The Forward Problem of Electrocardiography: Theoretical Underpinnings and Applications

  • Ramesh M. Gulrajani
Part of the Bioelectric Engineering book series (BEEG)


The forward problem of electrocardiography refers to the calculation of the potentials on the body surface due to the heart sources, using the theoretical equations of electromagnetism. As a prerequisite for this calculation, suitable representations of the heart sources and of the torso geometry are needed. The former is usually assumed to be a current dipole, which may be taken to be a current source and sink of equal magnitude I separated by a very small distance δ. The dipole is then represented as p=. The bold font indicates that p is a vector, whose magnitude is Iδ and whose direction is that of the vector δ, namely along the line joingng sink to source. The rationale behind representing the heart sources with a current dipole is taken up in Section 2.2 below. In a second approach, the question of an adequate representation of the heart sources is circumvented by calculating the torso surface potentials using the actual potentials on the heart’s epicardial surface (or more correctly on the surrounding pericardial sheath) as the starting representation. This second approach will also be described.


Forward Problem Current Dipole Heart Surface Torso Model Epicardial Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abboud, S., Eshel Y., Levy, S., and Rosenfeld, M. 1994, Numerical calculation of the potential distribution due to dipole sources in a spherical model of the head, Comput. Biomed. Res. 27:441–455.CrossRefGoogle Scholar
  2. Aguel, F., Eason, J. C., Trayanova, N. A., Seikas, G., and Fishler, M. G., 1999, Impact of transvenous lead position on active-can ICD defibrillation: A computer simulation study, PACE 22 [Pt. II]: 158–164.Google Scholar
  3. Barnard, A. C. L., Duck, I. M., and Lynn, M. S., 1967, The application of electromagnetic theory to electrocardiology. II. Numerical solution of the integral equations, Biophys. J. 7: 463–491.CrossRefGoogle Scholar
  4. Barr, R. C., Pilkington, T. C., Boineau, J. P., and Spach, M. S., 1966, Determining surface potentials from current dipoles with application to electrocardiography, IEEE Trans. Biomed. Eng. 13: 88–92.CrossRefGoogle Scholar
  5. Barr, R. C., Ramsey, M., III, and Spach, M. S., 1977, Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements, IEEE Trans. Biomed. Eng. 24: 1–11.CrossRefGoogle Scholar
  6. Berenfeld, O., and Abboud, S., 1996, Simulation of cardiac activity and the ECG using a heart model with a reaction-diffusion action potential, Med. Eng. Phys. 18: 615–625.CrossRefGoogle Scholar
  7. Berne, R. M., and Levy, M. N., 1977, Cardiovascular Physiology, Mosby, St. Louis, chapter 4.Google Scholar
  8. Bradley, C. P., Pullan, A. J., and Hunter, P. J., 2000, Effects of material properties and geometry on electrocardiographic forward simulations, Ann. Biomed. Eng. 28: 721–741.CrossRefGoogle Scholar
  9. Brebbia, C. A., and Dominguez, J., 1992, Boundary Elements. An Introductory Course, 2nd ed., WIT Press, Southampton, U.K., chapter 2.MATHGoogle Scholar
  10. Brody, D. A., 1956, A theoretical analysis of intracavitary blood mass influence on the heart-lead relationship, Circ. Res. 4: 731–738.Google Scholar
  11. Buist, M., and Pullan, A., 2002, Torso coupling techniques for the forward problem of electrocardiography, Ann. Biomed. Eng. 30: 1299–1312.CrossRefGoogle Scholar
  12. Buist, M., and Pullan, A., 2003, The effect of torso impedance on epicardial and body surface potentials: a modeling study. IEEE Trans. Biomed. Eng. 50: 816–824.CrossRefGoogle Scholar
