Skip to main content

Heart Surface Electrocardiographic Inverse Solutions

  • Chapter
Modeling and Imaging of Bioelectrical Activity

Part of the book series: Bioelectric Engineering ((BEEG))

Abstract

In this chapter, we will review the problem of noninvasive and minimially invasive imaging of cardiac electrical function. We use the term “imaging” in the sense of methodology which seeks to spatially resolve distributed properties of cardiac muscle electrophysiology such as extracellular potential, or features of the action potential. Thus, we do not consider the problems of computing properties of an “equivalent” cardiac multipole, moving dipole(s), or any other source model that does not satisfy such criteria. We will further restrict ourselves to resolving such electrophysiological features on the epicardial or endocardial surfaces— a reasonable restriction, since measurements currently accessed by invasive procedures are obtained on these surfaces, and also because the spatial dimension of the “source” domain then nominally matches the spatial dimension of the data domain. Thus, we will not consider the earliest distributed source model, representing intramural current density imaging (Barber and Fischman, 1961; Bellman et al., 1964), on which work continues (e.g., see (He and Wu, 2001), or the recent heart-excitation-model based 3D inverse imaging approach (Li and He, 2001) in Chapter 5 in this book).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, G. F., Brooks, D. H., and MacLeod, R. S., 1998, An admissible solution approach to inverse electrocardiography, Ann. Biomed. Eng. 26:278–292.

    Article  Google Scholar 

  • Barber M. R., and Fischman, E. J., 1961, Heart dipole regions and the measurement of dipole moment, Nature. 192:141–142.

    Article  Google Scholar 

  • Barnard, A. C. L., Duck, J. M., Lynn, M. S., and Timlake, W. P., 1967, The application of electromagnetic theory to electrocardiography, II, Biophys. 7:463–491.

    Article  Google Scholar 

  • Barr, R. C., Ramsey, M., and Spach, M. S., 1977, Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements, IEEE Trans. Biomed. Eng. 24:1–11.

    Article  Google Scholar 

  • Barr, R., and Spach, M., 1978, Inverse calculation of QRS-T epicardial potentials from body surface potential distributions for normal and ectopic beats in the intact dog, IEEE Trans. Biomed. Eng. BME-42:661–675.

    Google Scholar 

  • Basser, P., Mattiello, J., and LeBihan, D., 1994, MR diffusion tensor spectroscopy and imaging, Biophys. J. 66:259–267, 1994.

    Article  Google Scholar 

  • Bellman, R., Collier, C., Kagiwada, H., Kalaba, R., and Selvester, R., 1964, Estimation of heart parameters using skin potential measurements, Comm. ACM. 7:666–668.

    Article  Google Scholar 

  • Brooks, D. H., Ahmad, G., MacLeod, R. S., and Maratos, G. M., 1999, Inverse electrocardiography by simultaneous imposition of multiple constraints, IEEE Trans. Biomed. Eng. BME-46:3–18.

    Article  Google Scholar 

  • Burnes, J. E., Taccardi, B., MacLeod, R. S., and Rudy, Y., 2000, Noninvasive ECG imaging of electrophysiologcially abnormal substrates in infarcted hearts, a model study, Circulation. 101:533–540.

    Google Scholar 

  • Burnes, J. E., Taccardi, B., Ershler, P. R., and Rudy, Y., 2001, Noninvasive ECG imaging of substrate and intramural ventricular tachycardia in infarcted hearts, J. Am. Col. Cardiol. in press.

    Google Scholar 

  • Colli-Franzone, P., Guerri, L., Tentoni, S., Viganotti, C., Baruffi, S., Spaggiari, S., and Taccardi, B., 1985, A mathematical procedure for solving the inverse potential problem of electrocardiography. Analysis of the time-space accuracy from in vitro experimental data, Math. Biosci. 77:353–396.

    Article  MATH  MathSciNet  Google Scholar 

  • Cuppen, J., and van Oosterom, A., 1984, Model studies with inversely calculated isochrones of ventricular depolarization, IEEE Trans. Biomed. Eng. BME-31:652–659.

    Article  Google Scholar 

  • Dotti, D., 1974, A space-time solution of the inverse problem, Adv. Cardiol., 10:231–238.

    Google Scholar 

  • Einthoven, W., 1912, The different forms of the human electrocardiogram and their signification. Lancet. 1912 1:853–861.

