Heart Surface Electrocardiographic Inverse Solutions

  • Fred Greensite
Part of the Bioelectric Engineering book series (BEEG)


In this chapter, we will review the problem of noninvasive and minimially invasive imaging of cardiac electrical function. We use the term “imaging” in the sense of methodology which seeks to spatially resolve distributed properties of cardiac muscle electrophysiology such as extracellular potential, or features of the action potential. Thus, we do not consider the problems of computing properties of an “equivalent” cardiac multipole, moving dipole(s), or any other source model that does not satisfy such criteria. We will further restrict ourselves to resolving such electrophysiological features on the epicardial or endocardial surfaces— a reasonable restriction, since measurements currently accessed by invasive procedures are obtained on these surfaces, and also because the spatial dimension of the “source” domain then nominally matches the spatial dimension of the data domain. Thus, we will not consider the earliest distributed source model, representing intramural current density imaging (Barber and Fischman, 1961; Bellman et al., 1964), on which work continues (e.g., see (He and Wu, 2001), or the recent heart-excitation-model based 3D inverse imaging approach (Li and He, 2001) in Chapter 5 in this book).


Inverse Problem Singular Value Decomposition Regularization Parameter Tikhonov Regularization Solution Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, G. F., Brooks, D. H., and MacLeod, R. S., 1998, An admissible solution approach to inverse electrocardiography, Ann. Biomed. Eng. 26:278–292.CrossRefGoogle Scholar
  2. Barber M. R., and Fischman, E. J., 1961, Heart dipole regions and the measurement of dipole moment, Nature. 192:141–142.CrossRefGoogle Scholar
  3. Barnard, A. C. L., Duck, J. M., Lynn, M. S., and Timlake, W. P., 1967, The application of electromagnetic theory to electrocardiography, II, Biophys. 7:463–491.CrossRefGoogle Scholar
  4. Barr, R. C., Ramsey, M., and Spach, M. S., 1977, Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements, IEEE Trans. Biomed. Eng. 24:1–11.CrossRefGoogle Scholar
  5. Barr, R., and Spach, M., 1978, Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog, IEEE Trans. Biomed. Eng. BME-42:661–675.Google Scholar
  6. Basser, P., Mattiello, J., and LeBihan, D., 1994, MR diffusion tensor spectroscopy and imaging, Biophys. J. 66:259–267, 1994.CrossRefGoogle Scholar
  7. Bellman, R., Collier, C., Kagiwada, H., Kalaba, R., and Selvester, R., 1964, Estimation of heart parameters using skin potential measurements, Comm. ACM. 7:666–668.CrossRefGoogle Scholar
  8. Brooks, D. H., Ahmad, G., MacLeod, R. S., and Maratos, G. M., 1999, Inverse electrocardiography by simultaneous imposition of multiple constraints, IEEE Trans. Biomed. Eng. BME-46:3–18.CrossRefGoogle Scholar
  9. Burnes, J. E., Taccardi, B., MacLeod, R. S., and Rudy, Y., 2000, Noninvasive ECG imaging of electrophysiologcially abnormal substrates in infarcted hearts, a model study, Circulation. 101:533–540.Google Scholar
  10. Burnes, J. E., Taccardi, B., Ershler, P. R., and Rudy, Y., 2001, Noninvasive ECG imaging of substrate and intramural ventricular tachycardia in infarcted hearts, J. Am. Col. Cardiol. in press.Google Scholar
  11. Colli-Franzone, P., Guerri, L., Tentoni, S., Viganotti, C., Baruffi, S., Spaggiari, S., and Taccardi, B., 1985, A mathematical procedure for solving the inverse potential problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data, Math. Biosci. 77:353–396.MATHCrossRefMathSciNetGoogle Scholar
