Advertisement

Whole Heart Modeling and Computer Simulation

  • Daming Wei
Part of the Bioelectric Engineering book series (BEEG)

Abstract

Bioelectrical models of the heart are studied in three levels: the single-cell model, the cell-network (tissue) model and the whole heart model (Wei, 1997). The single-cell model describes ionic current flow across myocardial cell membranes. The cell-network model describes ionic current flow between aggregates of myocardial cells in temporal and spatial domains. Details of these models have been described in the previous chapters. The development and spread of ionic currents throughout the heart and body volume conductor result in electrical potentials that can be measured on the body surface, called electrocardiogram (ECG). A whole heart model describes three major mechanisms: the propagation of activation in the heart, the cardiac electrical sources, and the extracellular potentials within and on the body surface. This kind of model is able to relate the body surface ECG waveforms to the action potential, conduction velocity of cardiac tissue and other electrophysiological properties of the heart and, thus, yield clinically comparable ECG waveforms. For this reason, the whole heart model offers a unique means to bridge the clinical applications with the single-cell or cell-network models.

Keywords

Conduction Velocity Fiber Orientation Action Potential Duration Fiber Direction Spiral Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, D., and Barta, E., 1987, The effects of anisotropy on myocardial activation, in: Simulation and Control of the Cardiac System Volume III (S. Sideman, and R. Beyar, eds.), CRC, Boca Raton, Florida, pp. 13–27.Google Scholar
  2. Abildskov, J. A., and Lux, R. L., 2000, Mechanisms in T-wave alternans caused by intraventricular block, J. Electrocardiol. 33(4):311–319.CrossRefGoogle Scholar
  3. Al-Nashash, H., and Lvov, B., 1997, Three-dimensional model for the simulation of the HPS electrogram, Biomed. Mater. Eng. 7(6):401–410.Google Scholar
  4. Aoki, M., Okamoto, Y., Musha, T., and Harumi, K., 1987, Three-dimensional simulation of the ventricular depolarization and repolarization processes and body surface potentials: Normal heart and Bundle Branch Block, IEEE Trans. Biomed. Eng. 34:454–462.CrossRefGoogle Scholar
  5. Balasubramaniam, C., Gopakumaran, B., and Jagadeesh, J.M., 1997, Simulation of cardiac conduction system in distributed computer environment, Biomed. Sci. Instrum. 33:13–8.Google Scholar
  6. Barr, R.C., 1989, Genesis of the electrocardiogram, in: Comprehensive Electrocardiology (P.W. MacFarlane and T. D. V. Lawrie, eds.), Pergamon Press, New York, pp. 129–151.Google Scholar
  7. Beeler, G.W., and Reuter, H., 1977, Reconstruction of the action potential of ventricular myocardial fibres, J. Physiol. 268(1):177–210.Google Scholar
  8. Berenfeld, O., and Abboud, S., 1996, Simulation of cardiac activity and the ECG using a heart model with a reaction-diffusion action potential, Med. Eng. Phys. 18:615–25.CrossRefGoogle Scholar
  9. Clayton, R.H., Bailey, A., Biktashev, V.N., and Holden, A.V., 2001a, Re-entrant cardiac arrhythmias in computational models of long QT myocardium, J. Theor. Biol. 208:215–25.CrossRefGoogle Scholar
  10. Clayton, R.H., 2001b, Computational models of normal and abnormal action potential propagation in cardiac tissue: linking experimental and clinical cardiology, Physiol. Meas. 22:R15–R34.CrossRefGoogle Scholar