    Article  Google Scholar 

  • Foster, M., 1961, An application of the Wiener-Kolmogorov smoothing theory to matrix inversion, J. SIAM. 9:387–392.

    MATH  MathSciNet  Google Scholar 

  • Frank, E., 1954, The images surface of a homogeneous torso, Amer. Heart J. 47:757–768.

    Article  Google Scholar 

  • Gabor, D., and Nelson, C. V., 1954, Determination of the resultant dipole of the heart from measurements on the body surface, J. Applied Physics. 25:413–416.

    Article  Google Scholar 

  • Gepstein, L., Hayam, G., and Ben-Haim, S. A., A novel method for nonfluoroscopic catheter-based electroanatomical mapping of the heart: in Vitro and in vivo accuracy results, Circulation. 95:1611–1622.

    Google Scholar 

  • Gelernter, H. L., and Swihart, J. C., 1964, A mathematical-physical model of the genesis of the electrocardiogram, Biophys. J., 4:285–301.

    Article  Google Scholar 

  • Geselowitz, D. B., 1967, On bioelectric potentials in an inhomogeneous volume conductor, Biophys. J. 7:1–11.

    Article  Google Scholar 

  • Geselowitz, D. B., 1985, Use of time integrals of the ECG to solve the inverse problem, IEEE Trans. Biomed. Eng. BME-32:73–75.

    Article  Google Scholar 

  • Ghanem, R. N., Burnes, J. E., Waldo, A. L., and Rudy, R., 2001, Imaging dispersion of myocardial repolarization, II, Circulation, 104:1306–1312.

    Article  Google Scholar 

  • Golub, G., and van Loan, C., 1996, Matrix Computations, 3rd ed., Johns Hopkins University Press, Baltimore.

    MATH  Google Scholar 

  • Greensite, F., 1994, Well-posed formulation of the inverse problem of electrocardiography, Ann. Biomed. Eng. 22:172–183.

    Article  Google Scholar 

  • Greensite, F., 1995, Remote reconstruction of confined wavefront propagation, Inverse Problems. 11:361–370.

    Article  MATH  MathSciNet  Google Scholar 

  • Greensite, F., and Huiskamp, G., 1998, An improved method for estimating epicardial potentials from the body surface, IEEE Trans. Biomed. Eng.. BME-45:1–7.

    Article  Google Scholar 

  • Greensite, F., 2001, Myocardial Activation Imaging, in: Computational Inverse Problems in Electrocardiography, (P. Johnston, ed.), WIT press, Brisol, pp. 143–190.

    Google Scholar 

  • Greensite, F., 2002, A new treatment of the inverse problem of multivariate analysis, Inverse Problems. 18: 363–379.

    Article  MATH  MathSciNet  Google Scholar 

  • Gulrajani, R., Roberge, F., and Savard, P., 1984, Moving dipole inverse ECG and EEG solutions, IEEE Trans. Biomed. Eng. BME-31:903–910.

    Article  Google Scholar 

  • Gulrajani, R. M., Roberge, F. A., and Savard, P., 1989, The inverse problem of electrocardiography, in: Comprehensive Electrocardiology, Volume 1 (P. W. Macfarlane, and T. T. Veitch Lawrie, eds.), Pergamon, Oxford, pp. 237–288.

    Google Scholar 

  • Gulrajani, R. M., 1998, The forward and inverse problems of electrocardiograprhy, IEEE Eng. Med. Biol. 17:84–101.

    Article  Google Scholar 

  • Hansen, P. C., 1992, Numerical tools for analysis and solution of Fredholm integral equations of the first kind, Inverse Problems. 8:849–872.

    Article  MATH  MathSciNet  Google Scholar 

  • He, B., and Cohen, R. J., 1992, Body surface Laplacian ECG mapping, IEEE Trans. Biomed. Eng. 39:1179–1191.

    Article  Google Scholar 

  • He, B., and Wu, D., 1997, A bioelectric inverse imaging tecnique based on surface Laplacians, IEEE Trans. Biomed. Eng. BME-16:133–138.

    Google Scholar 

  • He, R., Rao, L., Liu, S., Yan, W., Narayana, P. A., and Brauer, H., 2000, The method of maximum mutual information for biomedical electromagnetic inverse problems, IEEE Transaction on Magnetics. 36:1741–1744.

