Skip to main content

Petrochemical Catalysts

  • Chapter
  • First Online:

Part of the book series: Fundamental and Applied Catalysis ((FACA))

Abstract

Organic chemical compounds have been produced on an industrial scale for over a century. In the early days, the source of carbon was coal, and many of the compounds were produced via the intermediate manufacture of acetylene and benzene. The development of crude oil refining and the use of new processes to satisfy the increase in demand for gasoline has provided refinery off-gases and other hydrocarbons that are now used as the main source of industrial organic compounds, and the term petrochemicals arose to describe this evolution of the chemical industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. F. Goldstein and A. L. Waddams, The Petroleum Chemical Industry (3rd Edition), E. and F. N. Spon., London, 1967; P. H. Spitz, Petrochemicals: The Rise of an Industry, Wiley, New York, 1988.

    Google Scholar 

  2. A. L. Waddams, Chemicals from Petroleum (An Introductory Survey), John Murray, London, 1963/1968; R. Long, Production of Polymer/Plastic Intermediates from Petroleum, Butterworths, London, 1967; H. Steiner, Introduction to Petroleum Chemicals, Pergamon, London/NewYork, 1961.

    Google Scholar 

  3. P. H. Spitz, Petrochemicals: The Rise of an Industry, Wiley-Interscience, New York, 1988; K. Weissermel and H-J. Arpe, Industrial Organic Chemistry, VCH, Weinheim, 1993; S. Matar and L. F. Hatch, Chemistry of Petroleum Processes, Gulf., Houston, 1994; C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice (2nd Edition), Krieger, Malabar, Florida, 1996; C. Masters, Homogeneous Transition Metal Catalysts, Chapman & Hall, London, 1981; R. Pearce and W. R. Patterson, Catalysis and Chemical Processes, Leonard Hill, Glasgow, 1981; Catalysis Science Technology, Ed. by J. R. Anderson and M. Boudart, Vols. 1–8, Springer-Verlag, Berlin, 1981– 1987; Preparation of Catalysts—A Series, Ed. by B. Delmon, G. Poncelet, P. A. Jacobs, and Grange, Elsevier, Amsterdam, 1976–present; G. M. Wells, Handbook of Petrochemicals and Processes (2nd Edition), Ashgate, Oxford, 1999.

    Google Scholar 

  4. H. Hock and S. Lang, Berichte 77 (1944) 257.

    Google Scholar 

  5. Chem. Eng. News, April 4 (1994) 23.

    Google Scholar 

  6. H. V. Regnier, Ann. Chim. (Phys.) 58 (1835) 307.

    Google Scholar 

  7. H. Kolbe, Ausfs Lehrb Organ Chem. 1 (1854) 346.

    Google Scholar 

  8. E. Baumann, Liebigs Ann. 163 (1872) 649.

    Google Scholar 

  9. Griesheim Electron German Patent 278249 (1912) (Gas phase).

    Google Scholar 

  10. Griesheim Electron German Patent 281584 (1913) (Liquid phase).

    Google Scholar 

  11. Griesheim Electron German Patent 281887 (1913).

    Google Scholar 

  12. Consortium für Electrochemische Industrie, British Patent 339093 (1928).

    Google Scholar 

  13. B. F. Goodrich US Patent 2225635 (1938).

    Google Scholar 

  14. M Kaufman, The History of PVC, Ch. 3, MacLaren, London (1969).

    Google Scholar 

  15. D. P. K. Keane, R. E. S. Stobaugh, and P. L. T. Miller Townsend, Hydrocarbon Processing, Feb (1973) 100.

    Google Scholar 

  16. Burke, Miller, Chemical Week, (August 22, 1964) 93.

    Google Scholar 

  17. US Patent 4206180 (1980).

    Google Scholar 

  18. J. S. Naworski and E. S. Velez, Oxychlorination of Ethylene in Applied Industrial Catalysts, Vol. 1, Ch. 9, Ed. by B. E. Leach, Academic, New York, 1983, p. 239.

    Google Scholar 

  19. J. W. Harpring, A. E. Van Antwerp, R. F. Sterbenz, and T. L. Kang, US Patent 3488398 (1970).

    Google Scholar 

  20. N. V. EVC International, Hydrocarbon Processing, (March 1, 1997) 164.

    Google Scholar 

  21. German Patent 570980 (1929).

    Google Scholar 

  22. P. Morris, The American Synthetic Rubber Research Program, University of Pennsylvania Press, Philadelphia, 1989, p. 7.

    Google Scholar 

  23. P. Morris, The American Synthetic Rubber Research Program, University of Pennsylvania Press, Philadelphia, 1989, p. 13.

    Google Scholar 

  24. Rubber Reserve Co. Report on Rubber Program 1940–45, Schedule II, p. 61 (1945) Supplement No.1, p. 41/45.

    Google Scholar 

  25. S. V. Lebedev, British Patent 331402.

    Google Scholar 

  26. G. Egloff and G. Hulla, Chem. Rev. 36 (1945) 63.

    Article  CAS  Google Scholar 

  27. BIOS Report 1060.

    Google Scholar 

  28. BIOS Report 356.

    Google Scholar 

  29. F. E. Frey and W. F. Huppke, Ind. Eng. Chem. 25 (1933) 54; US Patent 2098959 (1937).

    Google Scholar 

  30. Report on Investigations of Fuels and Lubricants Teams: US Bureau of Mines Information Circulars (Potash), 7370, 7375 (1946); B. B. Corston, US Patent 2375405 (1942) (Magnesia).

    Google Scholar 

  31. K. Gordon, Progress in the Hydrogenation of Coal and Tar, Institute of Mechanical Engineers, Dec. 9, 1946.

    Google Scholar 

  32. R. Holroyd, Report on Investigations of Fuels and Lubricant Teams: US Bureau of Mines Information Circulars, 7370/7375 (1946).

    Google Scholar 

  33. K. K. Kearby, Ind. Eng. Chem. 42 (1950) 295; K. K. Kearby, Emmett, US Patent 2370797–8 (1945).

    Google Scholar 

  34. H. E. Drennan, US Patent 2371809 (1945); F. T. Eggertsen and H. H. Voge (Shell) US Patent 2414585 (1947).

    Google Scholar 

  35. F. T. Eggertsen and E. P. Davies, US Patent 2461147 (1949).

    Google Scholar 

  36. E. C. Britton, A. J. Dietzler, and C. R. Noddings, Ind. Eng. Chem. 43 (1951) 2871.

    Article  CAS  Google Scholar 

  37. Massoth and Scarpiello, J. Catal. 21 (1971) 294;. Rennard and Kehl, J. Catal. 21 (1971) 282.

    Google Scholar 

  38. Phillips Petroleum Star Process, Hydrocarbon Processing, June (1976) 133.

    Google Scholar 

  39. Linde Process, Chem. Eng. News, March, 1992; Hydrocarbon Processing, July (2000).

    Google Scholar 

  40. Styrene, its polymers, copolymers and derivatives, Ed. by R. H. Boundy, ACS Monograph 115, Reinhold, New York (1952).

    Google Scholar 

  41. I. G. Farben, US Patents 1986241 (1935) and 2110833 (1938).

    Google Scholar 

  42. Dow, US Patents 1985844 (1934) and 2036410 (1936).

    Google Scholar 

  43. H. W. Ashton and T. W. Flavell, BIOS Report 3057.

    Google Scholar 

  44. K. K. Kearby, Catalytic dehydrogenation, in Catalysis, Vol. 3, Ed. by P. H. Emmett, Reinhold, New York, 1955, p. 481.

    Google Scholar 

  45. K. K. Kearby, Catalytic dehydrogenation, in Catalysis, Vol. 3, Ed. by P. H. Emmett, Reinhold, New York, 1955, p. 480.

    Google Scholar 

  46. E. W. Pitzer, US Patent 2866790.

    Google Scholar 

  47. Fleming and W. R. Gutmann, US Patent 2990432.

    Google Scholar 

  48. W. R. Gutmann, US Patent 3361683.

    Google Scholar 

  49. F. J. O’Harra, US Patent 3904552.

    Google Scholar 

  50. Sud. Chemie, US Patent 4467046.

    Google Scholar 

  51. D. L. Williams, Styrene Catalysts, AICE Meeting, New Orleans, March 6– 10, 1988.

    Google Scholar 

  52. (a) Sud Chemie Literature; (b) P. R. Courty and C. Marcilly, A Scientific Approach to the Preparation of Bulk Mixed Oxide Catalysts, in Preparation of Catalysts III, Eds. by G. Poncelet, P. Grange and P. A. Jacobs, p. 485 (c) P. R. Courty and J. F. LePage, Relationship between average pore diameter and selectivity in iron-chromium-potassium dehydrogenation catalysts in Preparation of Catalysts II, Ed. by G. Poncelet, P. Grange and P. A. Jacobs, Elsevier Science Publishers, Amsterdam, 1978, p 293.

    Google Scholar 

  53. R. W. Moncrieff, Heywood and Co. Ltd., London, 1963; Chem. Eng. News, (March 21, 1994) 11; (May 2, 1994) 10.

    Google Scholar 

  54. W. H. Carothers, US Patents 2130523, 2130947–8 and 2163636; British Patents 461236 and 461367 (1937).

    Google Scholar 

  55. M. McCoy, Chem. Eng. News, (Aug 28, 2000) 10; (Oct 2, 2000) 33.

    Google Scholar 

  56. Chem. Eng. News, (April 26, 1971) 30.

    Google Scholar 

  57. C. A. Tolman, W. C. Seidel, J. D. Druliner, and P. J. Domaille, J. Organometallic Chem. 3 (1984) 33.

    Article  CAS  Google Scholar 

  58. E Billig, C B Strow and R L Pruett, Chem. Comm. (1968) 1307.

    Google Scholar 

  59. P. J. Hogan and J. R. Jennings, UK Patent 1,546,807 (to ICI plc).

    Google Scholar 

  60. R. J. Cozens and J. R. Jennings, Applied Catal. 19 (1995) 297.

    Google Scholar 

  61. P. Schlack, I. G. Farben Industrie, German Patent Chem. Eng. News (Oct 2, 2000) 32; US Patent 2241321 (1941); Smith, in The Production of Polymer and Plastics Intermediates from Petroleum, Ed. by Long, Butterworths, London (1967).

    Google Scholar 

  62. German Patent 748253.

    Google Scholar 

  63. O. Wallach, Synthetic Fiber Development in Germany, CIOS Report XXX, HMSO, London, 1945, p. 13.

    Google Scholar 

  64. Wallach, Liebigs Ann. 312 (1900) 171.

    Google Scholar 

  65. Hydrocarbon Processing 49 (1970)137; British Patents 1257609 (1971) and 1332211 (1973); US Patents 4092360 (1978) and 4203923 (1980).

    Google Scholar 

  66. M. A. Mantegazza, G. Paparatto, G. Petrini, G. Fornasari, and F. Trifiro (Enichem), Ammoxidation Reaction in Gas and Liquid Phase, p. 353, Catalysis of Organic Reactions, edited by M. G. Scaros and M. L. Prunier, Dekker, New York (1995).

    Google Scholar 

  67. W. Muench, Chimica Ind. Milano 44 (1962) 636; SNIA Viscosa Italian Patents 604795; Belgian Patents 582793, 603606.

    Google Scholar 

  68. Walter, J. Pract. Chem. 45 (1892) 107.

    Google Scholar 

  69. P. Woog, Comp. Rend., 145 (1907) 124.

    CAS  Google Scholar 

  70. P. Woog, French Patent 379715 (1907).

    Google Scholar 

  71. Weiss and Downs, US Patent 1321959 (1919).

    Google Scholar 

  72. Craver, British Patent 189091 (1920).

    Google Scholar 

  73. M. McCoy, Chem. Eng. News, (Oct 2, 2000) 32.

    Google Scholar 

  74. R. W. Moncrieff, Man Made Fibers, Wiley, New York, 1971; J. R. Whinfield and J. T. Dickson, British Patent 578,079 (1941); US Patent 2,465,319 (Assigned to DuPont)

    Google Scholar 

  75. P. Short, Chem. Eng. News, (May 15, 2000) 25.

    Google Scholar 

  76. C. Masters, Homogeneous Transition Metal Catalysts, Chapman & Hall, London (1981).

    Google Scholar 

  77. A. Tullo, DuPont NG-3 Process, Chem. Eng. News, (March 6, 2000) 25.

    Google Scholar 

  78. P. M. Morse, New Polyester, Chem. Eng. News, (Nov 10, 1997) 8.

    Google Scholar 

  79. O. Roelen, US Patent 2415102 (1947).

    Google Scholar 

  80. Combined Intelligence Sub-Committee Report (CIOS), G 2 RAPO 1.

    Google Scholar 

  81. G. U. Ferguson, in The Production of Polymer and Plastics Intermediates from Petroleum, Ed. R. Long, Butterworth, London (1967), p. 86.

    Google Scholar 

  82. R. Wyman, in Selected developments in catalysts, Ed. J. R. Jennings, Critical Reports on Applied Chemistry, Vol. 12, Blackwell, Oxford (1985), p. 128.

    Google Scholar 

  83. L. H. Slaugh and R. D. Mullineaux, Organomet. Chem. 13 (1968) 469; E. R. Tucci, Ind. Eng. Chem. Prod. Res. Dev. 9 (1970) 516.

    Google Scholar 

  84. R. Fowler, H. Connor, and R. A. Baehl, Hydrocarbon Processing, (Sept. 1976) 247; Chem. Eng. News (March 9, 1998).

    Google Scholar 

  85. Chem. Eng. News (Oct 10, 1994).

    Google Scholar 

  86. K. Weissermel and H-J. Arpe, Industrial Organic Chemistry, VCH, Weinheim, 1993.

    Google Scholar 

  87. E. Wiebus and B. Cornils, Hydrocarbon Processing, (March 1996) 63.

    Google Scholar 

  88. N. von Kutepow,W. Himmele, and H. Hohenschitz, Chem. Ingr. Tech. 37 (1965) 383; Hydrocarbon Processing 45 (1966) 141.

    Google Scholar 

  89. F. E. Paulic and J. F. Roth, J. Amer. Chem. Soc. Chem. Comm. (1968) 1578.

    Google Scholar 

  90. D. Forster, J. Amer. Chem. Soc. 98 (1976) 846.

    Article  CAS  Google Scholar 

  91. Catiwa Process, Chem. Eng. News, (July 1, 1996) 8

    Google Scholar 

  92. F. C. Phillips, J. Amer. Chem. Soc. 16 (1894) 255.

    Article  Google Scholar 

  93. J. Smit, W. Hafner, R. Jira, R. Sieber, J. Sedlmeier, and A. Sabel, Angew. Chem. (Int Edn) 1 (1962) 80.

    Article  Google Scholar 

  94. R. Banks, Discovery and Development of Olefin Disproportionation (Metathesis), American Chemical Society (1983).

    Google Scholar 

  95. Hydrocarbon Processing, (March, 1998) 61.

    Google Scholar 

  96. Oil Gas J., (Sep. 20 1999) 62.

    Google Scholar 

  97. E. R. Freitas and C. R. Gum, Chem. Eng. Prog., (Jan 1979) 73.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lloyd, L. (2011). Petrochemical Catalysts. In: Handbook of Industrial Catalysts. Fundamental and Applied Catalysis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49962-8_7

Download citation

Publish with us

Policies and ethics