  11. Clerc, L., 1976, Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255:335–345.Google Scholar
  12. De Luna, A. B., 1993, Clinical Electrocardiography: A Textbook, Futura Publishing Company Inc., New York.Google Scholar
  13. di Bernardo, D., and Murray, A., 2002, Origin on the electrocardiogram of U-waves and abnormal U-wave inversion, Cardiovasc. Res. 531:202–208.CrossRefGoogle Scholar
  14. DiFrancesco, D., and Noble, D., 1985, A model of cardiac electrical activity incorporating ionic pumps and concentration changes, Phil. Trans. R. Soc. Lond. B307:353–98.CrossRefGoogle Scholar
  15. Dube, B., Gulrajani, R. M., Lorange, M., LeBlanc, A. R., Nasmith, J., and Nadeau, R. A., 1996, A computer heart model incorporating anisotropic propagation. IV. Simulation of regional myocardial ischemia, J. Electrocardiol 29:91–103.CrossRefGoogle Scholar
  16. Durrer, D., van Dam, R. T., Freud, G. E., Janse, M. J., Meijler, F. L., and Arzbaecher, R. C., 1970, The total excitation of the isolated human heart, Circ. 41:899–912.Google Scholar
  17. Earm, Y. E., and Noble, D., 1990, A model of the single atrial cell: between calcium current and calcium release, Proc. Roy Soc. 240:83–96.CrossRefGoogle Scholar
  18. FitzHugh, R., 1961, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1:445–466.CrossRefGoogle Scholar
  19. Gezelowitz, D., and Miller III, W. T., 1983, A bidomain model for anisotropic cardiac muscle, Ann. Biomed. Eng. 11: 191–206.CrossRefGoogle Scholar
  20. Geselowitz, D. B., 1989, Theory and simulation of the Electrocardiogram, in: Comprehensive Electrocardiology (P. W. MacFarlane and T. D. V. Lawrie, eds.), Pergamon Press, New York, pp. 181–195.Google Scholar
  21. Goldman, M. J., 1986, Principles of Clinical Electrocardiography, Lange Medical Publications, Los Altos, California.Google Scholar
  22. Gray, R. A., Jalife, J., Panfilov, A. V., Baxter, W. T., Cabo, C., Davidenko, J. M., and Pertsov, A. M., 1995, Mechanism of cardiac fibrillations, Science 270:1222–1225.CrossRefGoogle Scholar
  23. Gray, R. A., and Jalife, J., 1996, Spiral waves and the heart, International J. of Bifurcation and Chaos 6: 415–435.CrossRefGoogle Scholar
  24. Gulrajani, R. M., and Mailloux, G. E., 1983, A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models, Cric. Res. 52:45–56.Google Scholar
  25. Guyton, A.C., 1986, Textbook of Medical Physiology, W. B. Saunders, London.Google Scholar
  26. Harumi, K., Burgress, M. J., and Abildskov, J. A., 1964, A theoretical model of the T wave, Circ. 34:657–668.Google Scholar
  27. Harumi, K., Tsutsumi, T., Sato, T., and Sekiya, S., 1989a, Classification of antiarrhythmic drugs based on ventricular fibrillation threshold, Amer. J. Cardiol. 64: 10J–14J.CrossRefGoogle Scholar
  28. Harumi, K., Tsunagawa, H., Nishiyama, G., Wei, D., Yamada, G., Okamoto, Y., and Musha, T., 1989b, Clinical application of electrocardiographic computer model, J. Electrocardiol 22(Suppl):54–63.Google Scholar
  29. He, B., and Wu, D., 1999, Lapacian Electrocardiography, Critical Reviews in Biomed. Eng. 27:285–338.MathSciNetGoogle Scholar
  30. Heinonen, T., Eskola, H., Kauppinen P., and Malmivuo J., 1996, Tissue segmentation of visible human man data using IARD method, Med. Biol. Eng. Comput. 34(Suppl 1, Part 1):239–240.Google Scholar
  31. Hodgkin, A. L., and Huxley, A. F., 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117: 500–544.Google Scholar
  32. Horáček, B.M., 1989, Lead theory, in: Comprehensive Electrocardiology (P. W. MacFarlane and T. D. V. Lawrie, eds.), Pergamon Press, New York, pp. 291–352.Google Scholar