    Article  Google Scholar 

  • He, B., and Wu, D., 2001, Imaging and visualization of 3-D cardiac electric activity, IEEE Trans. Inf. Technol. Biomed. 5:181–186.

    Article  Google Scholar 

  • Henriquez, C., 1993, Simulating the electrical behavior of cardiac tissue using the bidomain model, Crit. Rev. Biomed. Eng. 21:1–77.

    Google Scholar 

  • Horacek, B. M., 1997, The inverse problem of electrocardiography: a solution in terms of single-and double-layer sources on the epicardial surface, Math. Biosci. 144:119–154.

    Article  MATH  MathSciNet  Google Scholar 

  • Huiskamp, G., and van Oosterom, A., 1988, The depolarization sequence of the human heart surface computed from measured body surface potentials, IEEE Trans. Biomed. Eng. BME-35: 1047–1058.

    Article  Google Scholar 

  • Huiskamp, G., and van Oosterom, A., 1989, Tailored versus realistic geometry in the inverse problem of electrocardiography, IEEE Trans. Biomed. Eng. BME-36:827–835.

    Article  Google Scholar 

  • Huiskamp, G., and Greensite, F., 1997, A new method for myocardial activation imaging, IEEE Trans. Biomed. Eng. BME-44: 433–446.

    Article  Google Scholar 

  • Iakovidis, I., and Gulrajani, R. M., 1992, Improving Tikhonov regularization with linearly constrained optimization: application to the inverse epicardial potential solution, Math. Biosci., 112:55–80.

    Article  MATH  MathSciNet  Google Scholar 

  • Ideker, R. E., Smith, W. M., Blanchard, S. M., Reiser, S. L., Simpson, E. V., Wolf, R. D., and Danieley, N. D., 1989, The assumptions of isochronal cardiac mapping, PACE. 12:456–478.

    Google Scholar 

  • Jackson, J. D., 1975. Classical Electrodynamics, Wiley, New York.

    MATH  Google Scholar 

  • Jia, P., Punske, B., Taccardi, B., and Rudy, Y., 2000, Electrophysiologic endocardial mapping from a noncontact nonexpandable catheter, J. Cardiovasc. Electrophysiol., 11:1238–1251.

    Article  Google Scholar 

  • Johnston, P. R., 1997, The Laplacian inverse problem of electrocardiography: an eccentric spheres study, IEEE Trans. Biomed. Eng. 44:539–548.

    Article  Google Scholar 

  • Johnson, C., 2001, Adaptive finite element and local regularization methods for the inverse problem of electrocardiography, in: Computational Inverse Problems in Electrocardiography, (P. Johnston, ed.), WIT press, Brisol, pp. 51–88.

    Google Scholar 

  • Joly, D., Goussard, Y., and Savard, P, 1993, Time-recursive solution to the inverse problem of electrocardiography: a model-based appraoch, in: Proc. 15th Ann Int conf IEEE Eng. Med. Biol. Soc., IEEE Press, New York, pp. 767–768.

    Chapter  Google Scholar 

  • Kadish, A., Hauck, J., Pederson, B., Beatty, G., and Gornick, C., 1999, Mapping of Atrial Activation With a Noncontact, Multielectrode Catheter in Dogs, Circulation. 99:1906–1913.

    Google Scholar 

  • Keener, J., 1988, Principles of Applied Mathematics, Addison Wesley, Redwood City, CA, pp. 135–146. Dirar S. Khoury, PhD; Keith L. Berrier, BS; Shamim M. Badruddin, MD; William A. Zoghbi

    MATH  Google Scholar 

  • Khoury, D. S., Berrier, K. L., Badruddin, S. M., and Zoghbi, W. A., 1998, Three-Dimensional Electrophysiological Imaging of the Intact Canine Left Ventricle Using a Noncontact Multielectrode Cavitary Probe: Study of Sinus, Paced, and Spontaneous Premature Beats, Circulation. 97:399–409.

    Google Scholar 

  • Leder, U., Pohl, H., Michaelson, S., Fritschi, T., Huck, M., Eichhorn, J., Muller, S., and Nowak, H., 1998, Noninvasive biomagnetic imaging in coronary artery disease based on individual current density maps of the heart, Int. J. Cardiol. 64:83–92.