  12. Cuppen, J., and van Oosterom, A., 1984, Model studies with inversely calculated isochrones of ventricular depolarization, IEEE Trans. Biomed. Eng. BME-31:652–659.CrossRefGoogle Scholar
  13. Dotti, D., 1974, A space-time solution of the inverse problem, Adv. Cardiol., 10:231–238.Google Scholar
  14. Einthoven, W., 1912, The different forms of the human electrocardiogram and their signification. Lancet. 1912 1:853–861.CrossRefGoogle Scholar
  15. Foster, M., 1961, An application of the Wiener-Kolmogorov smoothing theory to matrix inversion, J. SIAM. 9:387–392.MATHMathSciNetGoogle Scholar
  16. Frank, E., 1954, The images surface of a homogeneous torso, Amer. Heart J. 47:757–768.CrossRefGoogle Scholar
  17. Gabor, D., and Nelson, C. V., 1954, Determination of the resultant dipole of the heart from measurements on the body surface, J. Applied Physics. 25:413–416.CrossRefGoogle Scholar
  18. Gepstein, L., Hayam, G., and Ben-Haim, S. A., A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart: in Vitro and in vivo accuracy results, Circulation. 95:1611–1622.Google Scholar
  19. Gelernter, H. L., and Swihart, J. C., 1964, A mathematical-physical model of the genesis of the electrocardiogram, Biophys. J., 4:285–301.CrossRefGoogle Scholar
  20. Geselowitz, D. B., 1967, On bioelectric potentials in an inhomogeneous volume conductor, Biophys. J. 7:1–11.CrossRefGoogle Scholar
  21. Geselowitz, D. B., 1985, Use of time integrals of the ECG to solve the inverse problem, IEEE Trans. Biomed. Eng. BME-32:73–75.CrossRefGoogle Scholar
  22. Ghanem, R. N., Burnes, J. E., Waldo, A. L., and Rudy, R., 2001, Imaging dispersion of myocardial repolarization, II, Circulation, 104:1306–1312.CrossRefGoogle Scholar
  23. Golub, G., and van Loan, C., 1996, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore.MATHGoogle Scholar
  24. Greensite, F., 1994, Well-posed formulation of the inverse problem of electrocardiography, Ann. Biomed. Eng. 22:172–183.CrossRefGoogle Scholar
  25. Greensite, F., 1995, Remote reconstruction of confined wavefront propagation, Inverse Problems. 11:361–370.MATHCrossRefMathSciNetGoogle Scholar
  26. Greensite, F., and Huiskamp, G., 1998, An improved method for estimating epicardial potentials from the body surface, IEEE Trans. Biomed. Eng.. BME-45:1–7.CrossRefGoogle Scholar
  27. Greensite, F., 2001, Myocardial Activation Imaging, in: Computational Inverse Problems in Electrocardiography, (P. Johnston, ed.), WIT press, Brisol, pp. 143–190.Google Scholar
  28. Greensite, F., 2002, A new treatment of the inverse problem of multivariate analysis, Inverse Problems. 18: 363–379.MATHCrossRefMathSciNetGoogle Scholar
  29. Gulrajani, R., Roberge, F., and Savard, P., 1984, Moving dipole inverse ECG and EEG solutions, IEEE Trans. Biomed. Eng. BME-31:903–910.CrossRefGoogle Scholar
  30. Gulrajani, R. M., Roberge, F. A., and Savard, P., 1989, The inverse problem of electrocardiography, in: Comprehensive Electrocardiology, Volume 1 (P. W. Macfarlane, and T. T. Veitch Lawrie, eds.), Pergamon, Oxford, pp. 237–288.Google Scholar
  31. Gulrajani, R. M., 1998, The forward and inverse problems of electrocardiograprhy, IEEE Eng. Med. Biol. 17:84–101.CrossRefGoogle Scholar
  32. Hansen, P. C., 1992, Numerical tools for analysis and solution of Fredholm integral equations of the first kind, Inverse Problems. 8:849–872.MATHCrossRefMathSciNetGoogle Scholar
  33. He, B., and Cohen, R. J., 1992, Body surface Laplacian ECG mapping, IEEE Trans. Biomed. Eng. 39:1179–1191.CrossRefGoogle Scholar
  34. He, B., and Wu, D., 1997, A bioelectric inverse imaging tecnique based on surface Laplacians, IEEE Trans. Biomed. Eng. BME-16:133–138.Google Scholar
