Skip to main content

From Cellular Electrophysiology to Electrocardiography

  • Chapter
Book cover Modeling and Imaging of Bioelectrical Activity

Part of the book series: Bioelectric Engineering ((BEEG))

  • 1285 Accesses

Abstract

Since many cardiac pathologies manifest themselves at the cellular and molecular levels, extrapolation to clinical variables, such as the electrocardiogram (ECG), would prove invaluable to diagnosis and treatment. One ultimate goal of the cardiac modeler is to integrate cellular level detail with quantitative properties of the ECG (a property of the whole heart). This magnificent task is not unlike a forest ranger attempting to document each leaf in a massive forest. Both the modeler and ranger need to place fundamental elements in the context of a broader landscape. But now, with the recent genome explosion, the modeler needs to examine the “leaves” at even much greater molecular detail. Fortunately, the rapid explosion in computational power allows the modeler to span the details of each molecular “leaf” to the “forest” of the whole heart. Thus, cardiac modeling is beginning to span the spectrum from DNA to the ECG, from nucleotide to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barhanin, J., F. Lesage, E. Guillemare, M. Fink, M. Lazdunski and G. Romey (1996). “K(v)LQT1 and IsK (minK) proteins associate to form the I(Ks) cardiac potassium current.” Nature 384: 78–80.

    Article  Google Scholar 

  • Barr, R. and R. Plonsey (1984). “Propagation of excitation in idealized anisotropic two-dimensional tissue.” Biophys J 45: 1191–1202.

    Article  Google Scholar 

  • Beaumont, J., N. Davidenko, J. Davidenko and J. Jalife (1998). “Spiral Waves in Two-Dimensional Models of Ventricular Muscle: Formation of a Stationary Core.” Biophys J 75: 1–14.

    Article  Google Scholar 

  • Beeler, G. and H. Reuter (1976). “Reconstruction of the action potential of ventricular myocardial fibers.” J Physiol 268: 177–210.

    Google Scholar 

  • Blanchard, S., R. Damiano, T. Asano, W. Smith, R. Ideker and J. Lowe (1987). “The effects of distant cardiac electrical events on local activation in unipolar epicardial electrograms.” IEEE Trans Biomed Eng 34: 539–546.

    Article  Google Scholar 

  • Cascio, W., T. Johnson and L. Gettes (1995). “Electrophysiologic changes in ischemic ventricular myocardium: I. Influence of ionic, metabolic and energetic changes.” J Cardiovasc Electrophys 6: 1039–1062.

    Article  Google Scholar 

  • Ch’en, F., R. Vaughan-Jones, K. Clarke and D. Noble (1998). “Modeling myocardial ischaemia and reperfusion.” PRog Biophys Mol Biol 69(2–3): 515–38.

    Article  Google Scholar 

  • Clayton, R., A. Bailey, V. Biktashev and A. Holden (2001). “Re-entrant cardiac arrhythmias in computational models of long-QT myocardium.” J Theor Biol 2001 208(2): 215–225.

    Article  Google Scholar 

  • Cole, K. (1949). “Dynamic electrical characteristics of squid axon membrane.” Arch. Sci. Physiol 3: 253–258.

    Google Scholar 

  • Davidenko, J., A. Pertsov, R. Salomonsz, W. Baxter and J. Jalife (1992). “Stationary and drifting spiral waves of excitation in isolated cardiac muscle.” Nature 355: 349–351.

    Article  Google Scholar 

  • DiFrancesco, D. and D. Noble (1985). “A model of cardiac electrical activity incorporating ionic pumps and concentration changes.” Philos Trans R Soc Lond B Biol Sci. 307(1133): 353–398.

    Article  Google Scholar 

  • Dube, B., R. Gulrajani, M. Lorange, A. LeBlanc, J. Nasmith and R. Nadeau (1996). “A computer heart model incorporating anisotropic propagation. IV. Simulation of regional myocardial ischemia.” J Electrocardiol 29: 91–103.

    Article  Google Scholar 

  • El-Sherif, N., E. Caref, H. Yin and M. Restivo (1996). “The electrophysiological mechanism of ventricular tachyarrhytmias in the long QT syndrome: tridimensional mapping of activation and recovery patterns.” Circ Res 1996(79).