    Article  Google Scholar 

  • Li, G., and He, B., 2001, Localization of the site of origin of cardiac activation by means of a heart-model-based electrocardiographic imaging approach, IEEE Trans. Biomed. Eng. 48:660–669.

    Article  Google Scholar 

  • Lynn, M. S., Barnard, A. C. L., Holt, J. H., and Sheffield, L. T., 1967, A proposed method for the inverswe problem in electrocardiography, Biophys. J. 7:925–945.

    Article  Google Scholar 

  • MacLeod, R. S., Gardner, M., Miller, R. M., and Horacek, B. M., 1995, Application of an electrocardiographic inverse solution to localize ischernia during coronary angioplasty, J. Cardiovasc. Electrophys. 6: 2–18.

    Article  Google Scholar 

  • MacLeod, R. S., and Brooks, D. H., 1998, Recent progress in inverse problems of electrocardiograprhy, IEEE Eng. Med. Biol. 17:73–83.

    Article  Google Scholar 

  • Malmivuo, J., and Plonsey, R., 1995, Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields, Oxford University Press, New York.

    Google Scholar 

  • Martin, R. O., and Pilkington, T. C., 1972, Unconstrained inverse electrocardiography: epicardial potentials, IEEE Trans. Biomed. Eng. BME-19:276–285.

    Article  Google Scholar 

  • Martin, R. O., Pilkington, T. C., and Morrow, M. N., 1975, Statistically constrained inverse electrocardiography, IEEE Trans. Biomed. Eng. BME-22:487–492.

    Article  Google Scholar 

  • Messinger-Rapport, B. J., and Rudy, Y., 1988, Regularization of the inverse problem of electrocardiography: a model study, Math. Biosci., 89:79.

    Article  MATH  Google Scholar 

  • Modre, R., Tilg, B., Fischer, G., and Wach, P., 2001, An iterative algorithm for myocardial activation time imaging, Computer Methods and Programs in Biomedicine 64:1–7.

    Article  Google Scholar 

  • Modre, R., Tilg, B., Fischer, G., Hanser, F., Messnarz, B., Wach, P., Pachinger, O., Hintringer, F., Berger, T., Abou-Harb, M., Schoke, M., Kremser, C., and Roithinger, F., 2001, Stability of activation time imaging from single beat data under clinical conditions, Biomedizinishe Technik 46:213–215.

    Article  Google Scholar 

  • Nash, M. P., Bradley, C. P., Cheng, L.K., Pullan, A. J., and Paterson, D. J., in press, An in-vivo experimental-computational framework for validating ECG inverse methods, Intl. J. Bioelectromagnetism.

    Google Scholar 

  • Ohyu, S., Okamoto, Y., and Kuriki, S., 2001, Use of the ventricular propagated excitation model in the magnetocardiographic inverse problem for reconstruction of electrphysiological properties, IEEE Trans. Biomed. Eng. in press.

    Google Scholar 

  • Oostendorp, T., MacLeod, R., and van Oosterom, A., 1997, Non-invasive determination of the activation sequence of the heart: validation with invasive data, Proc. 19th Annual Int. Conf. IEEE EMBS, CD-ROM, 1997.

    Google Scholar 

  • Oostendorp, T., and Pesola, K., 1998, Non-invasive determination of the activation time sequence of the heart: validation by comparison with invasive human data, Computers in Cardiology. 25:313–316.

    Google Scholar 

  • Oster, H., and Rudy, Y., 1992, The use of temporal information in the regularization of the inverse problem of electrocardiography, IEEE Trans. Biomed. Eng. BME-39:65–75.

    Article  Google Scholar 

  • Oster, H. S., and Rudy, Y., 1997a, Regional regularization of the electrocardiographic inverse problem: a model study using spherical geometry, IEEE Trans. Biomed. Eng. 44:188–199.

    Article  Google Scholar 

  • Oster, H., Taccardi, B., Lux, R., Ershler, P., and Rudy, Y., 1997, Noninvasive electrocardiographic imaging, Circulation. 96:1012–1024.

    Google Scholar 

  • Papoulis, A., 1984, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Paul, T., Moak, J. P., Morris, C., and Garson, A., 1990, Epicardial mapping: how to measure local activation, PACE. 12:285–292.