  13. Buist, M., Sands, G., Hunter, P., and Pullan, A., 2003, A deformable finite element derived finite difference method for cardiac activation problems, Ann. Biomed. Eng. 31: 577–588.CrossRefGoogle Scholar
  14. Camacho, M. A., Lehr, J. L., and Eisenberg, S. R., 1995, A three-dimensional finite element model of human transthoracic defibrillation: Paddle placement and size, IEEE Trans. Biomed. Eng. 42: 572–578.CrossRefGoogle Scholar
  15. Chen, P.-S., Shibata, N., Dixon, E. G., Martin, R. O., and Ideker, R. E., 1986, Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability, Circulation 73: 1022–1028.Google Scholar
  16. Claydon, F. J., III, Pilkington, T. C., Tang, A. S. L., Morrow, M. N., and Ideker, R. E., 1988, A volume conductor model of the thorax for the study of defibrillation fields, IEEE Trans. Biomed. Eng. 35: 981–992.CrossRefGoogle Scholar
  17. Colli-Franzone, P., and Guerri, L., 1993, Models of the spreading of excitation in myocardial tissue, in: High-Performance Computing in Biomedical Research (T. C. Pilkington, B. Loftis, J. F. Thompson, S. L.-Y. Woo, T. C. Palmer, and T. F. Budinger, eds.), CRC Press, Boca Raton, FL, pp. 359–401.Google Scholar
  18. Colli-Franzone, P., Guerri, L., and Rovida, S., 1990, Wavefront propagation in an activation model of the anisotropic cardiac tissue: Asymptotic analysis and numerical simulations, J. Math. Biol. 28: 121–176.MATHCrossRefMathSciNetGoogle Scholar
  19. Colli-Franzone, P., Guerri, L., and Viganotti, C., 1983, Oblique dipole layer potentials applied to electrocardiology, J. Math. Biol. 17: 93–124.MATHCrossRefMathSciNetGoogle Scholar
  20. Colli-Franzone, P., Guerri, L., Viganotti, C., Macchi, E., Baruffi, S., Spaggiari, S., and Taccardi, B., 1982, Potential fields generated by oblique dipole layers modeling excitation wavefronts in the anisotropic myocardium. Comparison with potential fields elicited by paced dog hearts in a volume conductor. Circ. Res. 51: 330–346.Google Scholar
  21. Corbin, L. V. II, and Scher, A. M., 1977, The canine heart as an electrocardiographic generator, Circ. Res. 41: 58–67.Google Scholar
  22. De Jongh, A. L., Entcheva, E. G., Replogle, J. A., Booker, R. S., III, KenKnight, B. H., and Claydon, F. J., 1999, Defibrillation efficacy of different electrode placements in a human thorax model, PACE 22 [Pt. II]: 152–157.Google Scholar
  23. Drouhard, J. P., and Roberge, F. A., 1986, Revised formulation of the Hodgkin-Huxley representation of the sodium current in cardiac cells, Comput. Biomed. Res. 20: 333–350.CrossRefGoogle Scholar
  24. Durrer, D., van Dam, R. T., Freud, G. E., Janse, M. J., Meijler, F. L., and Arzbaecher, R. C., 1970, Total excitation of the isolated human heart, Circulation 41: 899–912.Google Scholar
  25. Eason, J., Schmidt, J., Dabasinskas, A., Seikas, G., Aguel, F., and Trayanova, N., 1998, Influence of anisotropy on local and global measures of potential gradient in computer models of defibrillation, Ann. Biomed. Eng., 26: 840–849.CrossRefGoogle Scholar
  26. Efimov, I. R., Aguel, F., Cheng, Y., Wollenzier, B., and Trayanova, N., 2000, Virtual electrode polarization in the far field: implications for external defibrillation, Am. J. Physiol. Heart Circ. Physiol. 279: H1055–H1070.Google Scholar
  27. Fischer, Y., Tilg, B., Modre, R., Huiskamp, G. J. M., Fetzer, J., Rucker, W., and, Wach, P., 2000, A bidomain model based BEM-FEM coupling formulation for anisotropic cardiac tissue, Ann. Biomed. Eng. 28: 1229–1243.CrossRefGoogle Scholar
  28. Fung, Y., 1977, A First Course in Continuum Mechanics, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, chapter 2.Google Scholar