  33. Hren, R., and Stroink, G., 1995, Application of the surface harmonic expansions for modeling the human torso, IEEE Trans. Biomed. En. 42:521–24.CrossRefGoogle Scholar
  34. Hren, R., and Horáček, B. M., 1997, Value of simulated body surface potential maps as templates in localizing sites of ectopic activation for radiofrequency ablation, Physiol. Meas. 18:373–400.CrossRefGoogle Scholar
  35. Hren, R., 1998, Value of epicardial potential maps in localizing pre-excitation sites for radiofrequency ablation. A simulation study, Phys. Med. Biol. 43:1449–68.CrossRefGoogle Scholar
  36. Hsiao, C. H., and Kao, T., 2000, Constructing a 3-D mesh model for electrical cardiac activity simulation, Comput. Biomed. Res. 33:23–42.CrossRefGoogle Scholar
  37. Hyttinen, J., Viik, J., Lehtinen, R., Plonsey, R., and Malmivuo, J., 1997, Computer model analysis of the relationship of ST-segment and ST-segment/heart rate slope response to the constituents of the ischemic injury source, J. Electrocardiol. 30:161–74.CrossRefGoogle Scholar
  38. Ikeda, N., Yoshizawa, S., and Sato, T., 1983, Difference equation model of ventricular parasystole as an interaction between cardiac pacemakers based on the phase response curve, J. Theo. Biol. 103:439–65.CrossRefMathSciNetGoogle Scholar
  39. Jalife, J. and Moe, G. K., 1976, Effect of electrotonic potentials on pacemaker activity of canine Purkinje fibers in relation to parasystole, Circ. Res. 39:801–808.Google Scholar
  40. Kauppinen, P., Koobi, T., Kaukinen, S., Hyttinen, J., and Malmivuo, J., 1999, Application of computer modelling and lead field theory in developing multiple aimed impedance cardiography measurements, J. Med. Eng. Technol. 23(5):169–77.CrossRefGoogle Scholar
  41. Klepfer, R. N., Johnson, C. R., and Macleod, R. S., 1997, The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study, IEEE Trans. Biomed. Eng. 44(8): 706–19.CrossRefGoogle Scholar
  42. Leon, L. J., and Horácek, B. M., 1991a, Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements, J. Electrocardiol., 24:1–15.CrossRefGoogle Scholar
  43. Leon, L. J., and Horácek, B. M., 1991b, Computer model of excitation and recovery in the anisotropic myocardium. II. Excitation in the simplified left ventricle, J. Electrocardiol. 24:17–31.CrossRefGoogle Scholar
  44. Lorange, M., and Gulrajani, R. M., 1986, Computer simulation of the Wolff-Parkinson-White preexcitation syndrome with a modified Miller-Geselowitz heart model, IEEE Trans. Biomed. Eng. 33:863–73.CrossRefGoogle Scholar
  45. Lorange, M., and Gulrajani, R. M., 1993a, A computer heart model incorporating anisotropic propagation. Part I. Model construction and simulation of normal activation, J. Electrocardiol. 26:245–261.CrossRefGoogle Scholar
  46. Lorange, M., and Gulrajani, R. M., 1993b, A computer heart model incorporating anisotropic propagation. Part II. Simulation of conduction block, J. Electrocardiol. 26:263–278.CrossRefGoogle Scholar
  47. Luo, C. H., and Rudy, Y., 1991, A model of the ventricular cardiac action potential, Circ Res., 68:1501–26.Google Scholar
  48. Luo, C. H., and Rudy, Y., 1994a, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74:1071–96.Google Scholar
  49. Luo, C. H., and Rudy, Y., 1994b, A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation, Circ, Res. 74:1097–113.Google Scholar
  50. MacFarlane, P. W. and Lawrie, T. D. V. (eds.), 1989, Comprehensive Electrocardiology, Pergamon Press, New York.Google Scholar
  51. MacFarlane, P. W., and Lawrie, T. D. V., 1989, The normal electrocardiogram and vectorcardiogram, 1989, in: Comprehensive Electrocardiology (P. W. MacFarlane and T. D. V. Lawrie, eds.) Pergamon Press, New York, pp. 407–457.Google Scholar
  52. Malik, M., and Camm, A. J., 1991, Cardiac electrophysiological experiments in Numero, Part I: Concepts and strategies of mathematical and computer models, Pace 14:1492–1502.Google Scholar
  53. Miller, W. T. III and Geselowitz, D. B., 1978a, Simulation studies of the electrocardiogram. I. The normal heart, Circ. Res. 43:301–315.Google Scholar
  54. Miller, W. T. III and Geselowitz, D. B., 1978b, Simulation studies of the electrocardiogram II. Ischemia and Infarction, Circ. Res. 43:315–323.Google Scholar
  55. Moe, G. K., Rheinbolt, W. C., and Abildskov, J. A., 1964, A computer model of atrial fibrillation, Am. Heart J. 67:200–220CrossRefGoogle Scholar
  56. Moe, G. K., Jalife, J., Mueller, W. J., and Moe, B., 1977, A mathematical model of prarasystole and its application to clinical arrhythmias, Circ. 56:968–79.Google Scholar
  57. Nielson, P. M. F., LeGrice, I. J., Smail, B. H., and Hunter, P. J., 1991, A mathematical model of the geometry and the fibrous structure of the heart, Am. J. Physiol. 260:H1365–78.Google Scholar
  58. Noble, D., DiFrancesco, D., and Denyer, J. C., 1989, Ironic mechanism in normal and abnormal cardiac pacemeker activity, in: Cellular and Neuronal Oscillators (Jacklet, J. W., ed.). Dekker, New York, pp. 59–85.Google Scholar
  59. Okaijma, M., Jujino, T., Kobayashi, T and Yamada, K., 1968, Computer simulation of the propagation process in the excitation of the ventricles, Circ. Res. 23:203–211.Google Scholar
  60. Okazaki, O., Yamauchi, Y., Kashida, M., Izumo, K., Akatsuka, N., Ohnishi, S., Shoda, M., Nirei, T., Kasanuki, H., Ebato, M., Mashima, S., Harumi, K., and Wei, D., 1998, Possible mechanism of ECG features in patients with idiopathic ventricular fibrillation studied by heart model and computer simulation. J. Electrocardiol. 30(Suppl):98–104.CrossRefGoogle Scholar
  61. Paine, R., 1988, Generation and Interpretation of the Electrocardiogram, Lea & Febiger, Philadelphia.Google Scholar
  62. Panfilov, A. V., and Hogeweg, P., 1993, Spiral wave breakup in a modified FitzHugh-Nagumo model, Phys. Lett. A176:295–299.CrossRefGoogle Scholar
  63. Panfilov, A. V., and Keener, J. P., 1995, Reentry in an anatomical model of the heart, Chaos, Solitons and Fractals 5(3):681–689.MATHCrossRefGoogle Scholar
  64. Plonsey, R., 1969, Bioelectric Phenomena, McGraw-Hill, New York.Google Scholar
  65. Plonsey, R., and Barr, R. C., 1987, Mathematical modeling of electrical activity of the heart, J. Electrocardiol. 20:219–226.CrossRefGoogle Scholar
  66. Plonsey, R., 1989, Introductory physics and mathematics, in: Comprehensive Electrocardiology (P. W. MacFarlane and T. D. V. Lawrie, eds.), Pergamon Press, New York pp. 41–76.Google Scholar
  67. Ramanathan, C., and Rudy, Y., 2001a, Electrocardiographic imaging: I. Effect of torso inhomogeneities on body surface electrocardiographic potentials. J. Cardiovasc. Electrophysiol. 12(2):229–40.CrossRefGoogle Scholar
  68. Ramanathan, C., and Rudy, Y., 2001b, Electrocardiographic imaging: II. Effect of torso inhomogeneities on non-invasive reconstruction of epicardial potentials, electrograms, and isochrones, J. Cardiovasc. Electrophysiol. 12(2):241–52.CrossRefGoogle Scholar
  69. Roberts, D. E., Hersh, L. T., and Scher, A. M., 1979, Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity, Circ. Res. 44: 701–712.Google Scholar
  70. Rudy, Y., and Plonsey, R., 1979, The eccentric spheres model as the basis for a study of the role of geometry and inhomogeneties in electrocardiography, IEEE Trans. Biomed. Eng. 26:392–399.CrossRefGoogle Scholar
  71. Rudy, Y., and Plonsey, R., 1980, A comparison of volume conductor and source geometry effects on body surface and epicardial potentials, Circ. Res. 46:283–291.Google Scholar
  72. Shahidi, S. V., and Savad, P., 1994, Forward problem of electrocardiography: Construction of human torso models and field calculations using finite element models, Med. & Biol. Eng. & Comput. 32:S25–33.CrossRefGoogle Scholar
  73. SippensGroenewegen, A., Spekhorst, H., van Hemed, N. M., Kingma, J. H., Hauer, R. N. W., Grmbergen, C. A., de Bakker, J. M. T., Janse, M. J., and Dunning, A. J., 1993, Localization of the site of origin of postinfarction ventricular tachycardia by endocardial pace mapping, Circ. 88:2290–306.Google Scholar
  74. Siregar, P., Sinteff, J. P., Chahine, M., and Lebeux, P., 1996. A cellular automata model of the heart and its coupling with a qualitative model, Comput. Biomed. Res. 29:222–46.CrossRefGoogle Scholar
  75. Spaggiari, S., Baruffi, S., Arisi, G., Macchi, E., and Taccardi, B., 1987, Effect of intramural fiber orientation on epicardial isochrone and potential maps (abstract), Circ 76(Suppl IV):241.Google Scholar
  76. Startt / Selvester, R. H., Wagner, G. S., and Ideker, R. E., 1989, Myocardial infarction, in: Comprehensive Electrocardiology (P. W. MacFarlane and T. D. V. Lawrie, eds.), Pergamon Press, New York, pp. 565–629.Google Scholar
  77. Spack, M. S., Barr, R. C., Lanning, C. F., and Tucek, P. C., 1977, Origin of body surface QRS and T wave potentials from epicardial potential distributions on the intact chimpanzee, Circ. 55: 286–78.Google Scholar
  78. Streeter, D. D., Spotnitz, H. M., Patel, D. P., Ross, J. Jr., and Sonnenblick, E. H., 1969, Fiber orientation in the canine left ventricle during diastole and systole, Circ. Res. 24:339–347.Google Scholar
  79. Suzuki, T., Ashihara, T., Inagaki, M., Toda, S. Namba, T., Ikeda, T., Suzuki, T., Inada, H., Sugimachi, M., and Nakazawa, K., 2001, Reconstruction of electrocardiograms during sinus rhythm in the Luo-Rudy ventricular shaped model (in Japanese), Japan Soc. ME & BE 39:176.Google Scholar
  80. Taccardi, B., 1963, Distribution of heart potentials on the thoracic surface of normal human subjects, Circ. Res. 12:341–352.Google Scholar
  81. Tung, L., 1978, A bidomain model for describing ischemic myocardial D-C potentials, Ph.D. dissertation, MIT, Cambridge, MA.Google Scholar
  82. Van Dam, R. Th., and Janse, M. J., 1989, Activation of the heart, in: Comprehensive Electrocardiology (P. W. MacFarlane and T. D. V. Lawrie, eds.), Pergamon Press, New York, pp. 101–127.Google Scholar
  83. Virag, N., Vesin, J. M., and Kappenberger, L., 1998, A computer model of cardiac electrical activity for the simulation of arrhythmias, Pacing Clin. Electrophysiol. 21:2366–71.CrossRefGoogle Scholar
  84. Wei, D., Aoki, M., Okamoto, Y., Musha, T., and Harumi, K., 1987, Computer Simulation of the Wolff-Parkinson-White syndrome utilizing a human heart model, Japanese Heart J. 28:707–718.Google Scholar
  85. Wei, D., Yamada, G., Hasegawa, K., Nakamura, T., and Musha, T., 1989, Evaluation of the rotating anisotropy of the ventricular myocardium: A simulation study, IEEE Proceed. of the Annual International International Conference of the IEEE EMBS 11:186–187.Google Scholar
  86. Wei, D., Yamada, G., Musha, T., Tsunagawa, T., Tsutsumi, T., and Harumi, K., 1990, Computer simulation of supraventricular tachycardia with the Wolff-Parkinson-White syndrome using three-dimensional heart models, J. Electrocardiol. 23:261–273.CrossRefGoogle Scholar
  87. Wei, D., Harasawa, E., Okazaki, O., Harumi, K., and Musha, T., 1992, Computer simulation of cardiac arrhythmias by incorporating phase response curve to a three-dimensional heart model. in Computers in Cardiology, Los Alanitos, IEEE Computer Society, pp. 327–330.CrossRefGoogle Scholar
  88. Wei, D., Okazaki, O., Harumi, K., Harasawa, E., and Musha, T., 1992, Inducing and suppressing ventricular fibrillation: A simulation study with three-dimensional heart model and experimental data, IEEE Proceed. of the Annual International Conference of the IEEE EMBS 14:400–401.Google Scholar
  89. Wei, D., Okazaki, O., Harumi, K., Harasawa, E., and Hosaka, H., 1995, Comparative simulation of Excitation and body surface electrocardiogram with isotropic and anisotropic computer heart models, IEEE Trans. Biomed. Eng. 42:343–357.CrossRefGoogle Scholar
  90. Wei, D., 1997, Whole heart modeling: Progress, principles and applications, Prog. Biophys. Mol. Biol. 67:17–66.CrossRefGoogle Scholar
  91. Wei, D., and Mashima, S., 1999a, Prediction of accessory pathway locations in Wolff-Parkinson-White syndrome with body surface potentials Laplacian maps—A simulation study, Japan Heart J. 40:451–459.CrossRefGoogle Scholar
  92. Wei, D., Miyamoto, N., and Mashima, S., 1999b, A computer model of myocardial disarray in simulating ECG features of hypertrophic cardiomyopathy, Japan Heart J., 40:819–826.CrossRefGoogle Scholar
  93. Wei, D., 2001, Laplacian electrocardiograms simulated using realistically shaped heart-torso model during normal and abnormal ventricular depolarization, Electromagnetics 21:593–605.CrossRefGoogle Scholar
  94. Wu, D., Schablowski, M., Ono, K., Hosaka, H., and He, B., 1998 “A Simulation Study of Laplacian ECG in a Realistically Shaped Torso Volume Conductor: Myocardial Infarction,” Bioelectrochemistry and Bioenergetics, Vol. 47, 231–235.CrossRefGoogle Scholar
  95. Xu, Z., Gulrajani, R. M., Molin, F., Lorange, M., Dubé, B., Savard, P., and Nadeau, R. A., 1996, A computer heart model incorporating anisotropic propagation. Part III. Simulation of ectopic beats, J. Electrocardiol. 29:73–90.CrossRefGoogle Scholar
  96. Yamaki, M., Kubota, I., and Tomoike, H., 1999, Simulation of late potentials and arrhythmias by use of a three-dimensional heart model: Casuality of peri-infarctional slow conduction in ventricular fibrillation, J. Electrocardiol. 32:115–21.CrossRefGoogle Scholar
  97. Zanda, N., Tsutsumi, T., Sato, M., Takeyama, Y., Harumi, K., and Wei, D., 2000, Computer simulation of notches on initial part of QRS complex in patients with anterior myocardial infarction, in Electrocardiology 2000, Proceedings of the XXVII international congress on Electrocardiology (L. D. Ambroggi, ed.), University of Milan, Italy, pp. 117–120.Google Scholar
  98. Zhang, B., Masuzawa, T., Tatsumi, E., Taenaka, Y., Uyama, C., Takano, H., and Takamiya, M., 1999, Three-dimensional thoracic modeling for an anatomical compatibility study of the implantable total artificial heart, Artif. Organs 23:229–34.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Daming Wei
    • 1
    • 2
  1. 1.Graduate Department of Information SystemThe University of AizuJapan
  2. 2.Aizu-Wakamatsu City, FukushimaJapan

Personalised recommendations