  35. He, R., Rao, L., Liu, S., Yan, W., Narayana, P. A., and Brauer, H., 2000, The method of maximum mutual information for biomedical electromagnetic inverse problems, IEEE Transaction on Magnetics. 36:1741–1744.CrossRefGoogle Scholar
  36. He, B., and Wu, D., 2001, Imaging and visualization of 3-D cardiac electric activity, IEEE Trans. Inf. Technol. Biomed. 5:181–186.CrossRefGoogle Scholar
  37. Henriquez, C., 1993, Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Eng. 21:1–77.Google Scholar
  38. Horacek, B. M., 1997, The inverse problem of electrocardiography: a solution in terms of single-and double-layer sources on the epicardial surface, Math. Biosci. 144:119–154.MATHCrossRefMathSciNetGoogle Scholar
  39. Huiskamp, G., and van Oosterom, A., 1988, The depolarization sequence of the human heart surface computed from measured body surface potentials, IEEE Trans. Biomed. Eng. BME-35: 1047–1058.CrossRefGoogle Scholar
  40. Huiskamp, G., and van Oosterom, A., 1989, Tailored versus realistic geometry in the inverse problem of electrocardiography, IEEE Trans. Biomed. Eng. BME-36:827–835.CrossRefGoogle Scholar
  41. Huiskamp, G., and Greensite, F., 1997, A new method for myocardial activation imaging, IEEE Trans. Biomed. Eng. BME-44: 433–446.CrossRefGoogle Scholar
  42. Iakovidis, I., and Gulrajani, R. M., 1992, Improving Tikhonov regularization with linearly constrained optimization: application to the inverse epicardial potential solution, Math. Biosci., 112:55–80.MATHCrossRefMathSciNetGoogle Scholar
  43. Ideker, R. E., Smith, W. M., Blanchard, S. M., Reiser, S. L., Simpson, E. V., Wolf, R. D., and Danieley, N. D., 1989, The assumptions of isochronal cardiac mapping, PACE. 12:456–478.Google Scholar
  44. Jackson, J. D., 1975. Classical Electrodynamics, Wiley, New York.MATHGoogle Scholar
  45. Jia, P., Punske, B., Taccardi, B., and Rudy, Y., 2000, Electrophysiologic endocardial mapping from a noncontact nonexpandable catheter, J. Cardiovasc. Electrophysiol., 11:1238–1251.CrossRefGoogle Scholar
  46. Johnston, P. R., 1997, The Laplacian inverse problem of electrocardiography: an eccentric spheres study, IEEE Trans. Biomed. Eng. 44:539–548.CrossRefGoogle Scholar
  47. Johnson, C., 2001, Adaptive finite element and local regularization methods for the inverse problem of electrocardiography, in: Computational Inverse Problems in Electrocardiography, (P. Johnston, ed.), WIT press, Brisol, pp. 51–88.Google Scholar
  48. Joly, D., Goussard, Y., and Savard, P, 1993, Time-recursive solution to the inverse problem of electrocardiography: a model-based appraoch, in: Proc. 15th Ann Int conf IEEE Eng. Med. Biol. Soc., IEEE Press, New York, pp. 767–768.CrossRefGoogle Scholar
  49. Kadish, A., Hauck, J., Pederson, B., Beatty, G., and Gornick, C., 1999, Mapping of Atrial Activation With a Noncontact, Multielectrode Catheter in Dogs, Circulation. 99:1906–1913.Google Scholar
  50. Keener, J., 1988, Principles of Applied Mathematics, Addison Wesley, Redwood City, CA, pp. 135–146. Dirar S. Khoury, PhD; Keith L. Berrier, BS; Shamim M. Badruddin, MD; William A. ZoghbiMATHGoogle Scholar
  51. Khoury, D. S., Berrier, K. L., Badruddin, S. M., and Zoghbi, W. A., 1998, Three-Dimensional Electrophysiological Imaging of the Intact Canine Left Ventricle Using a Noncontact Multielectrode Cavitary Probe: Study of Sinus, Paced, and Spontaneous Premature Beats, Circulation. 97:399–409.Google Scholar
  52. Leder, U., Pohl, H., Michaelson, S., Fritschi, T., Huck, M., Eichhorn, J., Muller, S., and Nowak, H., 1998, Noninvasive biomagnetic imaging in coronary artery disease based on individual current density maps of the heart, Int. J. Cardiol. 64:83–92.CrossRefGoogle Scholar
  53. Li, G., and He, B., 2001, Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach, IEEE Trans. Biomed. Eng. 48:660–669.CrossRefGoogle Scholar
  54. Lynn, M. S., Barnard, A. C. L., Holt, J. H., and Sheffield, L. T., 1967, A proposed method for the inverswe problem in electrocardiography, Biophys. J. 7:925–945.CrossRefGoogle Scholar
  55. MacLeod, R. S., Gardner, M., Miller, R. M., and Horacek, B. M., 1995, Application of an electrocardiographic inverse solution to localize ischernia during coronary angioplasty, J. Cardiovasc. Electrophys. 6: 2–18.CrossRefGoogle Scholar
  56. MacLeod, R. S., and Brooks, D. H., 1998, Recent progress in inverse problems of electrocardiograprhy, IEEE Eng. Med. Biol. 17:73–83.CrossRefGoogle Scholar
  57. Malmivuo, J., and Plonsey, R., 1995, Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields, Oxford University Press, New York.Google Scholar
  58. Martin, R. O., and Pilkington, T. C., 1972, Unconstrained inverse electrocardiography: epicardial potentials, IEEE Trans. Biomed. Eng. BME-19:276–285.CrossRefGoogle Scholar
  59. Martin, R. O., Pilkington, T. C., and Morrow, M. N., 1975, Statistically constrained inverse electrocardiography, IEEE Trans. Biomed. Eng. BME-22:487–492.CrossRefGoogle Scholar
  60. Messinger-Rapport, B. J., and Rudy, Y., 1988, Regularization of the inverse problem of electrocardiography: a model study, Math. Biosci., 89:79.MATHCrossRefGoogle Scholar
  61. Modre, R., Tilg, B., Fischer, G., and Wach, P., 2001, An iterative algorithm for myocardial activation time imaging, Computer Methods and Programs in Biomedicine 64:1–7.CrossRefGoogle Scholar
  62. Modre, R., Tilg, B., Fischer, G., Hanser, F., Messnarz, B., Wach, P., Pachinger, O., Hintringer, F., Berger, T., Abou-Harb, M., Schoke, M., Kremser, C., and Roithinger, F., 2001, Stability of activation time imaging from single beat data under clinical conditions, Biomedizinishe Technik 46:213–215.CrossRefGoogle Scholar
  63. Nash, M. P., Bradley, C. P., Cheng, L.K., Pullan, A. J., and Paterson, D. J., in press, An in-vivo experimental-computational framework for validating ECG inverse methods, Intl. J. Bioelectromagnetism. Google Scholar
  64. Ohyu, S., Okamoto, Y., and Kuriki, S., 2001, Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrphysiological properties, IEEE Trans. Biomed. Eng. in press.Google Scholar
  65. Oostendorp, T., MacLeod, R., and van Oosterom, A., 1997, Non-invasive determination of the activation sequence of the heart: validation with invasive data, Proc. 19th Annual Int. Conf. IEEE EMBS, CD-ROM, 1997.Google Scholar
  66. Oostendorp, T., and Pesola, K., 1998, Non-invasive determination of the activation time sequence of the heart: validation by comparison with invasive human data, Computers in Cardiology. 25:313–316.Google Scholar
  67. Oster, H., and Rudy, Y., 1992, The use of temporal information in the regularization of the inverse problem of electrocardiography, IEEE Trans. Biomed. Eng. BME-39:65–75.CrossRefGoogle Scholar
  68. Oster, H. S., and Rudy, Y., 1997a, Regional regularization of the electrocardiographic inverse problem: a model study using spherical geometry, IEEE Trans. Biomed. Eng. 44:188–199.CrossRefGoogle Scholar
  69. Oster, H., Taccardi, B., Lux, R., Ershler, P., and Rudy, Y., 1997, Noninvasive electrocardiographic imaging, Circulation. 96:1012–1024.Google Scholar
  70. Papoulis, A., 1984, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York.MATHGoogle Scholar
  71. Paul, T., Moak, J. P., Morris, C., and Garson, A., 1990, Epicardial mapping: how to measure local activation, PACE. 12:285–292.Google Scholar
  72. Paul, T., Windhagen-Mahnert, B., Kriebel, T., Bertram, H., Kaulitz, R., Korte, T., Niehaus, M., and Tebbenjohanns, J., 2001, Atrial Reentrant Tachycardia After Surgery for Congenital Heart Disease Endocardial Mapping and Radiofrequency Catheter Ablation Using a Novel, Noncontact Mapping System, Circulation. 103:2266–2271.Google Scholar
  73. Penney, C. J., Clements, J. C., and Horacek, B. M., 2000, Non-invasive imaging of epicardial electrograms during controlled myocardial ischemia, Computers in Cardiology 2000. 27:103–106.Google Scholar
  74. Plonsey, R., 1969, Bioelectric Phenomena, McGraw-Hill, New York.Google Scholar
  75. Pullan, A. J., Cheng, L.K., Nash, M.P., Bradley, C.P., Paterson, D.J., 2001, Noninvasive electrical imaging of the heart: theory and model development. Ann. Biomed. Eng. 29:817–836.CrossRefGoogle Scholar
  76. Ramanathan, C., and Rudy, Y., 2001, Electrocardiographic Imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones. J. Cardiovasc. Electrophysiol. 12:242–252.Google Scholar
  77. Reese, T., Weisskoff, R., Smith, R., Rosen, B., Dinsmore, R., and Wedeen, V., 1995, Imaging myocardial fiber architecture in vivo with magnetic resonance, Magnetic Resonance in Medicine. 34:786–791.CrossRefGoogle Scholar
  78. Rudy, Y., and Messinger-Rapport, B. J., 1988, The inverse problem in electrocardiography: solutions in terms of epicardial potentials, Crit. Rev. Biomed. Eng. 16:215–268.Google Scholar
  79. Salu, Y., 1978, Relating the multipole moments of the heart to activated parts of the epicardium and endocardium, Ann. Biomed. Eng., 6:492–505.CrossRefGoogle Scholar
  80. Schilling, R. J., Kadish, A. H., Peters, N. S., Goldberger, J., Wyn Davies, D., 2000, Endocardial mapping of atrial fibrillation in the human right atrium using a non-contact catheter, European Heart Journal. 21: 550–564.CrossRefGoogle Scholar
  81. Schmitt, C., Zrenner, B., Schneider, M., Karch, M., Ndrepepa, G., Deisenhofer, I., Weyerbrock, S., Schreieck, J., and Schoemig, A., 1999, Clinical experience with a novel multielectrode basket catheter in right atrial tachycardias, Circulation. 99:2414–2422.Google Scholar
  82. Schmitt, O. H., 1969, Biological information processing using the concept of interpenetrating domains, in Information Processing in the Nervous System, (Leibovic, K. N. ed.), Spinger-Verlag, New York.Google Scholar
  83. Shahidi, A. V., Savard, P., and Nadeau, R., 1994, Forward and inverse problems of electrocardiography: modeling and recovery of epicardial potentials in humans, IEEE Trans. Biomed. Eng. 41:249–256.CrossRefGoogle Scholar
  84. Strickberger, S. A., Knight, B. P., Michaud, G. F., Pelosi, F., and Morady, F., 2000, Mapping and ablation of ventricular tachycardia guided by virtual electrograms using a noncontact, computerized mapping system. J. Am. Col. Cardiol. 35:414–421.CrossRefGoogle Scholar
  85. Taccardi, B., Arisi, G., Macchi, E., Baruffi, S., and Spaggiari, S., 1987, A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle, Circulation. 75: 272–281.Google Scholar
  86. Throne, R., and Olsen, L., 1994, A generalized eigensystem approach to the inverse problem of electrocardiography, IEEE Trans. Biomed. Eng. 41:592–600.CrossRefGoogle Scholar
  87. Throne, R. D., Olsen, L. G., 2000, A comparision of spatial regularization with zero and first order Tikhonov regularization for the inverse problem of electrocardiography, Computers in Cardiology. 27:493–496.Google Scholar
  88. Tikhonov, A., and Arsenin, V., 1977, Solutions of Ill-Posed Problems, John Wiley and Sons, New York.MATHGoogle Scholar
  89. Tilg, B., Wach, P., SippensGroenwegen, A., Fischer, G., Modre, R., Roithinger, F. Mlynash, M., Reddyuu, G., Roberts, T., Lesh, M., and Steiner, P., 1999, Closed-chest validation of source imaging from human ECG and MCG mapping data, in: Proceedings of the 21st Annual International Conference of the IEEE EMBS, October 1999/First Joint BMES/EMBS Conference, IEEE Press.Google Scholar
  90. Tilg, B., Fischer, G., Modre, R., Hanser, F., Messnarz, B., Wach, P., Pachinger, O., Hintringer, F., Berger, T., Abou-Harb, M., Schoke, M., Kremser, C., and Roithinger, F., 2001, Feasibility of activation time imaging within the human atria and ventricles in the catheter laboratory, Biomedizinishe Technik 46:213–215.CrossRefGoogle Scholar
  91. Tuch, D. S., Wedeen, V. J., Dale, A. M., and Belliveau, J. W., 1997, Conductivity maps of white matter fiber tracts using magnetic resonance diffusion tensor imaging, Proc. Third int. conf. On Fundamental Mapping of the Human Brain, Neuroimage. 5:s44.Google Scholar
  92. Twomey, S., 1963, On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature, J. ACM, 10:97–101.MATHCrossRefGoogle Scholar
  93. Ueno, S., and Iriguchi, N., 1998, Impedance magnetic resonance imaging: a method for imaging of impedance distribution based on magnetic resonance imaging, J. Appl. Phys. 83:6450–6452.CrossRefGoogle Scholar
  94. van Oosterom, A., 1987, Computing the depolarization sequence at the ventricular surface from body surface potentials, in: Pediatric and Fundamental Electrocardiography, (J. Liebman, R. Plonsey, and Y. Rudy, eds.), Martinus Nijhoff, Zoetermeer, The Netherlands, pp. 75–89.Google Scholar
  95. van Oosterom, A., 1999, The use of the spatial covariance in computing pericardial potentials. IEEE Trans. Biomed. Eng. 46:778–787.CrossRefGoogle Scholar
  96. Velipasaoglu, E. P., Sun, H., Zhang, F., Berrier, K. L., and Khoury, D. S., 2000, Spatial regulariation of the electrocardiographic inverse problem and its application to endocardial mapping, IEEE Trans. Biomed. Eng. 47:327–337.CrossRefGoogle Scholar
  97. Wach, P., Modre, R., Tilg, B., Fischer, G., 2001, An iterative linearized optimization technique for non-linear ill-posed problems applied to cardiac activation time imaging, COMPEL 20:676–688.MATHGoogle Scholar
  98. Waller, A., 1889, On the electromotive changes connected with the beat of the mammalian heart, and of the human heart in particular, Phil. Trans. R. Soc. Lond. B. 180:169–194.CrossRefGoogle Scholar
  99. Waller, A., 1911, quoted in Cooper J. K., 1987, Electrocardiography 100 years ago: origins, pioneers, and contributors, NEJM. 315:461–464.Google Scholar
  100. Wahba, G., 1977, Practical approximated solutions to linear operator equations when the data are noisy, SIAM J. Numer. Anal. 14:651–667.MATHCrossRefMathSciNetGoogle Scholar
  101. Wilson, F. N., MacLeod, A. G., and Barker, P. S., 1933, The distribution of the action currents produced by heart muscle and other excitable tissues immersed in extensive conducting media, J. Gen. Physiol. 16:423–456.CrossRefGoogle Scholar
  102. Wilson, F. N., Johnston, F. D., and Kossmann, C. E., 1947, The substitution of the tetrahedron for the Einthoven triangle. Am. Heart J., 33:594–603.CrossRefGoogle Scholar
  103. Yamashita, Y., and Geselowitz, D., 1985, Source-field relationships for cardiac generators on the heart surface based on their transfer coefficients, IEEE Trans. Biomed. Eng. BME-32:964–970.CrossRefGoogle Scholar
  104. Zablow, L., 1966, An equivalent cardiac generator which preserves topolgraphy, Biophys. J. 6:535–536.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Fred Greensite
    • 1
  1. 1.Department of Radiological SciencesUniversity of California-Irvine Medical CenterOrangeUSA

Personalised recommendations