    Google Scholar 

  • Paul, T., Windhagen-Mahnert, B., Kriebel, T., Bertram, H., Kaulitz, R., Korte, T., Niehaus, M., and Tebbenjohanns, J., 2001, Atrial Reentrant Tachycardia After Surgery for Congenital Heart Disease Endocardial Mapping and Radiofrequency Catheter Ablation Using a Novel, Noncontact Mapping System, Circulation. 103:2266–2271.

    Google Scholar 

  • Penney, C. J., Clements, J. C., and Horacek, B. M., 2000, Non-invasive imaging of epicardial electrograms during controlled myocardial ischemia, Computers in Cardiology 2000. 27:103–106.

    Google Scholar 

  • Plonsey, R., 1969, Bioelectric Phenomena, McGraw-Hill, New York.

    Google Scholar 

  • Pullan, A. J., Cheng, L.K., Nash, M.P., Bradley, C.P., Paterson, D.J., 2001, Noninvasive electrical imaging of the heart: theory and model development. Ann. Biomed. Eng. 29:817–836.

    Article  Google Scholar 

  • Ramanathan, C., and Rudy, Y., 2001, Electrocardiographic Imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones. J. Cardiovasc. Electrophysiol. 12:242–252.

    Google Scholar 

  • Reese, T., Weisskoff, R., Smith, R., Rosen, B., Dinsmore, R., and Wedeen, V., 1995, Imaging myocardial fiber architecture in vivo with magnetic resonance, Magnetic Resonance in Medicine. 34:786–791.

    Article  Google Scholar 

  • Rudy, Y., and Messinger-Rapport, B. J., 1988, The inverse problem in electrocardiography: solutions in terms of epicardial potentials, Crit. Rev. Biomed. Eng. 16:215–268.

    Google Scholar 

  • Salu, Y., 1978, Relating the multipole moments of the heart to activated parts of the epicardium and endocardium, Ann. Biomed. Eng., 6:492–505.

    Article  Google Scholar 

  • Schilling, R. J., Kadish, A. H., Peters, N. S., Goldberger, J., Wyn Davies, D., 2000, Endocardial mapping of atrial fibrillation in the human right atrium using a non-contact catheter, European Heart Journal. 21: 550–564.

    Article  Google Scholar 

  • Schmitt, C., Zrenner, B., Schneider, M., Karch, M., Ndrepepa, G., Deisenhofer, I., Weyerbrock, S., Schreieck, J., and Schoemig, A., 1999, Clinical experience with a novel multielectrode basket catheter in right atrial tachycardias, Circulation. 99:2414–2422.

    Google Scholar 

  • Schmitt, O. H., 1969, Biological information processing using the concept of interpenetrating domains, in Information Processing in the Nervous System, (Leibovic, K. N. ed.), Spinger-Verlag, New York.

    Google Scholar 

  • Shahidi, A. V., Savard, P., and Nadeau, R., 1994, Forward and inverse problems of electrocardiography: modeling and recovery of epicardial potentials in humans, IEEE Trans. Biomed. Eng. 41:249–256.

    Article  Google Scholar 

  • Strickberger, S. A., Knight, B. P., Michaud, G. F., Pelosi, F., and Morady, F., 2000, Mapping and ablation of ventricular tachycardia guided by virtual electrograms using a noncontact, computerized mapping system. J. Am. Col. Cardiol. 35:414–421.

    Article  Google Scholar 

  • Taccardi, B., Arisi, G., Macchi, E., Baruffi, S., and Spaggiari, S., 1987, A new intracavitary probe for detecting the site of origin of ectopic ventricular beats during one cardiac cycle, Circulation. 75: 272–281.

    Google Scholar 

  • Throne, R., and Olsen, L., 1994, A generalized eigensystem approach to the inverse problem of electrocardiography, IEEE Trans. Biomed. Eng. 41:592–600.

    Article  Google Scholar 

  • Throne, R. D., Olsen, L. G., 2000, A comparision of spatial regularization with zero and first order Tikhonov regularization for the inverse problem of electrocardiography, Computers in Cardiology. 27:493–496.

    Google Scholar 

  • Tikhonov, A., and Arsenin, V., 1977, Solutions of Ill-Posed Problems, John Wiley and Sons, New York.

