Advertisement

Petrochemical Catalysts

  • Lawrie Lloyd
Chapter
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

Organic chemical compounds have been produced on an industrial scale for over a century. In the early days, the source of carbon was coal, and many of the compounds were produced via the intermediate manufacture of acetylene and benzene. The development of crude oil refining and the use of new processes to satisfy the increase in demand for gasoline has provided refinery off-gases and other hydrocarbons that are now used as the main source of industrial organic compounds, and the term petrochemicals arose to describe this evolution of the chemical industry.

Keywords

Vinyl Chloride Adipic Acid Terephthalic Acid Cobalt Catalyst Vanadium Pentoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. F. Goldstein and A. L. Waddams, The Petroleum Chemical Industry (3rd Edition), E. and F. N. Spon., London, 1967; P. H. Spitz, Petrochemicals: The Rise of an Industry, Wiley, New York, 1988.Google Scholar
  2. 2.
    A. L. Waddams, Chemicals from Petroleum (An Introductory Survey), John Murray, London, 1963/1968; R. Long, Production of Polymer/Plastic Intermediates from Petroleum, Butterworths, London, 1967; H. Steiner, Introduction to Petroleum Chemicals, Pergamon, London/NewYork, 1961.Google Scholar
  3. 3.
    P. H. Spitz, Petrochemicals: The Rise of an Industry, Wiley-Interscience, New York, 1988; K. Weissermel and H-J. Arpe, Industrial Organic Chemistry, VCH, Weinheim, 1993; S. Matar and L. F. Hatch, Chemistry of Petroleum Processes, Gulf., Houston, 1994; C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice (2nd Edition), Krieger, Malabar, Florida, 1996; C. Masters, Homogeneous Transition Metal Catalysts, Chapman & Hall, London, 1981; R. Pearce and W. R. Patterson, Catalysis and Chemical Processes, Leonard Hill, Glasgow, 1981; Catalysis Science Technology, Ed. by J. R. Anderson and M. Boudart, Vols. 1–8, Springer-Verlag, Berlin, 1981– 1987; Preparation of Catalysts—A Series, Ed. by B. Delmon, G. Poncelet, P. A. Jacobs, and Grange, Elsevier, Amsterdam, 1976–present; G. M. Wells, Handbook of Petrochemicals and Processes (2nd Edition), Ashgate, Oxford, 1999.Google Scholar
  4. 4.
    H. Hock and S. Lang, Berichte 77 (1944) 257.Google Scholar
  5. 5.
    Chem. Eng. News, April 4 (1994) 23.Google Scholar
  6. 6.
    H. V. Regnier, Ann. Chim. (Phys.) 58 (1835) 307.Google Scholar
  7. 7.
    H. Kolbe, Ausfs Lehrb Organ Chem. 1 (1854) 346.Google Scholar
  8. 8.
    E. Baumann, Liebigs Ann. 163 (1872) 649.Google Scholar
  9. 9.
    Griesheim Electron German Patent 278249 (1912) (Gas phase).Google Scholar
  10. 10.
    Griesheim Electron German Patent 281584 (1913) (Liquid phase).Google Scholar
  11. 11.
    Griesheim Electron German Patent 281887 (1913).Google Scholar
  12. 12.
    Consortium für Electrochemische Industrie, British Patent 339093 (1928).Google Scholar
  13. 13.
    B. F. Goodrich US Patent 2225635 (1938).Google Scholar
  14. 14.
    M Kaufman, The History of PVC, Ch. 3, MacLaren, London (1969).Google Scholar
  15. 15.
    D. P. K. Keane, R. E. S. Stobaugh, and P. L. T. Miller Townsend, Hydrocarbon Processing, Feb (1973) 100.Google Scholar
  16. 16.
    Burke, Miller, Chemical Week, (August 22, 1964) 93.Google Scholar
  17. 17.
    US Patent 4206180 (1980).Google Scholar
  18. 18.
    J. S. Naworski and E. S. Velez, Oxychlorination of Ethylene in Applied Industrial Catalysts, Vol. 1, Ch. 9, Ed. by B. E. Leach, Academic, New York, 1983, p. 239.Google Scholar
  19. 19.
    J. W. Harpring, A. E. Van Antwerp, R. F. Sterbenz, and T. L. Kang, US Patent 3488398 (1970).Google Scholar
  20. 20.
    N. V. EVC International, Hydrocarbon Processing, (March 1, 1997) 164.Google Scholar
  21. 21.
    German Patent 570980 (1929). Google Scholar
  22. 22.
    P. Morris, The American Synthetic Rubber Research Program, University of Pennsylvania Press, Philadelphia, 1989, p. 7.Google Scholar
  23. 23.
    P. Morris, The American Synthetic Rubber Research Program, University of Pennsylvania Press, Philadelphia, 1989, p. 13.Google Scholar
  24. 24.
    Rubber Reserve Co. Report on Rubber Program 1940–45, Schedule II, p. 61 (1945) Supplement No.1, p. 41/45.Google Scholar
  25. 25.
    S. V. Lebedev, British Patent 331402.Google Scholar
  26. 26.
    G. Egloff and G. Hulla, Chem. Rev. 36 (1945) 63.CrossRefGoogle Scholar
  27. 27.
    BIOS Report 1060. Google Scholar
  28. 28.
    BIOS Report 356.Google Scholar
  29. 29.
    F. E. Frey and W. F. Huppke, Ind. Eng. Chem. 25 (1933) 54; US Patent 2098959 (1937).Google Scholar
  30. 30.
    Report on Investigations of Fuels and Lubricants Teams: US Bureau of Mines Information Circulars (Potash), 7370, 7375 (1946); B. B. Corston, US Patent 2375405 (1942) (Magnesia).Google Scholar
  31. 31.
    K. Gordon, Progress in the Hydrogenation of Coal and Tar, Institute of Mechanical Engineers, Dec. 9, 1946.Google Scholar
  32. 32.
    R. Holroyd, Report on Investigations of Fuels and Lubricant Teams: US Bureau of Mines Information Circulars, 7370/7375 (1946).Google Scholar
  33. 33.
    K. K. Kearby, Ind. Eng. Chem. 42 (1950) 295; K. K. Kearby, Emmett, US Patent 2370797–8 (1945).Google Scholar
  34. 34.
    H. E. Drennan, US Patent 2371809 (1945); F. T. Eggertsen and H. H. Voge (Shell) US Patent 2414585 (1947).Google Scholar
  35. 35.
    F. T. Eggertsen and E. P. Davies, US Patent 2461147 (1949).Google Scholar
  36. 36.
    E. C. Britton, A. J. Dietzler, and C. R. Noddings, Ind. Eng. Chem. 43 (1951) 2871.CrossRefGoogle Scholar
  37. 37.
    Massoth and Scarpiello, J. Catal. 21 (1971) 294;. Rennard and Kehl, J. Catal. 21 (1971) 282.Google Scholar
  38. 38.
    Phillips Petroleum Star Process, Hydrocarbon Processing, June (1976) 133.Google Scholar
  39. 39.
    Linde Process, Chem. Eng. News, March, 1992; Hydrocarbon Processing, July (2000).Google Scholar
  40. 40.
    Styrene, its polymers, copolymers and derivatives, Ed. by R. H. Boundy, ACS Monograph 115, Reinhold, New York (1952).Google Scholar
  41. 41.
    I. G. Farben, US Patents 1986241 (1935) and 2110833 (1938).Google Scholar
  42. 42.
    Dow, US Patents 1985844 (1934) and 2036410 (1936).Google Scholar
  43. 43.
    H. W. Ashton and T. W. Flavell, BIOS Report 3057. Google Scholar
  44. 44.
    K. K. Kearby, Catalytic dehydrogenation, in Catalysis, Vol. 3, Ed. by P. H. Emmett, Reinhold, New York, 1955, p. 481.Google Scholar
  45. 45.
    K. K. Kearby, Catalytic dehydrogenation, in Catalysis, Vol. 3, Ed. by P. H. Emmett, Reinhold, New York, 1955, p. 480.Google Scholar
  46. 46.
    E. W. Pitzer, US Patent 2866790.Google Scholar
  47. 47.
    Fleming and W. R. Gutmann, US Patent 2990432.Google Scholar
  48. 48.
    W. R. Gutmann, US Patent 3361683.Google Scholar
  49. 49.
    F. J. O’Harra, US Patent 3904552.Google Scholar
  50. 50.
    Sud. Chemie, US Patent 4467046.Google Scholar
  51. 51.
    D. L. Williams, Styrene Catalysts, AICE Meeting, New Orleans, March 6– 10, 1988.Google Scholar
  52. 52.
    (a) Sud Chemie Literature; (b) P. R. Courty and C. Marcilly, A Scientific Approach to the Preparation of Bulk Mixed Oxide Catalysts, in Preparation of Catalysts III, Eds. by G. Poncelet, P. Grange and P. A. Jacobs, p. 485 (c) P. R. Courty and J. F. LePage, Relationship between average pore diameter and selectivity in iron-chromium-potassium dehydrogenation catalysts in Preparation of Catalysts II, Ed. by G. Poncelet, P. Grange and P. A. Jacobs, Elsevier Science Publishers, Amsterdam, 1978, p 293.Google Scholar
  53. 53.
    R. W. Moncrieff, Heywood and Co. Ltd., London, 1963; Chem. Eng. News, (March 21, 1994) 11; (May 2, 1994) 10.Google Scholar
  54. 54.
    W. H. Carothers, US Patents 2130523, 2130947–8 and 2163636; British Patents 461236 and 461367 (1937).Google Scholar
  55. 55.
    M. McCoy, Chem. Eng. News, (Aug 28, 2000) 10; (Oct 2, 2000) 33.Google Scholar
  56. 56.
    Chem. Eng. News, (April 26, 1971) 30.Google Scholar
  57. 57.
    C. A. Tolman, W. C. Seidel, J. D. Druliner, and P. J. Domaille, J. Organometallic Chem. 3 (1984) 33.CrossRefGoogle Scholar
  58. 58.
    E Billig, C B Strow and R L Pruett, Chem. Comm. (1968) 1307.Google Scholar
  59. 59.
    P. J. Hogan and J. R. Jennings, UK Patent 1,546,807 (to ICI plc).Google Scholar
  60. 60.
    R. J. Cozens and J. R. Jennings, Applied Catal. 19 (1995) 297.Google Scholar
  61. 61.
    P. Schlack, I. G. Farben Industrie, German Patent Chem. Eng. News (Oct 2, 2000) 32; US Patent 2241321 (1941); Smith, in The Production of Polymer and Plastics Intermediates from Petroleum, Ed. by Long, Butterworths, London (1967).Google Scholar
  62. 62.
    German Patent 748253.Google Scholar
  63. 63.
    O. Wallach, Synthetic Fiber Development in Germany, CIOS Report XXX, HMSO, London, 1945, p. 13.Google Scholar
  64. 64.
    Wallach, Liebigs Ann. 312 (1900) 171.Google Scholar
  65. 65.
    Hydrocarbon Processing 49 (1970)137; British Patents 1257609 (1971) and 1332211 (1973); US Patents 4092360 (1978) and 4203923 (1980).Google Scholar
  66. 66.
    M. A. Mantegazza, G. Paparatto, G. Petrini, G. Fornasari, and F. Trifiro (Enichem), Ammoxidation Reaction in Gas and Liquid Phase, p. 353, Catalysis of Organic Reactions, edited by M. G. Scaros and M. L. Prunier, Dekker, New York (1995).Google Scholar
  67. 67.
    W. Muench, Chimica Ind. Milano 44 (1962) 636; SNIA Viscosa Italian Patents 604795; Belgian Patents 582793, 603606.Google Scholar
  68. 68.
    Walter, J. Pract. Chem. 45 (1892) 107.Google Scholar
  69. 69.
    P. Woog, Comp. Rend., 145 (1907) 124.Google Scholar
  70. 70.
    P. Woog, French Patent 379715 (1907).Google Scholar
  71. 71.
    Weiss and Downs, US Patent 1321959 (1919).Google Scholar
  72. 72.
    Craver, British Patent 189091 (1920).Google Scholar
  73. 73.
    M. McCoy, Chem. Eng. News, (Oct 2, 2000) 32.Google Scholar
  74. 74.
    R. W. Moncrieff, Man Made Fibers, Wiley, New York, 1971; J. R. Whinfield and J. T. Dickson, British Patent 578,079 (1941); US Patent 2,465,319 (Assigned to DuPont)Google Scholar
  75. 75.
    P. Short, Chem. Eng. News, (May 15, 2000) 25.Google Scholar
  76. 76.
    C. Masters, Homogeneous Transition Metal Catalysts, Chapman & Hall, London (1981).Google Scholar
  77. 77.
    A. Tullo, DuPont NG-3 Process, Chem. Eng. News, (March 6, 2000) 25.Google Scholar
  78. 78.
    P. M. Morse, New Polyester, Chem. Eng. News, (Nov 10, 1997) 8.Google Scholar
  79. 79.
    O. Roelen, US Patent 2415102 (1947).Google Scholar
  80. 80.
    Combined Intelligence Sub-Committee Report (CIOS), G 2 RAPO 1.Google Scholar
  81. 81.
    G. U. Ferguson, in The Production of Polymer and Plastics Intermediates from Petroleum, Ed. R. Long, Butterworth, London (1967), p. 86.Google Scholar
  82. 82.
    R. Wyman, in Selected developments in catalysts, Ed. J. R. Jennings, Critical Reports on Applied Chemistry, Vol. 12, Blackwell, Oxford (1985), p. 128.Google Scholar
  83. 83.
    L. H. Slaugh and R. D. Mullineaux, Organomet. Chem. 13 (1968) 469; E. R. Tucci, Ind. Eng. Chem. Prod. Res. Dev. 9 (1970) 516.Google Scholar
  84. 84.
    R. Fowler, H. Connor, and R. A. Baehl, Hydrocarbon Processing, (Sept. 1976) 247; Chem. Eng. News (March 9, 1998).Google Scholar
  85. 85.
    Chem. Eng. News (Oct 10, 1994).Google Scholar
  86. 86.
    K. Weissermel and H-J. Arpe, Industrial Organic Chemistry, VCH, Weinheim, 1993.Google Scholar
  87. 87.
    E. Wiebus and B. Cornils, Hydrocarbon Processing, (March 1996) 63.Google Scholar
  88. 88.
    N. von Kutepow,W. Himmele, and H. Hohenschitz, Chem. Ingr. Tech. 37 (1965) 383; Hydrocarbon Processing 45 (1966) 141.Google Scholar
  89. 89.
    F. E. Paulic and J. F. Roth, J. Amer. Chem. Soc. Chem. Comm. (1968) 1578.Google Scholar
  90. 90.
    D. Forster, J. Amer. Chem. Soc. 98 (1976) 846.CrossRefGoogle Scholar
  91. 91.
    Catiwa Process, Chem. Eng. News, (July 1, 1996) 8Google Scholar
  92. 92.
    F. C. Phillips, J. Amer. Chem. Soc. 16 (1894) 255.CrossRefGoogle Scholar
  93. 93.
    J. Smit, W. Hafner, R. Jira, R. Sieber, J. Sedlmeier, and A. Sabel, Angew. Chem. (Int Edn) 1 (1962) 80.CrossRefGoogle Scholar
  94. 94.
    R. Banks, Discovery and Development of Olefin Disproportionation (Metathesis), American Chemical Society (1983).Google Scholar
  95. 95.
    Hydrocarbon Processing, (March, 1998) 61.Google Scholar
  96. 96.
    Oil Gas J., (Sep. 20 1999) 62.Google Scholar
  97. 97.
    E. R. Freitas and C. R. Gum, Chem. Eng. Prog., (Jan 1979) 73.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lawrie Lloyd
    • 1
  1. 1.BathUK

Personalised recommendations