werner, C., Dossel, O.: Transmembrane potential reconstruction in anisotropic heart model. Proc. of International Conference on Bioelectromagnetism, 17–18, 2002.Google Scholar
  51. Streeter, Jr. D.D., Spotnitz, H.M., Patel, Jr., D.P., Ross, J., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res., 24: 339–347, 1969.Google Scholar
  52. Taccardi, B. Distribution of heart potential on the thoracic surface of normal human subjects. Circ. Res., 12: 341–352, 1963.Google Scholar
  53. Throne, R.D., Olson, L.G.: A generalized eigensystem approach to the inverse proble of electrocardiography. IEEE Trans. Biomed. Eng., 41: 592–600, 1994.CrossRefGoogle Scholar
  54. Throne, R.D., Olson, L.G.: Generalized eigensystem techniques for the inverse problem of electrocardiography applied to a realistic heart-torso geometry. IEEE Trans. Biomed. Eng., 44: 447–454, 1997.CrossRefGoogle Scholar
  55. Wach, P. Tilg, B., Lafer, G., Rucker, W.: Magnetic source imaging in the human heart: estimating cardiac electrical sources from simulated and measured magnetocardiogram data. Med. Biol. Eng. Comput., 35: 157–166, 1997.CrossRefGoogle Scholar
  56. Wei, D., Okazaki, O., Harumi, K., Harasawa, E., Hosaka, H.: Comparative simulation of excitation and body surface electrocardiogram with isotropic and anisotropic computer heart model. IEEE Trans. Biomed. Eng., 42: 343–357, 1995.CrossRefGoogle Scholar
  57. Wu, D., Tsai, H.C., He, B.: On the Estimation of the Laplacian Electrocardiogram during Ventricular Activation. Ann. Biomed. Eng., 27: 731–745, 1999.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Bin He
    • 1
    • 2
  1. 1.University of Illinois at ChicagoChicagoUSA
  2. 2.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolis

Personalised recommendations