From Cellular Electrophysiology to Electrocardiography

  • Nitish V. Thakor
  • Vivek Iyer
  • Mahesh B. Shenai
Part of the Bioelectric Engineering book series (BEEG)


Since many cardiac pathologies manifest themselves at the cellular and molecular levels, extrapolation to clinical variables, such as the electrocardiogram (ECG), would prove invaluable to diagnosis and treatment. One ultimate goal of the cardiac modeler is to integrate cellular level detail with quantitative properties of the ECG (a property of the whole heart). This magnificent task is not unlike a forest ranger attempting to document each leaf in a massive forest. Both the modeler and ranger need to place fundamental elements in the context of a broader landscape. But now, with the recent genome explosion, the modeler needs to examine the “leaves” at even much greater molecular detail. Fortunately, the rapid explosion in computational power allows the modeler to span the details of each molecular “leaf” to the “forest” of the whole heart. Thus, cardiac modeling is beginning to span the spectrum from DNA to the ECG, from nucleotide to bedside.


Spiral Wave Heart Model Color Figure Outward Potassium Current Coupling Resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barhanin, J., F. Lesage, E. Guillemare, M. Fink, M. Lazdunski and G. Romey (1996). “K(v)LQT1 and IsK (minK) proteins associate to form the I(Ks) cardiac potassium current.” Nature 384: 78–80.CrossRefGoogle Scholar
  2. Barr, R. and R. Plonsey (1984). “Propagation of excitation in idealized anisotropic two-dimensional tissue.” Biophys J 45: 1191–1202.CrossRefGoogle Scholar
  3. Beaumont, J., N. Davidenko, J. Davidenko and J. Jalife (1998). “Spiral Waves in Two-Dimensional Models of Ventricular Muscle: Formation of a Stationary Core.” Biophys J 75: 1–14.CrossRefGoogle Scholar
  4. Beeler, G. and H. Reuter (1976). “Reconstruction of the action potential of ventricular myocardial fibers.” J Physiol 268: 177–210.Google Scholar
  5. Blanchard, S., R. Damiano, T. Asano, W. Smith, R. Ideker and J. Lowe (1987). “The effects of distant cardiac electrical events on local activation in unipolar epicardial electrograms.” IEEE Trans Biomed Eng 34: 539–546.CrossRefGoogle Scholar
  6. Cascio, W., T. Johnson and L. Gettes (1995). “Electrophysiologic changes in ischemic ventricular myocardium: I. Influence of ionic, metabolic and energetic changes.” J Cardiovasc Electrophys 6: 1039–1062.CrossRefGoogle Scholar
  7. Ch’en, F., R. Vaughan-Jones, K. Clarke and D. Noble (1998). “Modeling myocardial ischaemia and reperfusion.” PRog Biophys Mol Biol 69(2–3): 515–38.CrossRefGoogle Scholar
  8. Clayton, R., A. Bailey, V. Biktashev and A. Holden (2001). “Re-entrant cardiac arrhythmias in computational models of long-QT myocardium.” J Theor Biol 2001 208(2): 215–225.CrossRefGoogle Scholar
  9. Cole, K. (1949). “Dynamic electrical characteristics of squid axon membrane.” Arch. Sci. Physiol 3: 253–258.Google Scholar
  10. Davidenko, J., A. Pertsov, R. Salomonsz, W. Baxter and J. Jalife (1992). “Stationary and drifting spiral waves of excitation in isolated cardiac muscle.” Nature 355: 349–351.CrossRefGoogle Scholar
  11. DiFrancesco, D. and D. Noble (1985). “A model of cardiac electrical activity incorporating ionic pumps and concentration changes.” Philos Trans R Soc Lond B Biol Sci. 307(1133): 353–398.CrossRefGoogle Scholar
  12. Dube, B., R. Gulrajani, M. Lorange, A. LeBlanc, J. Nasmith and R. Nadeau (1996). “A computer heart model incorporating anisotropic propagation. IV. Simulation of regional myocardial ischemia.” J Electrocardiol 29: 91–103.CrossRefGoogle Scholar
  13. El-Sherif, N., E. Caref, H. Yin and M. Restivo (1996). “The electrophysiological mechanism of ventricular tachyarrhytmias in the long QT syndrome: tridimensional mapping of activation and recovery patterns.” Circ Res 1996(79).Google Scholar
  14. El-Sherif, N. and G. Turitto (1999). “The Long QT Syndrome and Torsade De Pointes.” PACE 22 (Pt.1): 91–110.Google Scholar
  15. Eyring, H., R. Lumry and J. Woodbury (1949). “Some applications of modern rate theory to physiological systems.” Record Chem. Progr 10: 100–114.Google Scholar
  16. Factor, S. and R. Bache (1998). Pathophysiology of Myocardial Ischemia. Hurst’s The Heart. R. Alexander, R. Schlant and V. Fuster. New York, McGraw-Hill: 1241–1262.Google Scholar
  17. Ferrero, J., J. Saiz, J. Ferrero and N. Thakor (1996). “Simulation of action potentials from metabolically impaired cardiac myocytes: role of ATP-sensitive K+ current.” Circ Res 79: 208–221.Google Scholar
  18. Ferrero, J., V. Torres, F. Montilla and E. Colomar (2001). “Simulation of Reentry During Acute Myocardial Ischemia: Role of ATP-sensitive Potassium Current and Acidosis.” Computers in Cardiology.Google Scholar
  19. Fishler, M. and N. Thakor (1991). “A massively parallel computer model of propagation through a two-dimensional cardiac syncytium.” Pacing Clin Electrophysiol 14(11 pt 2): 1694–9.CrossRefGoogle Scholar
  20. Fleischmann, P., G. Stark and P. Wach (1996). “The antiarrhythmic effect of verapamil on atrioventricular re-entry in the Wolff-Parkinson-White syndrome: a computer modle study.” Int J Biomed Comput 41: 125–136.CrossRefGoogle Scholar
  21. Gardner, P., P. Ursell, J. Fenoglio and A. Wit (1985). “Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts.” Circulation 72: 596–611.Google Scholar
  22. Garfinkel, A., Y. Kim, O. Vorshilovsky, Z. Qu, J. Kil, M. Lee, H. Karageuzian, J. Weiss and P. Chen (2000). “Preventing ventricular fibrillation by flattening cardiac restitution.” Proc Natl Acad Sci 97(11): 6061–6.CrossRefGoogle Scholar
  23. Grover, G. and K. Garlid (2000). “ATP-Sensitive potassium channels: a review of their cardiprotective pharmacology.” J Mol Cell Cardiol 32: 677–95.CrossRefGoogle Scholar
  24. Hodgkin, A. and A. Huxley (1952). “A Quantitative description of membrane current and its application to conduction and excitation in nerve.” J. Physiol 117: 500–544.Google Scholar
  25. Irnich, W. (1985). “Intracardiac Electrograms and Sensing Test Signals: Electrophysiological, Physical and Technical Considerations.” PACE 8: 870–888.Google Scholar
  26. Janse, M., F. v. Capelle, H. Morsink, A. Kleber, F. Wilms-Schopman, R. Cardinal, C. d’Alnoncourt and D. Durrer (1980). “Flow of “injury” current patterns of excitation during early ventricular arrythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms.” Circ Res 47(2): 151–165.Google Scholar
  27. Janse, M. and A. Wit (1989). “Electrophysiological mechanisms of ventricular arrythmias resulting from myocardial ischemia and infarction.” Phys Rev 69: 1049–1152.Google Scholar
  28. January, C. and J. Riddle (1989). “Early after depolarizations: mechanism of induction and block, a role for L-type Ca2+ current.” Circ Res 64: 977–990.Google Scholar
  29. Kagiyama, Y., J. Hill and L. Gettes (1982). “Interaction of acidosis and increased extracellular potassium on action potential and conduction in guinea pig ventricular muscle.” Circ Res 51: 614–623.Google Scholar
  30. Kleber, A., M. Janse, F. Wilms-Schopmann, A. Wilde and R. Coronel (1986). “Changes in conduction velocity during acute ischemia in ventricular myocardium of isolated porcine heart.” Circulation 73: 189–198.Google Scholar
  31. Kodama, I., A. Wilde and M. Janse (1984). “Combined effects of hypoxia, hyperkalemia, and acidosis on membrane action potential and excitability of guineay-pig ventricular muscle.” J Mol Cell Cardiol 16: 247–259.CrossRefGoogle Scholar
  32. Leon, L. and B. Horacek (1991). “Computer model of excitation and recovery in the anisotropic myocardium. III. Arrhythmogenic conditions in the simplified left ventricle.” J Electrocardiol 24(1): 33–41.CrossRefGoogle Scholar
  33. Leon, L., F. Roberge and A. Vinet (1994). “Simulation of two-dimensional anisotropic cardiac reentry: Effects of the wavelength on the reentry characteristics.” Annals Biomed Eng 22: 592–609.CrossRefGoogle Scholar
  34. Lindblad, D., C. Murphey, J. Clark and W. Giles (1996). “A model of the action potential and underlying membrane currents in a rabbit atrial cell.” Am J Physiol 241(4 Pt 2): H1666–96.Google Scholar
  35. Lorange, M. and R. Gulrajani (1986). “Computer simulation of Wolff-Parkinson-White preexcitation syndrome with a modified Miller-Geselowitz heart modle.” IEEE Trans Biomed Eng 33(9): 862–873.CrossRefGoogle Scholar
  36. Luo, C. and Y. Rudy (1991). “A model of the ventricular cardiac action potential: depolarization, repolarization, and their Interaction.” Circ Res 68: 1501–1526.Google Scholar
  37. Luo, C. and Y. Rudy (1994). “A dynamic model of the cardiac ventricular action potential: I. Simulations of ionic currents and concentrations.” Circ Res 74: 1071–1086.Google Scholar
  38. Luo, C. and Y. Rudy (1994). “A dynamic model of the cardiac ventricular action potential: II. Afterdepolarizations, triggered Activity, and potentiation.” Circ Res 74: 1097–1113.Google Scholar
  39. Malmivuo, J. and R. Plonsey (1995). Bioelectromagnetism. New York, Oxford, Oxford University Press.Google Scholar
  40. Marban, E., S. Robinson and W. Wier (1986). “Mechanisms of arrhytmogenic delayed and early afterdepolarizations in ferret ventricular muscle.” J Clin Invest 78: 1185–1192.CrossRefGoogle Scholar
  41. Marmont, G. (1949). “Studies on the axon membrane. I. A new method.” J Cell Comp Physiol 50: 1401–11.Google Scholar
  42. McAllister, R., D. Noble and R. Tsien (1975). “Reconstruction of the electrical activity of cardiac Purkinje fibres.” J Physiol 251: 1–59.Google Scholar
  43. Miller, W. and D. Geselowitz (1978). “Simulation studies of the electrocardiogram. I. The normal heart.” Circ Res 43: 301–315.Google Scholar
  44. Monserrat, M., J. Saiz, J. Ferrero, J. Ferrero and N. Thakor (2000). “Ectopic activity in ventricular cells induced by early afterdepolarizations developed in Purkinje cells.” Ann Biomed Eng 28: 1343–51.CrossRefGoogle Scholar
  45. Moore, J. and R. Pearson (1981). Kinetics and Mechanisms. New York, Wiley.Google Scholar
  46. Morena, H., M. Janse, J. Fiolet, W. Krieger, H. Crijns and D. Durrer (1980). “Comparison of the effects of regional ischemia, hypoxia, hyperkalemia and acidosis on intracellular and extracellular potentials and metabolism in the isolated porcine heart.” Circ Res 46: 634–646.Google Scholar
  47. Noble, D., J. Levin and W. Scott (1999). “Biological simulations in drug discovery.” Drug Discov Today 4(1): 10–16.CrossRefGoogle Scholar
  48. Nordin, C. (1997). “Computer model of electrophysiological instability in very small hereogeneous ventricular syncytia.” Am J Physiol 172: H1838–1856.Google Scholar
  49. Okazaki, O., D. Wei and K. Harumi (1998). “A simulation of Torsade de Pointes with M cells.” J Electrocardiol 31(Suppl): 145–51.CrossRefGoogle Scholar
  50. Plonsey, R. (1969). Bioelectric Phenomena. New York, McGraw-Hill.Google Scholar
  51. Plonsey, R. and R. Barr (1986). “A critique of impedance measurements in cardiac tissue.” Ann Biomed Eng 14: 307–22.CrossRefGoogle Scholar
  52. Plonsey, R. and R. Collin (1961). Principles and applications of electromagnetic fields. NY, McGraw-Hill.Google Scholar
  53. Plonsey, R. and Y. Rudy (1980). “Electrocardiogram sources in a 2-dimensional anisotropic activation model.” Med Biol Eng Comp 18: 87–94.CrossRefGoogle Scholar
  54. Priebe, L. and D. Beuckelmann (1998). “Simulation study of cellular electric properties in heart failure.” Circ Res 82(11): 1206–1223.Google Scholar
  55. Priori, S. and P. Corr (1990). “Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines.” Am J Physiol 258: H1796–H1805.Google Scholar
  56. Qu, Z., F. Xie, A. Garfinkel and J. Weiss (2000). “Origins of spiral wave meander and breakup in a two-dimensional tissue model.” Ann Biomed Eng 28: 755–71.CrossRefGoogle Scholar
  57. Quan, W. and Y. Rudy (1990). “Unidirectional block and reentry of cardiac excitation: a model study.” Circ Res 66: 367–382.Google Scholar
  58. Ramon, C., Y. Wang, J. Huaeisen, P. Schimpf, S. Jaruvatanadilok and A. Ishimaru (2000). “Effect of myocardial anisotropy on the torso current flow patterns, potentials and magnetic fields.” Phys Med Biol. 45(5): 1141–1150.CrossRefGoogle Scholar
  59. Rudy, Y. (2000). “From genome to physiome: integrative models of cardiac excitation.” Ann Biomed Eng 28(8): 945–950.CrossRefGoogle Scholar
  60. Saiz, J., J. Ferrero, M. Monserrat, J. Ferrero and N. Thakor (1997). From the cell to the body surface. Electrocardiology’ 96. J. Liebman. NJ, World Scientific Publishing: 209–212.Google Scholar
  61. Saiz, J., J. F. Jr, M. Monserrat, J. Ferrero and N. Thakor (1999). “Influence of electrical coupling on early afterdepolarization in ventricular myocytes.” IEEE Trans Biomed Eng 46(2): 138–147.CrossRefGoogle Scholar
  62. Saiz, J., M. Monserrat, J. JM Ferrero, J. Ferrero and N. Thakor (1996). “Ectopic activity generated by early afterdepolarizations in ventricular tissue. A computer simulation study.” Computers in Cardiology 1996.Google Scholar
  63. Scollan, D., A. Holmes, J. Zhang and R. Winslow (2000). “Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging.” Ann Biomed Eng 28(8): 934–44.CrossRefGoogle Scholar
  64. Shaw, R. and Y. Rudy (1997). “Electrophysiologic effects of acute myocardial ischemia: A mechanistic investigation of action potential conduction and conduction failure.” Circ Res 80: 124–138.Google Scholar
  65. Shaw, R. and Y. Rudy (1997). “Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration.” Cardiovascular Res 35: 256–272.CrossRefGoogle Scholar
  66. Shenai, M. (2000). Myocardial Ischemia Detection: A time-frequency investgation of intra-QRS changes in the endocardial electrogram. Dept. of Biomedical Engineering. Baltimore, The Johns Hopkins University.Google Scholar
  67. Shenai, M., B. Gramatikov and N. Thakor (1999). “Computer models of depolarization alterations induced by myocardial ischemia: the effect of superimposed ischemic inhomogeneities on propagation in space and time-frequency domains.” Journal of Biological Systems 7(4): 553–574.CrossRefGoogle Scholar
  68. Siregar, P., J. Sinteff, N. Julen and P. LeBeux (1998). “An interactive 3D anisotropic cellular automata model of the heart.” Comput Biomed Res 31: 323–47.CrossRefGoogle Scholar
  69. Spach, M. (2001). “Mechanisms of the Dynamics of Reentry in a Fibrillating Myocardium. Developing a Genesto-Rotors Paradigm.” Circ Res 88: 753–755.CrossRefGoogle Scholar
  70. Spach, M., W. Miller and D. Geselowitz (1981). “The discontinuous nature of propagation in normal canine cardiac muscle: evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents.” Circ Res 48: 39.Google Scholar
  71. Spach, M., W. Miller and E. Miller-Jones (1979). “Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle.” Circ Res 45: 188–204.Google Scholar
  72. Stern, M., M. Capogrossi and E. Lakatta (1988). “Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells mechanisms and consequences.” Cell Calcium 9: 247–256.CrossRefGoogle Scholar
  73. Varnava, A., P. Elliot, S. Sharma, W. McKenna and M. Davies (2000). “Hypertrophic cardiomyopathy: the interrelation of dissarray, fibrosis, and small vessel disease.” Heart 84: 476–482.CrossRefGoogle Scholar
  74. Viswanathan, P. and Y. Rudy (1999). “Pause induced early afterdepolarizations in the long QT syndrome: a simulation study.” Cardiovascular Research 42: 530–542.CrossRefGoogle Scholar
  75. Viswanathan, P. and Y. Rudy (2000). “Cellular Arrhythmogenic Effects of Congenital and Acquired Long-QT Syndrome in the Heterogeneous Myocardium.” Circulation 101: 1192.Google Scholar
  76. Wagner, M., W. Gibb and M. Lesh (1995). “A model study of propagation of early afterdepolarizations.” IEEE Trans Biomed Eng 42(10): 991–997.CrossRefGoogle Scholar
  77. Wang, Q., M. Curren, I. Splawski, T. Burn, J. Millholland, T. VanRaay, J. Shen, K. Timothy, G. Vincent, T. d. Jager, P. Schwartz, J. Towbin, A. Moss, D. Atkinson, G. Landes, T. Connors and M. Keating (1996). “Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias.” Nature Genet. 12: 17–23.CrossRefGoogle Scholar
  78. Wei, D., N. Miyamoto and S. Mashima (1999). “A computer model of myocardial disarray in simulating ECG features of hypertrophic cardiomyopathy.” Jpn Heart J 40(6): 819–826.CrossRefGoogle Scholar
  79. Wei, D., G. Yamada, T. Musha, H. Tsunakwa and K. Harmumi (1990). “Computer simulation of supraventricular tachycardia with the Wolff-Parkinson-White Syndrome using three-dimensional heart models.” J Electrocardiol 23(3): 261–273.CrossRefGoogle Scholar
  80. Weidmann, S. (1955). “The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system.” J Physiol 127: 213–224.Google Scholar
  81. Weiss, J., N. Venkatest and S. Lamp (1992). “ATP-sensitive K+ channels and cellular K+ loss in hypoxic and iscaemic mammalian ventricle.” J Physiol (Lond.) 447: 649–673.Google Scholar
  82. Winslow, R., D. Scollan, J. Greenstein, C. Yung, W. Baumgartner, G. Bhanot, D. Gresh and B. Rogowitz (2000). “Mapping, modeling, and visual exploration of structure-function relationships in the heart.” IBM Systems Journal 40(2): 1–18.Google Scholar
  83. Winslow, R., D. Scollan, A. Holmes, C. Yung, J. Zhang and M. Jafri (2000). “Electrophysiological Modeling of Cardiac Ventricular Function: From Cell to Organ.” Ann Rev Biomed Eng 2: 119–155.CrossRefGoogle Scholar
  84. Wit, A. and M. Janse (1993). The Ventricular Arrhythmias of Ischemia and Infarction: Electrophysiological Mechanisms. Mount Kisko, Futura Pub. Co.Google Scholar
  85. Xie, F., Z. Qu, A. Garfinkel and J. Weiss (2001). “Effects of ischemia on spiral wave stability.” Am J. Physiol Heart Circ Physiol 280(4): H1667–73.Google Scholar
  86. Yan, G., K. Yamada, A. Kleber, J. McHowat and P. Corr (1993). “Dissociation between cellular K+ loss, reduction in repolarization time, and tissue ATP levels during myocardial hypoxia and ischemia.” Circ Res 72: 560–570.Google Scholar
  87. Zhang, H., A. Holden, I. Kodama, H. Honjo, M. Lei, T. Varghese and M. Boyett (2000). “Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node.” Am J Physiol Heart Circ Physiol 279(1): H397–421.Google Scholar

Copyright information

© Kluwer Academic/Plenum Publishers, New York 2004

Authors and Affiliations

  • Nitish V. Thakor
    • 1
  • Vivek Iyer
    • 1
  • Mahesh B. Shenai
    • 1
  1. 1.Department of Biomedical EngineeringThe Johns Hopkins UniversityBaltimore

Personalised recommendations