  29. Gale, T. J., 1995, Modelling the electric field from implantable defibrillators, Ph. D. thesis, University of Tasmania, Hobart, Tasmania, Australia.Google Scholar
  30. Gale, T. J., Johnston, P. R., Kilpatrick, D., and Nickolls, P. M., 1994, Implantable defibrillator electrode comparison using a boundary element model, in: Proc. 17th Ann. Int. Conf. IEEE Eng. Med. Biol. Soc., IEEE Press, New York, pp. 31–32.CrossRefGoogle Scholar
  31. Geselowitz, D. B., 1989, On the theory of the electrocardiogram, Proc. IEEE 77: 857–876.CrossRefGoogle Scholar
  32. Gulrajani, R. M., 1998a, Bioelectricity and Biomagnetism. Wiley, New York, Chapter 7.Google Scholar
  33. Gulrajani, R. M., 1998b, The forward and inverse problems of electrocardiography, IEEE Eng. Med. Biol. Magazine 17 (5): 84–101.CrossRefGoogle Scholar
  34. Gulrajani, R. M., and Mailloux, G. E., 1983, A simulation study of the effects of torso inhomogeneities on electrocardiographic potentials, using realistic heart and torso models, Circ. Res. 52: 45–56.Google Scholar
  35. Gulrajani, R. M., Roberge, F. A., and Mailloux, G. E., 1989, The forward problem of electrocardiography, in: Comprehensive Electrocardiology, Volume 1 (P. W. Macfarlane and T. D. V. Lawrie, eds.), Pergamon Press, New York, pp. 197–236.Google Scholar
  36. Harrild, D. M., and Henriquez, C. S., 1997, A finite volume model of cardiac propagation, Ann. Biomed. Eng. 25: 315–334.CrossRefGoogle Scholar
  37. Heller, L., 1990, Computation of the return current in encephalography: The auto solid angle, in: Digital Image Synthesis and Inverse Optics, Proc. SPIE 1351 (A. F. Gmitro, P. S. Idell, and I. J. LaHaie, eds.), pp. 376–390.Google Scholar
  38. Hooks, D. A., Tomlinson, K. A., Marsden, S. G., LeGrice, I. J., Smaill, B. H., Pullan, A. J., and Hunter, P. J., 2002, Cardiac microstructure. Implications for electrical propagation an defibrillation in the heart, Circ. Res. 91: 331–338.CrossRefGoogle Scholar
  39. Horacek, B. M., 1971, The effect on electrocardiographic lead vectors of conductivity inhomogeneities in the human torso, Ph.D. thesis, Dalhousie University, Halifax, Canada.Google Scholar
  40. Horacek, B. M., and Ritsema van Eck, H. J., 1972, The forward problem of electrocardiography, in: The Electrical Field of the Heart, (P. Rijland, ed.), Presse Acad. Eur., Bruxelles, p. 228.Google Scholar
  41. Hren, R., Nenonen, J., and Horáĉek, B. M., 1998, Simulated epicardial potential maps during paced activation reflect myocardial fibrous structure, Ann. Biomed. Eng. 26: 1022–1035.CrossRefGoogle Scholar
  42. Huiskamp, G., 1998, Simulations of depolarization in a membrane-equations-based model of the anisotropic ventricle. IEEE Trans. Biomed. Eng. 45: 847–855.CrossRefGoogle Scholar
  43. Hunter, P. J., Nielsen, P. M., Smaill, B. H., LeGrice, I. J., and Hunter, I. W., 1992, An anatomical heart model with applications to myocardial activation and ventricular mechanics, CRC Crit. Rev. Biomed. Eng. 20: 403–426.Google Scholar
  44. Hyttinen, J., Puurtinen, H.-G., Kauppinen, P., Nousiainen, J., Laarne, P., and Malmivuo, J., 2000, On the effects of model errors on forward and inverse ECG problems, Int. J. Bioelectromagnetism 2(2): Google Scholar
  45. Johnson, C. R., MacLeod, R. S., and Ershler, P. R., 1992, A computer model for the study of electrical current flow in the human thorax, Comput. Biol. Med. 22: 305–323.CrossRefGoogle Scholar
  46. Jorgenson, D. B., Haynor, D. R., Bardy, G. H., and Kim Y., 1995. Computational studies of transthoracic and transvenous defibrillation in a detailed 3-D human thorax model, IEEE Trans. Biomed. Eng. 42: 172–184.CrossRefGoogle Scholar
  47. Karlon, W. J., Lehr, J. L., and Eisenberg, S. R., 1994. Finite element models of thoracic conductive anatomy: Sensitivity to changes in inhomogeneity and anisotropy, IEEE Trans. Biomed. Eng. 41: 1010–1017.CrossRefGoogle Scholar
  48. Keener, J. P., and Panfilov, A. V., 1995, Three-dimensional propagation in the heart: The effects of geometry and fiber orientation on propagation in myocardium, in: Cardiac Electrophysiology. From Cell to Bedside, 2nd ed. (D. P. Zipes and J. Jalife, eds.) W. B. Saunders, Philadelphia, chapter 32.Google Scholar
  49. Kinst, T. F., Sweeney, M. O., Lehr, J. L., and Eisenberg, S. R., 1997, Simulated internal defibrillation in humans using an anatomically realistic three-dimensional finite element model of the thorax, J. Cardiovasc. Electrophysiol. 8: 537–547.CrossRefGoogle Scholar
  50. Klepfer, R. N., Johnson, C. R., and MacLeod, R. S., 1997, The effects of inhomogeneities and anisotropies on eletrocardiographic fields: a 3-D finite-element study. IEEE Trans. Biomed. Eng. 44: 706–719.CrossRefGoogle Scholar
  51. Krassowska, W., and Neu, J. C., 1994, Effective boundary conditions for syncytial tissues, IEEE Trans. Biomed. Eng. 41: 143–150.CrossRefGoogle Scholar
  52. Leon, L. J., and Horáĉek, B. M., 1991, Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular and cubic arrays of excitable elements, J. Electrocardiol. 24: 1–15.CrossRefGoogle Scholar
  53. Lines, G. T., Grøttum, P., and Tveito, A., 2003a, Modeling the eletrical activity of the heart: A bidomain model of the ventricles embedded in a torso, Comput. Visual. Sci. 5: 195–213.MATHCrossRefGoogle Scholar
  54. Lines, G. T., Buist, M. L., Grøttum, P., Pullan, A. J., Sundnes, J., and Tveito, A., 2003b, Mathematical models and numerical methods for the forward problem in cardiac electrophysiology, Comput. Visual. Sci. 5: 215–239.MATHCrossRefGoogle Scholar
  55. Lorange, M., and Gulrajani, R. M., 1993, A computer heart model incorporating myocardial anisotropy. I. Model construction and simulation of normal activation, J. Electrocardiol. 26: 245–261.CrossRefGoogle Scholar
  56. Luo, C., and Rudy, Y., 1991, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circ. Res. 68: 1501–1526.Google Scholar
  57. Lynn, M. S., and Timlake, W. P., 1968, The use of multiple deflations in the numerical solution of singular systems of equations with application to potential theory, SIAM J. Numer. Anal. 5: 303–322.MATHCrossRefMathSciNetGoogle Scholar
  58. MacLeod, R. S., Taccardi, B., and Lux, R. L., 1994, The influence of torso inhomogeneities on epicardial potentials, Computers in Cardiol., IEEE Press, New York, pp. 793–796.Google Scholar
  59. McFee, R., and Rush S., 1968, Qualitative effects of thoracic resistivity variations on the interpretation of electrocardiograms: The low resistance surface layer, Am. Heart J. 76: 48–61.CrossRefGoogle Scholar
  60. Meijs, J. W. H., Weier, O. W., Peters, M. J., and van Oosterom, A., 1989, On the numerical accuracy of the boundary element method, IEEE Trans. Biomed. Eng. 36: 1038–1049.CrossRefGoogle Scholar
  61. Miller, W. T., III, and Gelelowitz, D. B., 1978, Simulation studies of the electrocardogram. I. The normal heart, Circ. Res. 43: 301–315.Google Scholar
  62. Min, X., and Mehra, R., 1998, Finite element analysis of defibrillation fields in a human torso model for ventricular defibrillation, Progr. Biophys. Molec. Biol. 69: 353–386.CrossRefGoogle Scholar
  63. Ng, K. T., Hutchinson, S. A., and Gao, S., 1995, Numerical analysis of electrical defibrillation. The parallel approach, J. Electrocardiol. 28 (suppl.): 15–20.CrossRefGoogle Scholar
  64. Okajima, M., Fujino, T., Kobayashi, T., and Yamada, K., 1968, Computer simulation of the propagation process in excitation of the ventricles, Circ. Res. 23: 203–211.Google Scholar
  65. Oostendorp, T., and van Oosterom, A., 1991, The potential distribution generated by surface electrodes in inhomogeneous volume conductors of arbitrary shape, IEEE Trans. Biomed. Eng. 38: 409–417.CrossRefGoogle Scholar
  66. Panescu, D. Webster, J. G., Tompkins, W. J., and Stratbucker, R. A., 1995, Optimization of cardiac defibrillation by three-dimensional finite element modeling of the human thorax, IEEE Trans. Biomed. Eng. 42: 185–192.CrossRefGoogle Scholar
  67. Panfilov, A. V., 1997, Modelling of re-entrant patterns in an anatomical model of the heart, in: Computational Biology of the Heart (A. V. Panfilov and A. V. Holden, eds.), Wiley, New York, pp. 259–276.Google Scholar
  68. Penland, R. C., Harrild, D. M., and Henriquez, C. S., 2002, Modeling impulse propagation and extracellular potential distribution in anisotropic cardiac tissue using a finite volume element discretization, Comput. Visual. Sci. 4: 215–226.MATHCrossRefMathSciNetGoogle Scholar
  69. Pilkington, T. C., and Plonsey, R., 1982, Engineering Contributions to Biophysical Electrocardiography, IEEE Press, New York, chapter 3.Google Scholar
  70. Pullan, A., 1996, A high-order coupled finite element/boundary element torso model, IEEE Trans. Biomed. Eng. 43: 292–298.CrossRefMathSciNetGoogle Scholar
  71. Ramanathan, C., and Rudy, Y., 2001a, Electrocardiographic imaging: I. Effect of torso inhomogeneities on body surface electrocardiographic potentials, J. Cardiovasc. Electrophysiol. 12: 229–240.CrossRefGoogle Scholar
  72. Ramanathan, C., and Rudy, Y., 2001b, Electrocardiographic imaging: II. Effect of torso inhomogeneities on noninvasive reconstruction of epicardial potentials, electrograms, and isochrones, J. Cardiovasc. Electrophysiol. 12: 241–252.CrossRefGoogle Scholar
  73. Rosenfeld, M., Tanami, R., and Abboud, S., 1996, Numerical solution of the potential due to dipole sources in volume conductors with arbitrary geometry and conductivity, IEEE Trans. Biomed. Eng. 43: 679–689.CrossRefGoogle Scholar
  74. Rudy, Y., 1987, The effects of the thoracic volume conductor (inhomogeneities) on the electrocardiogram, in: Pediatric and Fundamental Electrocardiography (J. Liebman, R. Plonsey and Y. Rudy, eds.), Martinus Nijhoff, Boston, pp. 49–72.Google Scholar
  75. Rudy, Y., and Plonsey, R., 1980, A comparison of volume conductor and source geometry effects on body surface and epicardial potentials, Circ. Res. 46: 283–291.Google Scholar
  76. Rudy, Y., Plonsey, R., and Liebman, J., 1979, The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model, Circ. Res. 44: 104–111.Google Scholar
  77. Schmidt, J. A., and Johnson, C. A., 1995, DefibSim: An interactive defibrillation device design tool, in: Proc. 17th Ann. Intl. Conf. IEEE Eng. Med. Biol. Soc., IEEE Press, New York, pp. 305–306.Google Scholar
  78. Schmitt, O. H., 1969, Biological information processing using the concept of interpenetrating domains, in: Information Processing in the Nervous System (K. N. Leibovic, ed.), Springer-Verlag, New York, pp. 325–331.Google Scholar
  79. Selvester, R. H., Solomon J. C., and Gillespie, T. L., 1968, Digital computer model of a total body electrocardiographic surface map. An adult male-torso simulation with lungs, Circulation 38: 684–690.Google Scholar
  80. Sepulveda, N. G., Roth, B. J., and Wikswo, J. P., Jr., 1989, Current injection into a two-dimensional anisotropic bidomain, Biophys. J. 55: 987–999.CrossRefGoogle Scholar
  81. Simms, H. D., Jr., and Geselowitz, D. B., 1995, Computation of heart surface potentials using the surface source model, J. Cardiovasc. Electrophysiol. 6: 522–531.CrossRefGoogle Scholar
  82. Skouibine, K., Trayanova, N., and Moore, P., 2000, Success and failure of the defibrillation shock: insights from a simulation study, J. Cardiovasc. Electrophysiol. 11: 785–796.CrossRefGoogle Scholar
  83. Sobie, E. A., Susil, R. C., and Tung, L., 1997, A generalized activation function for predicting virtual electrodes in cardiac tissue, Biophys. J. 73: 1410–1423.CrossRefGoogle Scholar
  84. Solomon, J. C., and Selvester, R. H., 1971, Myocardial activation sequence simulation, in: Vectorcardiography 2 (I. Hoffman, ed.) North-Holland Publishing Company, Amsterdam, pp. 175–182.Google Scholar
  85. Solomon, J. C., and Selvester, R. H., 1973, Simulation of measured activation sequence in the human heart, Am. Heart J. 85: 518–523.CrossRefGoogle Scholar
  86. Stanley, P. C., and Pilkington, T. C., 1989, The combination method: A numerical technique for electrocardiographic calculations, IEEE Trans. Biomed. Eng. 36: 456–461.CrossRefGoogle Scholar
  87. Stanley, P. C., Pilkington, T. C., and Morrow, M. N., 1986, The effects of thoracic inhomogeneities on the relationship between epicardial and torso potentials, IEEE Trans. Biomed. Eng. 33: 273–284.CrossRefGoogle Scholar
  88. Taccardi, B., Macchi, E., Lux, R. L., Ershler, P. E., Spaggiari, S., Baruffi, S., and Vyhmeister, Y., 1994, Effect of myocardial fiber direction on epicardial potentials, Circulation 90: 3076–3090.Google Scholar
  89. Thivierge, M., Gulrajani, R. M., and Savard, P., 1997, Effects of rotational myocardial anisotropy in forward problem computations with equivalent heart dipoles, Ann. Biomed. Eng. 25: 477–498.CrossRefGoogle Scholar
  90. Trudel, M.-C., Gulrajani, R. M., and Leon, L. J., 2001, Simulation of propagation in a realistic-geometry computer heart model with parallel processing, in: Proc. 23rd Ann. Intl. Conf. IEEE Eng. Med. Biol. Soc., IEEE Press, New York, available on CDROM.Google Scholar
  91. Tung, L., 1978, A bi-domain model for describing ischemic myocardial d-c potentials, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  92. van Oosterom, A., and Plonsey, R., 1991, The Brody effect revisited, J. Electrocardiol. 24: 339–348.CrossRefGoogle Scholar
  93. Walker, S., and Kilpatrick, D., 1987, Forward and inverse electrocardiographic calculations using resistor network models of the human torso, Circ. Res. 61: 504–513.Google Scholar
  94. Wei, D., 1997, Whole-heart modeling: Progress, principles and applications, Progr. Biophys. molec. Biol. 67: 17–66.CrossRefGoogle Scholar
  95. Werner, C. D., Sachse, F. B., and Dössel, O., 2000, Electrical excitation propagation in the human heart, Int. J. Bioelectromagnetism 2(2): Google Scholar
  96. Wiggers, C. J., 1940, The physiologic basis for cardiac resuscitation from ventricular fibrillation—Method for serial defibrillation, Am. Heart J. 20: 413–422.CrossRefGoogle Scholar
  97. Wischmann, H.-A., Drenckhahn, R., Wagner, M., and Fuchs, M., 1996, Systematic distribution of the auto solid angle and related integrals onto the adjacent triangles for the node based boundary element method, Med. Biol. Eng. Comput. 34 (Suppl. 1, Part 2): 245–246.Google Scholar
  98. Zipes, D. P., Fischer, J., King, R. M., Nicoll, A. D., and Jolly, W. W., 1975, Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardium, Am. J. Cardiol. 36: 37–44.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Ramesh M. Gulrajani
    • 1
  1. 1.Institute of Biomedical EngineeringUniversité de MontréalMontrealCanada

Personalised recommendations