    Google Scholar 

  • El-Sherif, N. and G. Turitto (1999). “The Long QT Syndrome and Torsade De Pointes.” PACE 22 (Pt.1): 91–110.

    Google Scholar 

  • Eyring, H., R. Lumry and J. Woodbury (1949). “Some applications of modern rate theory to physiological systems.” Record Chem. Progr 10: 100–114.

    Google Scholar 

  • Factor, S. and R. Bache (1998). Pathophysiology of Myocardial Ischemia. Hurst’s The Heart. R. Alexander, R. Schlant and V. Fuster. New York, McGraw-Hill: 1241–1262.

    Google Scholar 

  • Ferrero, J., J. Saiz, J. Ferrero and N. Thakor (1996). “Simulation of action potentials from metabolically impaired cardiac myocytes: role of ATP-sensitive K+ current.” Circ Res 79: 208–221.

    Google Scholar 

  • Ferrero, J., V. Torres, F. Montilla and E. Colomar (2001). “Simulation of Reentry During Acute Myocardial Ischemia: Role of ATP-sensitive Potassium Current and Acidosis.” Computers in Cardiology.

    Google Scholar 

  • Fishler, M. and N. Thakor (1991). “A massively parallel computer model of propagation through a two-dimensional cardiac syncytium.” Pacing Clin Electrophysiol 14(11 pt 2): 1694–9.

    Article  Google Scholar 

  • Fleischmann, P., G. Stark and P. Wach (1996). “The antiarrhythmic effect of verapamil on atrioventricular re-entry in the Wolff-Parkinson-White syndrome: a computer modle study.” Int J Biomed Comput 41: 125–136.

    Article  Google Scholar 

  • Gardner, P., P. Ursell, J. Fenoglio and A. Wit (1985). “Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts.” Circulation 72: 596–611.

    Google Scholar 

  • Garfinkel, A., Y. Kim, O. Vorshilovsky, Z. Qu, J. Kil, M. Lee, H. Karageuzian, J. Weiss and P. Chen (2000). “Preventing ventricular fibrillation by flattening cardiac restitution.” Proc Natl Acad Sci 97(11): 6061–6.

    Article  Google Scholar 

  • Grover, G. and K. Garlid (2000). “ATP-Sensitive potassium channels: a review of their cardiprotective pharmacology.” J Mol Cell Cardiol 32: 677–95.

    Article  Google Scholar 

  • Hodgkin, A. and A. Huxley (1952). “A Quantitative description of membrane current and its application to conduction and excitation in nerve.” J. Physiol 117: 500–544.

    Google Scholar 

  • Irnich, W. (1985). “Intracardiac Electrograms and Sensing Test Signals: Electrophysiological, Physical and Technical Considerations.” PACE 8: 870–888.

    Google Scholar 

  • Janse, M., F. v. Capelle, H. Morsink, A. Kleber, F. Wilms-Schopman, R. Cardinal, C. d’Alnoncourt and D. Durrer (1980). “Flow of “injury” current patterns of excitation during early ventricular arrythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms.” Circ Res 47(2): 151–165.

    Google Scholar 

  • Janse, M. and A. Wit (1989). “Electrophysiological mechanisms of ventricular arrythmias resulting from myocardial ischemia and infarction.” Phys Rev 69: 1049–1152.

    Google Scholar 

  • January, C. and J. Riddle (1989). “Early after depolarizations: mechanism of induction and block, a role for L-type Ca2+ current.” Circ Res 64: 977–990.

    Google Scholar 

  • Kagiyama, Y., J. Hill and L. Gettes (1982). “Interaction of acidosis and increased extracellular potassium on action potential and conduction in guinea pig ventricular muscle.” Circ Res 51: 614–623.

    Google Scholar 

  • Kleber, A., M. Janse, F. Wilms-Schopmann, A. Wilde and R. Coronel (1986). “Changes in conduction velocity during acute ischemia in ventricular myocardium of isolated porcine heart.” Circulation 73: 189–198.

    Google Scholar 

  • Kodama, I., A. Wilde and M. Janse (1984). “Combined effects of hypoxia, hyperkalemia, and acidosis on membrane action potential and excitability of guineay-pig ventricular muscle.” J Mol Cell Cardiol 16: 247–259.

    Article  Google Scholar 

  • Leon, L. and B. Horacek (1991). “Computer model of excitation and recovery in the anisotropic myocardium. III. Arrhythmogenic conditions in the simplified left ventricle.” J Electrocardiol 24(1): 33–41.

    Article  Google Scholar 

  • Leon, L., F. Roberge and A. Vinet (1994). “Simulation of two-dimensional anisotropic cardiac reentry: Effects of the wavelength on the reentry characteristics.” Annals Biomed Eng 22: 592–609.

    Article  Google Scholar 

  • Lindblad, D., C. Murphey, J. Clark and W. Giles (1996). “A model of the action potential and underlying membrane currents in a rabbit atrial cell.” Am J Physiol 241(4 Pt 2): H1666–96.

    Google Scholar 

  • Lorange, M. and R. Gulrajani (1986). “Computer simulation of Wolff-Parkinson-White preexcitation syndrome with a modified Miller-Geselowitz heart modle.” IEEE Trans Biomed Eng 33(9): 862–873.

    Article  Google Scholar 

  • Luo, C. and Y. Rudy (1991). “A model of the ventricular cardiac action potential: depolarization, repolarization, and their Interaction.” Circ Res 68: 1501–1526.

    Google Scholar 

  • Luo, C. and Y. Rudy (1994). “A dynamic model of the cardiac ventricular action potential: I. Simulations of ionic currents and concentrations.” Circ Res 74: 1071–1086.

    Google Scholar 

  • Luo, C. and Y. Rudy (1994). “A dynamic model of the cardiac ventricular action potential: II. Afterdepolarizations, triggered Activity, and potentiation.” Circ Res 74: 1097–1113.

    Google Scholar 

  • Malmivuo, J. and R. Plonsey (1995). Bioelectromagnetism. New York, Oxford, Oxford University Press.

    Google Scholar 

  • Marban, E., S. Robinson and W. Wier (1986). “Mechanisms of arrhytmogenic delayed and early afterdepolarizations in ferret ventricular muscle.” J Clin Invest 78: 1185–1192.

    Article  Google Scholar 

  • Marmont, G. (1949). “Studies on the axon membrane. I. A new method.” J Cell Comp Physiol 50: 1401–11.

    Google Scholar 

  • McAllister, R., D. Noble and R. Tsien (1975). “Reconstruction of the electrical activity of cardiac Purkinje fibres.” J Physiol 251: 1–59.

    Google Scholar 

  • Miller, W. and D. Geselowitz (1978). “Simulation studies of the electrocardiogram. I. The normal heart.” Circ Res 43: 301–315.

    Google Scholar 

  • Monserrat, M., J. Saiz, J. Ferrero, J. Ferrero and N. Thakor (2000). “Ectopic activity in ventricular cells induced by early afterdepolarizations developed in Purkinje cells.” Ann Biomed Eng 28: 1343–51.

    Article  Google Scholar 

  • Moore, J. and R. Pearson (1981). Kinetics and Mechanisms. New York, Wiley.

    Google Scholar 

  • Morena, H., M. Janse, J. Fiolet, W. Krieger, H. Crijns and D. Durrer (1980). “Comparison of the effects of regional ischemia, hypoxia, hyperkalemia and acidosis on intracellular and extracellular potentials and metabolism in the isolated porcine heart.” Circ Res 46: 634–646.

    Google Scholar 

  • Noble, D., J. Levin and W. Scott (1999). “Biological simulations in drug discovery.” Drug Discov Today 4(1): 10–16.

    Article  Google Scholar 

  • Nordin, C. (1997). “Computer model of electrophysiological instability in very small hereogeneous ventricular syncytia.” Am J Physiol 172: H1838–1856.

    Google Scholar 

  • Okazaki, O., D. Wei and K. Harumi (1998). “A simulation of Torsade de Pointes with M cells.” J Electrocardiol 31(Suppl): 145–51.

    Article  Google Scholar 

  • Plonsey, R. (1969). Bioelectric Phenomena. New York, McGraw-Hill.

    Google Scholar 

  • Plonsey, R. and R. Barr (1986). “A critique of impedance measurements in cardiac tissue.” Ann Biomed Eng 14: 307–22.

    Article  Google Scholar 

  • Plonsey, R. and R. Collin (1961). Principles and applications of electromagnetic fields. NY, McGraw-Hill.

    Google Scholar 

  • Plonsey, R. and Y. Rudy (1980). “Electrocardiogram sources in a 2-dimensional anisotropic activation model.” Med Biol Eng Comp 18: 87–94.

    Article  Google Scholar 

  • Priebe, L. and D. Beuckelmann (1998). “Simulation study of cellular electric properties in heart failure.” Circ Res 82(11): 1206–1223.

    Google Scholar 

  • Priori, S. and P. Corr (1990). “Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines.” Am J Physiol 258: H1796–H1805.

    Google Scholar 

  • Qu, Z., F. Xie, A. Garfinkel and J. Weiss (2000). “Origins of spiral wave meander and breakup in a two-dimensional tissue model.” Ann Biomed Eng 28: 755–71.

    Article  Google Scholar 

  • Quan, W. and Y. Rudy (1990). “Unidirectional block and reentry of cardiac excitation: a model study.” Circ Res 66: 367–382.

    Google Scholar 

  • Ramon, C., Y. Wang, J. Huaeisen, P. Schimpf, S. Jaruvatanadilok and A. Ishimaru (2000). “Effect of myocardial anisotropy on the torso current flow patterns, potentials and magnetic fields.” Phys Med Biol. 45(5): 1141–1150.

    Article  Google Scholar 

  • Rudy, Y. (2000). “From genome to physiome: integrative models of cardiac excitation.” Ann Biomed Eng 28(8): 945–950.

    Article  Google Scholar 

  • Saiz, J., J. Ferrero, M. Monserrat, J. Ferrero and N. Thakor (1997). From the cell to the body surface. Electrocardiology’ 96. J. Liebman. NJ, World Scientific Publishing: 209–212.

    Google Scholar 

  • Saiz, J., J. F. Jr, M. Monserrat, J. Ferrero and N. Thakor (1999). “Influence of electrical coupling on early afterdepolarization in ventricular myocytes.” IEEE Trans Biomed Eng 46(2): 138–147.

    Article  Google Scholar 

  • Saiz, J., M. Monserrat, J. JM Ferrero, J. Ferrero and N. Thakor (1996). “Ectopic activity generated by early afterdepolarizations in ventricular tissue. A computer simulation study.” Computers in Cardiology 1996.

    Google Scholar 

  • Scollan, D., A. Holmes, J. Zhang and R. Winslow (2000). “Reconstruction of cardiac ventricular geometry and fiber orientation using magnetic resonance imaging.” Ann Biomed Eng 28(8): 934–44.

    Article  Google Scholar 

  • Shaw, R. and Y. Rudy (1997). “Electrophysiologic effects of acute myocardial ischemia: A mechanistic investigation of action potential conduction and conduction failure.” Circ Res 80: 124–138.

    Google Scholar 

  • Shaw, R. and Y. Rudy (1997). “Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration.” Cardiovascular Res 35: 256–272.

    Article  Google Scholar 

  • Shenai, M. (2000). Myocardial Ischemia Detection: A time-frequency investgation of intra-QRS changes in the endocardial electrogram. Dept. of Biomedical Engineering. Baltimore, The Johns Hopkins University.

    Google Scholar 

  • Shenai, M., B. Gramatikov and N. Thakor (1999). “Computer models of depolarization alterations induced by myocardial ischemia: the effect of superimposed ischemic inhomogeneities on propagation in space and time-frequency domains.” Journal of Biological Systems 7(4): 553–574.

    Article  Google Scholar 

  • Siregar, P., J. Sinteff, N. Julen and P. LeBeux (1998). “An interactive 3D anisotropic cellular automata model of the heart.” Comput Biomed Res 31: 323–47.

    Article  Google Scholar 

  • Spach, M. (2001). “Mechanisms of the Dynamics of Reentry in a Fibrillating Myocardium. Developing a Genesto-Rotors Paradigm.” Circ Res 88: 753–755.

    Article  Google Scholar 

  • Spach, M., W. Miller and D. Geselowitz (1981). “The discontinuous nature of propagation in normal canine cardiac muscle: evidence for recurrent discontinuities of intracellular resistance that affect the membrane currents.” Circ Res 48: 39.

    Google Scholar 

  • Spach, M., W. Miller and E. Miller-Jones (1979). “Extracellular potentials related to intracellular action potentials during impulse conduction in anisotropic canine cardiac muscle.” Circ Res 45: 188–204.

    Google Scholar 

  • Stern, M., M. Capogrossi and E. Lakatta (1988). “Spontaneous calcium release from the sarcoplasmic reticulum in myocardial cells mechanisms and consequences.” Cell Calcium 9: 247–256.

    Article  Google Scholar 

  • Varnava, A., P. Elliot, S. Sharma, W. McKenna and M. Davies (2000). “Hypertrophic cardiomyopathy: the interrelation of dissarray, fibrosis, and small vessel disease.” Heart 84: 476–482.

    Article  Google Scholar 

  • Viswanathan, P. and Y. Rudy (1999). “Pause induced early afterdepolarizations in the long QT syndrome: a simulation study.” Cardiovascular Research 42: 530–542.

    Article  Google Scholar 

  • Viswanathan, P. and Y. Rudy (2000). “Cellular Arrhythmogenic Effects of Congenital and Acquired Long-QT Syndrome in the Heterogeneous Myocardium.” Circulation 101: 1192.

    Google Scholar 

  • Wagner, M., W. Gibb and M. Lesh (1995). “A model study of propagation of early afterdepolarizations.” IEEE Trans Biomed Eng 42(10): 991–997.

    Article  Google Scholar 

  • Wang, Q., M. Curren, I. Splawski, T. Burn, J. Millholland, T. VanRaay, J. Shen, K. Timothy, G. Vincent, T. d. Jager, P. Schwartz, J. Towbin, A. Moss, D. Atkinson, G. Landes, T. Connors and M. Keating (1996). “Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias.” Nature Genet. 12: 17–23.

    Article  Google Scholar 

  • Wei, D., N. Miyamoto and S. Mashima (1999). “A computer model of myocardial disarray in simulating ECG features of hypertrophic cardiomyopathy.” Jpn Heart J 40(6): 819–826.

    Article  Google Scholar 

  • Wei, D., G. Yamada, T. Musha, H. Tsunakwa and K. Harmumi (1990). “Computer simulation of supraventricular tachycardia with the Wolff-Parkinson-White Syndrome using three-dimensional heart models.” J Electrocardiol 23(3): 261–273.

    Article  Google Scholar 

  • Weidmann, S. (1955). “The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system.” J Physiol 127: 213–224.

    Google Scholar 

  • Weiss, J., N. Venkatest and S. Lamp (1992). “ATP-sensitive K+ channels and cellular K+ loss in hypoxic and iscaemic mammalian ventricle.” J Physiol (Lond.) 447: 649–673.

    Google Scholar 

  • Winslow, R., D. Scollan, J. Greenstein, C. Yung, W. Baumgartner, G. Bhanot, D. Gresh and B. Rogowitz (2000). “Mapping, modeling, and visual exploration of structure-function relationships in the heart.” IBM Systems Journal 40(2): 1–18.

    Google Scholar 

  • Winslow, R., D. Scollan, A. Holmes, C. Yung, J. Zhang and M. Jafri (2000). “Electrophysiological Modeling of Cardiac Ventricular Function: From Cell to Organ.” Ann Rev Biomed Eng 2: 119–155.

    Article  Google Scholar 

  • Wit, A. and M. Janse (1993). The Ventricular Arrhythmias of Ischemia and Infarction: Electrophysiological Mechanisms. Mount Kisko, Futura Pub. Co.

    Google Scholar 

  • Xie, F., Z. Qu, A. Garfinkel and J. Weiss (2001). “Effects of ischemia on spiral wave stability.” Am J. Physiol Heart Circ Physiol 280(4): H1667–73.

    Google Scholar 

  • Yan, G., K. Yamada, A. Kleber, J. McHowat and P. Corr (1993). “Dissociation between cellular K+ loss, reduction in repolarization time, and tissue ATP levels during myocardial hypoxia and ischemia.” Circ Res 72: 560–570.

    Google Scholar 

  • Zhang, H., A. Holden, I. Kodama, H. Honjo, M. Lei, T. Varghese and M. Boyett (2000). “Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node.” Am J Physiol Heart Circ Physiol 279(1): H397–421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Thakor, N.V., Iyer, V., Shenai, M.B. (2004). From Cellular Electrophysiology to Electrocardiography. In: He, B. (eds) Modeling and Imaging of Bioelectrical Activity. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49963-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49963-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48112-3

  • Online ISBN: 978-0-387-49963-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics