Advertisement

Olefin Polymerization Catalysts

  • Lawrie Lloyd
Chapter
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

Catalytic polymerization processes have become increasingly important as the use of plastics has escalated throughout the world. Many common plastics were discovered in the 1930s, and after the 1939–1945 war this created a demand for petrochemical intermediates derived from the refining industry. Ethylene and propylene are now common building blocks for plastics and by the year 2000, polyethylene, polypropylene and their copolymers were the most widely used plastic materials. The gradual development of polyolefin production is shown in Table 8.1.

Keywords

Molecular Weight Distribution Magnesium Chloride Narrow Molecular Weight Distribution Titanium Tetrachloride Metallocene Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. J. Gaylord and H. F. Mark, Linear and Stereoregular Addition Polymers, Wiley-Interscience, NewYork, 1959.Google Scholar
  2. 2.
    J. Boor, Junior, Shell Development Company, Ziegler-Natta Catalysts and Polymerization, Academic, New York, 1979.Google Scholar
  3. 3.
    C. Kennedy, ICI The Company That Changed Our Lives, Hutchinson, London, 1986; W. J. Reader, ICI History, Vol. 2, Oxford University Press, 1975.Google Scholar
  4. 4.
    Imperial Chemical Industries, British Patent 471590 (1936).Google Scholar
  5. 5.
    P. H. Spitz, Petrochemicals: The Rise of an Industry, Wiley, New York, 1988.Google Scholar
  6. 6.
    K. Ziegler, E. Holzkamp, B. Breil and H. Martin, Angew Chem 67 (1955) 426; German Patent 973626 (1953); British Patents 799392, 799823 (1953).Google Scholar
  7. 7.
    J. P. Hogan and R. L. Banks, Belgium Patent 530617 (1955); US Patent 2825721 (1958); 2846425 (1958); 2951816 (1960); Ind. Eng. Chem. 48, (1956) 1152.CrossRefGoogle Scholar
  8. 8.
    Standard Oil Company of Indiana US Patent 2692258 (1951).Google Scholar
  9. 9.
    G. Natta, Science 147 (1965) 261; G. Natta, P. Pino, G. Mazzanti, and P. Longi, Gazz. Chem. Italia. 87 (1957) 570.Google Scholar
  10. 10.
    K. Ziegler and H. Martin, Makromol Chem 18/19 (1956) 186.CrossRefGoogle Scholar
  11. 11.
    I. Pasquon and U. Giannini, Catalytic Olefin Polymerization, in Catalysts— Science and Technology, Vol. 6, Ed. by G. Anderson and M. Boudart, Springer-Verlag, Berlin, 1989; G. Natta, Chim. Ind. (Milan) 38 (1956) 751; G. Natta, I. Pasquon, and E. Giachetti, Angew. Chem. 69 (1957) 213.Google Scholar
  12. 12.
    K. B. Tripplett, Evolution of Ziegler–Natta Catalysts for PropylenePolymerization, in Applied Industrial Catalysts, Vol. 1, Ed. by B. E. Leach, Academic, New York, 1983; US Patents 3032510 (1962), 3128252 (1964).Google Scholar
  13. 13.
    E. Tornquist, J Catal 8 (1967) 189.CrossRefGoogle Scholar
  14. 14.
    Solvay, US Patents 3769233 (1973), 4210738 (1980).Google Scholar
  15. 15.
    G. Natta and I. Pasquon, Advances in Catalysis, Vol. 11, Academic, New York, 1959, p. 1; G Natta, J. Polym. Sci. 34 (1959) 21.Google Scholar
  16. 16.
    P. J. T. Tait, in Comprehensive Polymer Science, Ed. by G. Allen and J. C. Berington, Vol. 4, Pergamon, Oxford, 1989, p.1.Google Scholar
  17. 17.
    P. J. T. Tait, New Trends in Polyolefin Science and Technology, Ed. by S. Hosada, p. 1; P. J. T. Tait in Research Signposts, Trivandrum, India (1996) p.1.Google Scholar
  18. 18.
    Stamicarbon, Belgian Patent 751315 (1969); Shell International Research, German Patent 2003075 (1970); British Patent 1299862 (1970); Belgian Patent 776301 (1970); Haward et al., Polymer 14 (1973) 365.Google Scholar
  19. 19.
    L. L. Bohm, Polymer 19 (1978) 553.CrossRefGoogle Scholar
  20. 20.
    X. Youchang, G. Linlin, L. Wangi, B. Naiyo and T. Yougi, Sci. Sin. 22 (1979) 1045; P. Galli, P. C. Barbe, G. Guidetti, A. Zanbetti, A. Marigo, M. Bergozza and A. Fichera, Eur. Polym. J. 19 (1983) 19;Google Scholar
  21. 21.
    P. Galli, P. C. Barbe and L. Noristi, Makromol. Chem. 120 (1984) 73.CrossRefGoogle Scholar
  22. 22.
    Montecatini Edison, British Patent 1286807 (1968); Mitsui Petrochemical Industries, Italian Patent 912345 (1968).Google Scholar
  23. 23.
    B. L. Goodall, in Transition Metal Catalyzed Polymerizations, Vol. 4 (Part A), Ed. by R. P. Quirk, Harwood, New York, 1981, p.355; Kashiwa, in Transition Metal Catalyzed Polymerizations, Vol. 4 (Part A), Ed. by R. P. Quirk, Harwood, New York, 1981, p. 379.Google Scholar
  24. 24.
    P. J. T. Tait, G. H. Zohuri, A. M. Kells and I. D. Mckenzie, in Ziegler Catalysts, Ed. by G. Fink, R. Mulhaupt and H. H. Brintzinger, Springer- Verlag, Berlin, 1995, p. 343.Google Scholar
  25. 25.
    Toho Titanium Co., US Patent 4829037 (1989).Google Scholar
  26. 26.
    Amoco, US Patent 5081090 (1992).Google Scholar
  27. 27.
    G. Natta and I. Pasquon, Adv. Catal. 11 (1959) 1.CrossRefGoogle Scholar
  28. 28.
    P. Galli and J. C. Haylock, Macromol. Chem. Symp. 63 (1992) 19; P. Galli and J. C. Haylock, Prog. Polym. Sci. 16 (1991) 443; P. C. Barbe, G. Cecchin, and L. Noristi, Adv. Polym. Sci. 81 (1987).Google Scholar
  29. 29.
    J. P. Hogan, The Phillips Petroleum Polyethylene Process in Applied Industrial Catalysis, Vol. 1, Ed. by B. E. Leach, Academic, New York, 1983, p. 149.Google Scholar
  30. 30.
    C. E. Marsden, Advances in Supported Chromium Catalysts, S4A/3/1 in Plastics & Rubber Institute—Polyethylene: The 1990s and Beyond, London, May 1992.Google Scholar
  31. 31.
    R. L. Banks, US Patent 3225023 (1965); J. P. Hogan, D. D. Norwood and C. A. Ayres, in Applied Polymer Symposia Series, Vol. 36, Ed. by Mark, Wiley-Interscience, New York, 1981, p. 49.Google Scholar
  32. 32.
    C. E. Marsden, The Influence of Silica Support on Polymerization Catalyst in Preparation of Catalysts V, Ed. by B. Delmon et al., Elsevier, Amsterdam, 1991.Google Scholar
  33. 33.
    M. P. McDaniel, Supported chromium catalysts for ethylene polymerization, in Adv. Catal. 33 (1985) 47; M. R. Welch and M. P. McDaniel, J. Catal. 82 (1983) 110; M. P. McDaniel and Welch, US Patent 4182815 (1980).Google Scholar
  34. 34.
    M. P. McDaniel, J. Polym. Sci. (Polym. Chem. Ed.) 19 (1981) 1967.Google Scholar
  35. 35.
    K. Wisseroth (BASF), Angew. Makromol. Chem. 8(88) (1969) 41; D. M. Rasmussen (Union Carbide), Chem. Eng. 79(21) (1972) 104.Google Scholar
  36. 36.
    W. K. Jozwiak, I. G. Dalla Lana,W. Przyastaijko and R. Fiedorow in Proc. 9th Int. Congress on Catalysts, (1988) p. 1340.Google Scholar
  37. 37.
    S. Wang, P. J. T. Tait and C. E. Marsden, J. Mol. Catal. 65 (1991) 237; P. J. T. Tait, Advances in Ziegler and Related Catalysts, Paper S4A/2/1, Plastics and Rubber Institute—Polyethylene: The 1990s and Beyond (May 1992).Google Scholar
  38. 38.
    British Petroleum, British Patent 1429174 (1973).Google Scholar
  39. 39.
    Phillips Petroleum, US Patents 3887494 (1975), 3950316 (1976).Google Scholar
  40. 40.
    T. J. Pullucat, R. E. Hoff and M. Shida, J. Polym. Sci. (Polym. Chem. Ed.) 18 (1980) 2857; M. P. McDaniel, M. B. Welsh and M. J. Dreiling, J. Catal. 82 (1983) 118.Google Scholar
  41. 41.
    BASF German Patent 2604548 (1977); US Patents 4110522 (1978); 4128500 (1998).Google Scholar
  42. 42.
    Union Carbide, US Patent 4011382 (1978).Google Scholar
  43. 43.
    B. Rebensdorf and S. L. T. Anderson, J. Chem. Soc. (Faraday Trans.) 86 (1990) 3153.Google Scholar
  44. 44.
    Phillips, US Patent 3130188 (1964).Google Scholar
  45. 45.
    Phillips, US Patent 4820785 (1989).Google Scholar
  46. 46.
    Phillips, US Patent 5208309 (1993).Google Scholar
  47. 47.
    Phillips, US Patent 4818800 (1989).Google Scholar
  48. 48.
    F. J. Karol, G. L. Karapinka, A. W. Wu Ch Dow, R. N. Johnson and W. L. Carrick, J. Polym. Sci. (Pt A-1) 10 (1972) 2609, 2621.Google Scholar
  49. 49.
    E. A. Benham, P. D. Smith, E. T. Hsieh and M. P. McDaniel, J. Macromol. Sci. Chem. A 4(25) (1988) 259.Google Scholar
  50. 50.
    H. N. Friedlander, J. Polym. Sci. 38 (1959) 91; Juveland, Peters, and J. W. Shephard, Polym. Repr. 10 (1969) 263; Tabokoro et al., Kogyo Koga Kuaschi 70 (1967) 144; Juveland and Peters, French Patent 1521017 (1968).Google Scholar
  51. 51.
    D. D. Norwood, US Patents 3248179, 3257362 (1966); J. P. Hogan, D. D. Norwood and C. A. Ayres, Applied Polymer Symposia Series, Vol. 36, Ed. by Mark, Wiley-Interscience, New York (1981); Phillips Linear Polyethylene (3A/2/1), Plastics and Rubber Institute—Polyethylene: The 1990s and Beyond, London (May 1992).Google Scholar
  52. 52.
    Solvay, Belgian Patent 570981 (1958).Google Scholar
  53. 53.
    D. Newton, J. C. Chinh and M. Power, Hydrocarbon Processing, (March 1998) 86.Google Scholar
  54. 54.
    DuPont Canada Ltd., Sclairtech Solution Process (53A/3/1), Plastics and Rubber Institute—Polyethylene: The 1990s and Beyond, London (May 1992).Google Scholar
  55. 55.
    D. M. Rasmussen, Chem. Eng. 79 (21) (1972) 104; US Patents 3642749, 3687920; L. P. McMaster, The Gas Phase Process (53A/1/1), Plastics and Rubber Institute—Polyethylene: The 1990s and Beyond, London, May 1992.Google Scholar
  56. 56.
    K. Wisseroth, Angew Makromol. Chem. 8 (1969) 41; Muller-Tamm, Soc. Plast. Eng. Tech. 15, (1969) Paper 27; US Patents 3300457 (1966), 3634382 (1971), 3639377 (1971), 3652527 (1972), 4212847 (1976).Google Scholar
  57. 57.
    US Patents 3965083, 3971768 (1976).Google Scholar
  58. 58.
    P. M. Morse, Chem. & Eng. News, (Dec. 1998) 25; A. I. Tullo, Chem. & Eng. News, (Aug 7, 2000) 35.Google Scholar
  59. 59.
    A. A. Montagno and J. C. Floyd, Hydrocarbon Processing, (March 1994) 57.Google Scholar
  60. 60.
    J. L. Hemmer, High Pressure Exxpol Technology (S2A/3/1), Plastics and Rubber Institute—Polyethylene: The 1990s and Beyond, London (May 1992); Exxon Chemical US Patents 5198401 (1991), 5384299 (1993), 5470927 (1994), 5324800 (1994), 5599761 (1997).Google Scholar
  61. 61.
    J. Krieger, Inventor of the Year Award (Dow) Chem. Eng. News, May 23 (1994) 6; Dow Chemical US Patents 5272236 (1993), 5470993 (1995), 5278272 (1994).Google Scholar
  62. 62.
    D. G. H. Ballard, W. H. James and J. D. Seddon, British Patent 1099116 (1968); D. G. H. Ballard and T. Medinger, British Patent 1145958 (1969); D. G. H. Ballard, T. Medinger and W. G. Oakes, German Patent 1904878 (1969).Google Scholar
  63. 63.
    G. Wilke et al., Angew Chem. Intern. Ed. 5(2) (1966) 151.CrossRefGoogle Scholar
  64. 64.
    G. Natta, G. Pino,G. Mazzanti,U. Giannini, E. Mantica and M. Peraldo, Chim. Ind. (Milan) 39, 19G (1957); G. Natta, G. Pino, G. Mazzanti, U. Giannini, J. Amer. Chem. Soc. 79 (1957) 2975.Google Scholar
  65. 65.
    D. S. Breslow and N. R. Newbury, J. Amer. Chem. Soc. 79 (1957) 5072; D. S. Breslow and N. R. Newbury, 81 (1959) 81; W. P. Long and D. S. Breslow, J. Amer. Chem. Soc. 82, (1960) 1953.Google Scholar
  66. 66.
    Dyachkovskii, Shilova, and Shilov, J. Polym. Sci., Part C, (1967) 2333; Eisch et al., J. Amer. Chem. Soc. 107 (1985) 7219.Google Scholar
  67. 67.
    A. Schindler in Crystalline Olefin Polymers, Ed. by R. A. Ruff and K. W. Doak, Wiley-Interscience, New York, 1965, p. 163; Zavorokhin, Trans. Inst. Khim. Nauk. Akad. Nauk. Kaz., SSR 23 (1969) 3.Google Scholar
  68. 68.
    K. H. Reichert and K. R. Meyer, Makromol Chem 169 (1973) 163.CrossRefGoogle Scholar
  69. 69.
    W. R. Long and D. S. Breslow, Liebigs. Ann. Chem. 1975 (1979) 463.Google Scholar
  70. 70.
    W. Kaminsky, J. Kopf, H. Sinn and H-J. Vollmor, Angew. Chem. 88 (1976) 688; H. Sinn, W. Kaminsky, H. J. Vollmor and R. Woldt, Angew. Chem. 92 (1980) 396; W. Kaminsky in History of Polyolefins, Ed. by R. B. Seymour and T. Cheng, Reidel, Dordrecht, 1986, p. 257; W. Kaminsky, Nachr. Chem. Tech. Lab. 29 (1981) 373.Google Scholar
  71. 71.
    G. G. Hlatky, R. R. Eckmann and H. W. Turner, Organometallics 11 (1992) 1413; Exxon, US Patent 5599761 (1997).Google Scholar
  72. 72.
    J. A. Ewen, J. Amer. Chem. Soc. 106 (1984) 6355.CrossRefGoogle Scholar
  73. 73.
    W. Kaminsky, H. H. Brintzinger, K. Kulper and F. R. W. P. Wild, Angew. Chem. Int. Ed. (English) 24 (1985) 507.CrossRefGoogle Scholar
  74. 74.
    M. Antberg, V. Dolle, R. Klein, J. Rohrmann, W. Spaleck and A. Winter, Studies Surf. Sci. Catal. 56, (1990) 501; W. Spaleck, M. Antberg, V. Dolle, R. Klein, J. Rohrmann and A. Winter, New J. Chem. 14 (1990) 499; W. Spaleck, A. Winter, W. A. Hermann, J. Rohrmann and E. Hertweck, Angew. Chem. 101 (1989) 1536; P. Burger, K. Hortmann and H. H. Brintzinger, Makromol. Chem. Symp. 66 (1993) 127.Google Scholar
  75. 75.
    R. Mülhaupt, Novel polyolefin materials and processes in ziegler catalysts, Ed. by G. Fink, R. M¨ulhaupt and H. H. Brintzinger, Springer-Verlag, Berlin, 1995, p.42.Google Scholar
  76. 76.
    Chem. Eng. News (June 28,1999) 23.Google Scholar
  77. 77.
    Spalec et al., in Ziegler Catalysts, Ed. by Fink, Mulhaupt, and Brintzinger, Springer-Verlag, Berlin, 1995, p. 83.Google Scholar
  78. 78.
    P. M. Morse, Chem. Eng. News, (Dec 7, 1998) 25.Google Scholar
  79. 79.
    J. Bleimeister, W. Hagendort, A. Harder, B. Heitmann, I. Schimmel, E. Schmedt, W. Schnuchel, H. Sinn, L. Tikwe, N. von Thienen, K. Urlass, H. Winter and O. Zarnke, The role of MAO-activators, in: Ziegler Catalysts, Ed. by G. Fink, R. Mülhaupt and H. H. Brintzinger, Springer-Verlag, Berlin, 1995, p. 57; US Patents 4544762, 5015749, 5041584–5, 5542199.Google Scholar
  80. 80.
    Bochman and Wilson, JCS Chem. Comm. (1986) 1610.Google Scholar
  81. 81.
    Exxon, US Patent 5599761 (1997).Google Scholar
  82. 82.
    W. J. Kruper, D. R. Wilson and E. Y-X. Chen, J. Amer. Chem. Soc. 123 (2001) 745; M. C. Jacoby, Chem. Eng. News, (Feb 19, 2001) 57.Google Scholar
  83. 83.
    R. M¨ulhaupt, Novel Polyolefin Materials and Processes: Overview and Prospects, in: Ziegler Catalysts,Ed. by G. Fink, R. Mülhaupt, and H. H. Brintzinger, Springer-Verlag, Berlin, 1995, p.45.Google Scholar
  84. 84.
    J. Haggin, Chem. Eng. News, (Feb 5, 1996) 6.Google Scholar
  85. 85.
    M. Freemantle, Chem. Eng. News, (April 13, 1998) 11.Google Scholar
  86. 86.
    F. Wilson, Chem. Eng. News, (April 10, 2000) 8; (March 6, 2000) 11; (Jan 24, 2000) 15.Google Scholar
  87. 87.
    T. K. Woo, L. Fan, T. Ziegler, A Combined Density Functional and Molecular Mechanics Study on Olefin Polymerization by Metallocene Catalysts in Ziegler Catalysts, Ed. by G. Fink, R. Mülhaupt and H. H. Brintzinger, Springer-Verlag, Berlin, 1995, p. 291.Google Scholar
  88. 88.
    P. Cossee, Rec. Trav. Chim. Pays. Bas. 85, No. 9–10 (1966) 1152; P. Cossee, The Mechanism of Ziegler-Natta Polymerization, in: The Stereochemistry of Macromolecules, Vol. 1, A D Ketley editor, Marcel Dekker, New York, 1967, p. 145.Google Scholar
  89. 89.
    J. Boor, Ziegler–Natta Catalysts and Polymerizations, Academic Press, New York, 1979, p. 389.Google Scholar
  90. 90.
    E. J. Arlmann, J. Catalysis 3 (1964) 89; E. J. Arlmann and P. Cossee, J. Catalysis 3 (1964) 99.Google Scholar
  91. 91.
    J. Boor, Ziegler–Natta Catalysts and Polymerizations, Ch. 10, Academic, New York, 1979, p. 244.Google Scholar
  92. 92.
    Hercules, US Patent 3051690 (1962—applied July 1955).Google Scholar
  93. 93.
    Montedison, Italian Patents 554013, 557013 (1957); British Patents 584794, 850585; G. Natta, Chim. Ind. (Milan) 41 (6) (1959) 519.Google Scholar
  94. 94.
    G. Natta and I. Pasquon, Advances in Catalysis 11 (1959) 1.CrossRefGoogle Scholar
  95. 95.
    K. D. Hungenberg, J. Kerth, F. Langhanser, B. Marczinde and R. Schlund, Gas Phase Polymerization of Olefins with Ziegler-Natta and Metallocene/ Aluminoxane Catalysts. A Comparison in Ziegler-Natta Catalysts, Ed. by G. Fink, R. Mülhaupt and H. H. Brintzinger, Springer-Verlag, Berlin, 1995, p. 363.Google Scholar
  96. 96.
    Jewkes, Sawers, and Stillerman, The Sources of Invention, Macmillan/St. Martin’s, New York, 1962.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lawrie Lloyd
    • 1
  1. 1.BathUK

Personalised recommendations