    MATH  Google Scholar 

  • Tilg, B., Wach, P., SippensGroenwegen, A., Fischer, G., Modre, R., Roithinger, F. Mlynash, M., Reddyuu, G., Roberts, T., Lesh, M., and Steiner, P., 1999, Closed-chest validation of source imaging from human ECG and MCG mapping data, in: Proceedings of the 21st Annual International Conference of the IEEE EMBS, October 1999/First Joint BMES/EMBS Conference, IEEE Press.

    Google Scholar 

  • Tilg, B., Fischer, G., Modre, R., Hanser, F., Messnarz, B., Wach, P., Pachinger, O., Hintringer, F., Berger, T., Abou-Harb, M., Schoke, M., Kremser, C., and Roithinger, F., 2001, Feasibility of activation time imaging within the human atria and ventricles in the catheter laboratory, Biomedizinishe Technik 46:213–215.

    Article  Google Scholar 

  • Tuch, D. S., Wedeen, V. J., Dale, A. M., and Belliveau, J. W., 1997, Conductivity maps of white matter fiber tracts using magnetic resonance diffusion tensor imaging, Proc. Third int. conf. On Fundamental Mapping of the Human Brain, Neuroimage. 5:s44.

    Google Scholar 

  • Twomey, S., 1963, On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature, J. ACM, 10:97–101.

    Article  MATH  Google Scholar 

  • Ueno, S., and Iriguchi, N., 1998, Impedance magnetic resonance imaging: a method for imaging of impedance distribution based on magnetic resonance imaging, J. Appl. Phys. 83:6450–6452.

    Article  Google Scholar 

  • van Oosterom, A., 1987, Computing the depolarization sequence at the ventricular surface from body surface potentials, in: Pediatric and Fundamental Electrocardiography, (J. Liebman, R. Plonsey, and Y. Rudy, eds.), Martinus Nijhoff, Zoetermeer, The Netherlands, pp. 75–89.

    Google Scholar 

  • van Oosterom, A., 1999, The use of the spatial covariance in computing pericardial potentials. IEEE Trans. Biomed. Eng. 46:778–787.

    Article  Google Scholar 

  • Velipasaoglu, E. P., Sun, H., Zhang, F., Berrier, K. L., and Khoury, D. S., 2000, Spatial regulariation of the electrocardiographic inverse problem and its application to endocardial mapping, IEEE Trans. Biomed. Eng. 47:327–337.

    Article  Google Scholar 

  • Wach, P., Modre, R., Tilg, B., Fischer, G., 2001, An iterative linearized optimization technique for non-linear ill-posed problems applied to cardiac activation time imaging, COMPEL 20:676–688.

    MATH  Google Scholar 

  • Waller, A., 1889, On the electromotive changes connected with the beat of the mammalian heart, and of the human heart in particular, Phil. Trans. R. Soc. Lond. B. 180:169–194.

    Article  Google Scholar 

  • Waller, A., 1911, quoted in Cooper J. K., 1987, Electrocardiography 100 years ago: origins, pioneers, and contributors, NEJM. 315:461–464.

    Google Scholar 

  • Wahba, G., 1977, Practical approximated solutions to linear operator equations when the data are noisy, SIAM J. Numer. Anal. 14:651–667.

    Article  MATH  MathSciNet  Google Scholar 

  • Wilson, F. N., MacLeod, A. G., and Barker, P. S., 1933, The distribution of the action currents produced by heart muscle and other excitable tissues immersed in extensive conducting media, J. Gen. Physiol. 16:423–456.

    Article  Google Scholar 

  • Wilson, F. N., Johnston, F. D., and Kossmann, C. E., 1947, The substitution of the tetrahedron for the Einthoven triangle. Am. Heart J., 33:594–603.

    Article  Google Scholar 

  • Yamashita, Y., and Geselowitz, D., 1985, Source-field relationships for cardiac generators on the heart surface based on their transfer coefficients, IEEE Trans. Biomed. Eng. BME-32:964–970.

    Article  Google Scholar 

  • Zablow, L., 1966, An equivalent cardiac generator which preserves topolgraphy, Biophys. J. 6:535–536.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Greensite, F. (2004). Heart Surface Electrocardiographic Inverse Solutions. In: He, B. (eds) Modeling and Imaging of Bioelectrical Activity. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49963-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49963-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48112-3

  • Online ISBN: 978-0-387-49963-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics