Advertisement

Oxidation Catalysts

  • Lawrie Lloyd
Chapter
Part of the Fundamental and Applied Catalysis book series (FACA)

Abstract

Oxidation catalysts were among the first to be described and then developed industrially. Because of the energy evolved, oxidation processes were originally known as catalytically induced combustion. Some of the earliest catalytic oxidation reactions used commercially are shown in Table 4.1. This list could also include the Deacon and the Claus processes, which were described in Chapter 2. Subsequently, nitric acid and formaldehyde were produced on a large scale by catalytic oxidation processes. In most early processes, once a reasonable catalyst had been developed, production was limited only by demand and the availability of efficient equipment.

Keywords

Ethylene Oxide Maleic Anhydride Ammonia Oxidation Molybdenum Oxide Oxidative Dehydrogenation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Kuhlmann, Annalen. 29 (1839) 281; French Patent 11331 (1839).Google Scholar
  2. 2.
    F. Kuhlmann, French Patent 11332 (1839).Google Scholar
  3. 3.
    T. J. Smith and T. du Motay, British Patent 491 (1871).Google Scholar
  4. 4.
    Beyer & Company, British Patent 18594 (1903).Google Scholar
  5. 5.
    BASF British Patent 13848 (1914).Google Scholar
  6. 6.
    BASF Norwegian Patent 26691 (1916); US Patent 1211394 (1916).Google Scholar
  7. 7.
    Scott, Ind. Eng. Chem. 16 (1924) 74; Scott and Leech 19 (1927) 170; ICI, Chem. Eng. News. 48, May 25 (1970); C. and I. Girdler, Chem. Eng. 77, No. 14 (1970) 24.Google Scholar
  8. 8.
    F. Beyer, Chem. Met. Eng. 24 (1921) 305, 347.Google Scholar
  9. 9.
    J. Zawadski, Disc. Faraday Soc. 8 (1950)140.CrossRefGoogle Scholar
  10. 10.
    W. Ostwald, British Patents 698 (1902), 8300 (1902), 7909 (1908); French Patent 317544 (1902); US Patent 858904 (1902).Google Scholar
  11. 11.
    W. S. Landis, Chem. Met. Eng. 20 (1919) 471.Google Scholar
  12. 12.
    K. Kaiser, Chem. Zeit, 14 (1916); German Patent 271517 (1910); British Patent 20325 (1910); US Patent 987375 (1911); Partington, J. Soc. Chem. Ind. 37 (1918) 337R.Google Scholar
  13. 13.
    N. Caro and A. Frank; German Patents 286991, 303822, 304269 (1914); Schuphans Chem. Met. Eng. 14 (1916) 425.Google Scholar
  14. 14.
    J. R. Partington, J. Soc. Chem. Ind. 40 (1921) 185R.CrossRefGoogle Scholar
  15. 15.
    E. J. Pranke, Chem. Met. Eng. 19 (1918) 396; Fairlee, Chem. Met. Eng. 20 (1918) 6.Google Scholar
  16. 16.
    Parsons and Jones, US Patent 1321376; Parsons, J. Ind. Eng. Chem. 11 (1919) 541.Google Scholar
  17. 17.
    S. L. Handforth and J. N. Tilley, British Patent 306382 (1928); Ind. Eng. Chem. 26 (1934) 1287.CrossRefGoogle Scholar
  18. 18.
    A. E. Heywood, Plat. Met. Rev. 17 (1973) 118.Google Scholar
  19. 19.
    N. H. Harboard, Plat. Met. Rev. 18 (1974) 97.Google Scholar
  20. 20.
    G. R. Gillespie and R. E. Kenson, Chem. Tech. (1971) 627; British Patents 1347491, 1471327.Google Scholar
  21. 21.
    A. E. Heywood, Plat. Met. Rev. 26 (1982) 28; Connor, Plat. Met. Rev. 11 (1967) 60; Holzmann, Plat. Met. Rev. 13 (1969) 2.Google Scholar
  22. 22.
    Hofmann, Berichte 11 (1878) 1685.Google Scholar
  23. 23.
    A. Trillat, Oxydation des Alcohols, (1901); Bull. Soc. Chem. 27 (3) (1902) 797; 29 (1903) 35; French Patent 199919 (1889); German Patent 55176 (1889).Google Scholar
  24. 24.
    E. I. Orlov, Formaldehyde, Barth, Leipzig (1909).Google Scholar
  25. 25.
    Le Blanc and Plaschke Zeit Electrochem. 17 (1911) 45.Google Scholar
  26. 26.
    Bouliard, French Patent 415501 (1910).Google Scholar
  27. 27.
    Le Blanc German Patent 228697 (1910); French Patent 418349 (1910).Google Scholar
  28. 28.
    Morel, J. Pharm. Chem. 21 (1905) 177.Google Scholar
  29. 29.
    S. J. Green, Industrial Catalysis, Benn, London, 1928, p. 385.Google Scholar
  30. 30.
    V. E. Meharg and H Adkins, US Patent 1913405 (1923); H. Adkins and W. R. Peterson, J. Am. Chem. Soc. 53 (1931) 1512.Google Scholar
  31. 31.
    R. N. Hader, R. D. Wallace, and R. W. McKinney (du Pont), Ind. Eng. Chem. 44 (1952) 1508.CrossRefGoogle Scholar
  32. 32.
    L. F. Marec and D. A. Hahn, Catalytic Oxidation of Organic Compounds in the Vapor Phase, Chem. Catalogue Co, New York, 1932.Google Scholar
  33. 33.
    J. F. Walker, Formaldehyde, Reinhold, New York (1st Ed.), 1953; (3rd Edition) 1964.Google Scholar
  34. 34.
    I. E. Wachs and R. J. Madix, J. Catal. 53 (1978) 208.CrossRefGoogle Scholar
  35. 35.
    J. F. Le Page, Applied Heterogeneous Catalysis, Editions Technip, Paris, 1987, p. 311.Google Scholar
  36. 36.
    L. Andrussov, German Patent 549055 (1932); US Patent 1934838 (1933); Angew. Chem. 48 (1935) 593.CrossRefGoogle Scholar
  37. 37.
    L. Andrussov, Angew. Chem. 39 (1926) 321; 40 (1927) 166; 41 (1928) 205, 262; 48 (1935) 593; Berichte 59 (1926) 458; 60 (1927) 536, 2005; 71 (1938) 76.Google Scholar
  38. 38.
    L. Andrussov, Chem. Ing-Tech. 27 (1955) 469; Berichte 60 (1927) 2005; Bull. Soc. Chim., (1951) 45–50.Google Scholar
  39. 39.
    L. Andrussov, Chem. Ing-Tech. 25 (1953) 697; Plat. Me.t Rev. 22 (1978) 131.Google Scholar
  40. 40.
    A. B. Stiles, US Patent 2726931 (1955); D. R. Merrill and W. A. Perry, US Patent 2478875 (1948).Google Scholar
  41. 41.
    US Patent 2831752 (1958); British Patent 785657 (1957).Google Scholar
  42. 42.
    H. Davy and Erdman, Phil. Trans. 107 (1817) 77.CrossRefGoogle Scholar
  43. 43.
    Fletcher, J. Gas Light 1 (1887) 168.Google Scholar
  44. 44.
    W. A. Bone, J. Roy. Soc. Arts 62 (1914) 787, 801, 818.Google Scholar
  45. 45.
    S. J. Green, Industrial Catalysts, p. 113, Benn, London, 1928.Google Scholar
  46. 46.
    A. B. Lamb, W. C. Bray and J. C. W. Frazer, Ind. Eng. Chem. 12 (1920) 213.CrossRefGoogle Scholar
  47. 47.
    W. A. Whitesell and J. C. W. Frazer, J. Am. Chem. Soc. 45 (1923) 2841.CrossRefGoogle Scholar
  48. 48.
    M. Katz, Advances in Catalysis, Vol. 5, Academic, New York. 1953, p. 177.Google Scholar
  49. 49.
    Disc. Faraday Soc. 8 (1950) 215.Google Scholar
  50. 50.
    J. Mars and D. W. van Krevelan, Chem. Eng. Sci. 3 (1954) 41.CrossRefGoogle Scholar
  51. 51.
    H. G. Weiss and C. R. Downs, Ind. Eng. Chem. 12 (1920) 228; 15 (1923) 965.Google Scholar
  52. 52.
    K. Weissermel and H. J. Arpe, Industrial Organic Chemistry, (2nd Edition) VCH, Weinheim, 1993.Google Scholar
  53. 53.
    Gibbs and Condover; US Patent 1284887–8; 1285117; 1288431; 1303168 (1918/19); British Patents 119517–8; 14150–1 (1917).Google Scholar
  54. 54.
    Seldom Company, British Patent 170022 (1920).Google Scholar
  55. 55.
    A. Wohl, British Patent 145071 (1920).Google Scholar
  56. 56.
    H. G. Weiss and C. R. Downs, US Patents 1374965; 11374720–2; 1377534 (1921).Google Scholar
  57. 57.
    A. E. Craver, US Patent 1489741 (1924).Google Scholar
  58. 58.
    Gibbs and Condover, Ind. Eng. Chem. 11 (1919) 1031; 14 (1922) 120.Google Scholar
  59. 59.
    Gibbs, US Patent 1458478 (1923).Google Scholar
  60. 60.
    S. J. Green, Industrial Catalysts, Benn, London, 1928, p. 122.Google Scholar
  61. 61.
    Kusama, J. Chem. Soc. Jap., 44 (1923) 605.Google Scholar
  62. 62.
    C. R. Downs, US Patents 1589632; 1604739 (1926).Google Scholar
  63. 63.
    BIOS Report 936, p 6.Google Scholar
  64. 64.
    W. O. Fugate, US Patent 2698330 (1954); British Patent 702616 (1954).Google Scholar
  65. 65.
    G. C. Bond, J. Catal. 116 (1989) 531.CrossRefGoogle Scholar
  66. 66.
    P. Schoen and N. V. Zoon, Dutch Patent 64720 (1949).Google Scholar
  67. 67.
    G. Cavani, F. Centi, Parrinello, and F. Trefiro, Preparation of Catalysts IV, Ed. by B. Delmon, P. Grange, P. A. Jacobs and G. Poncelet, Elsevier, Amsterdam, 1987, p. 227; Chem. and Eng. News, April 10 (1995) 37.Google Scholar
  68. 68.
    DuPont, US Patent 2605238 (1952).Google Scholar
  69. 69.
    R. J. Sampson in Catalysis, Science and Technology, Vol. 8, Ed. by Anderson and Boudart, Springer-Verlag, Berlin, 1987, p. 49.Google Scholar
  70. 70.
    Hydrocarbon Processing, Nov. (1980) 149.Google Scholar
  71. 71.
    Petrotex US Patents 3255211–3; 3288721 (1966); British Patent 1095223 (1967).Google Scholar
  72. 72.
    Distillers, US Patent 2649477.Google Scholar
  73. 73.
    Atlantic Refining Company, US Patent 2773838.Google Scholar
  74. 74.
    D. W. van Krevelan, thesis, Delft University, Excelsior, The Hague (1958).Google Scholar
  75. 75.
    G. J. Hutchings, A. Desmartin-Chomel, R. Oliev and J-C. Volta, Nature, 368, March 3 (1999) 41.Google Scholar
  76. 76.
    R. J. Sampson in Catalysis, Science and Technology, Vol. 8, Ed. by Anderson and Boudart, Springer-Verlag, Berlin, 1987, p. 54.Google Scholar
  77. 77.
    Trevida and Culbertson, Maleic Anhydride, Plenum, New York, 1982.Google Scholar
  78. 78.
    H. Heller, G. Lenz and R. Thiel, Inst. Chem. Eng. Symp. Ser., No. 50 (1977) 121.Google Scholar
  79. 79.
    Hydrocarbon Processing, Nov. (1977) 180; Nov. (1981) 180.Google Scholar
  80. 80.
    BASF, German Patent 1443452 (1970); German Offen 2030201 (1971); British Patent 1154148 (1969).Google Scholar
  81. 81.
    Mitsubishi Chemical Industries Ltd., Chem. Eng. Econ. Reporter, Oct. (1982) 25.Google Scholar
  82. 82.
    Badger, Chem. Market Reporter, Dec. 8 (1980) 3; Schaffel. et al., Erdol. Kohle 36 (1987) 85.Google Scholar
  83. 83.
    Sohio/UCB ECN, Sept. 20 (1982) 25; Chem. Week, Oct. 6 (1982) 31.Google Scholar
  84. 84.
    Alusuisse/Lummus Crest ECN, May 30 (1983) 22.Google Scholar
  85. 85.
    DuPont Chem. Eng. News, March (1989) 35.Google Scholar
  86. 86.
    DuPont Chem. Eng. News, April (1995) 20.Google Scholar
  87. 87.
    T. E. Lefort, French Patent 729952 (1931); US Patent 1998878 (1935).Google Scholar
  88. 88.
    Scientific Design, British Patents 711601; 721412.Google Scholar
  89. 89.
    Shell, British Patents 754493; 638319; van Oosten, J. Inst. Petrol., 46 (1960) 347.Google Scholar
  90. 90.
    D. J. Hucknall, Selective Oxidation of Hydrocarbons, Academic, London, 1974, p. 10.Google Scholar
  91. 91.
    US Patent 2477435 (1949); British Patent 2043481 (1980).Google Scholar
  92. 92.
    P. A. Kilty and W. M. H. Sachtler, Catal. Rev.—Sci. Eng. 10 (1974) 1; S. Carra and P. Forzatti, Catal. Rev.—Sci. Eng. 15 (1977) 1.Google Scholar
  93. 93.
    R. A. van Santen and H. P. C. E. Kuipers, Adv. Catal. 35 (1987) 265; R. A. van Santen, Proc. 9th Int. Conf. Catalysts, Chemical Institute, Canada, 1988, p. 1152.Google Scholar
  94. 94.
    C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice (2nd Edition), Krieger Malabar, 1996, p. 282.Google Scholar
  95. 95.
    McKim and Cambron, Can. J. Res. B27 (11) (1949) 813.Google Scholar
  96. 96.
    G. H. Law and H. C. Chitwood, US Patent 2194602 (1940); US Patent 2279469 (1942).Google Scholar
  97. 97.
    M. A. Dalin, I. K. Kolchin and B. R.Serebryakov, Acrylonitrile, Technomic, Westport, Conn., 1971.Google Scholar
  98. 98.
    J. D. Idol US Patent 2904480 (1959); J. L. Callahan, J. J. Szabo and B. Gertuser, US Patent 3186955 (1966); British Patent 821999 (1958).Google Scholar
  99. 99.
    British Patent 908655 (1962).Google Scholar
  100. 100.
    J. D. Idol US Patent 2904580 (1959).Google Scholar
  101. 101.
    J. L. Callahan, R. W. Foreman, and F. Veatch, US Patent 3044966 (1962).Google Scholar
  102. 102.
    Sohio, US Patents 3198750 (1965); 3308151 (1969).Google Scholar
  103. 103.
    Nitto Chemical Industries, Co. Ltd., Japanese Patent 7103438 (1971); German Offen 1811063 (1969).Google Scholar
  104. 104.
    R. K. Grasselli and Burrington, Adv. Catal. 30 (1981) 133; R. A. Sneider and Hill, Catal. Rev.—Sci. Eng. 31 (1989) 43; R. K. Grasselli, Burrington, and Lartisak, J. Catal. 63 (1980) 239.Google Scholar
  105. 105.
    R. K. Grasselli, Heterogeneous Catalysis: Selected American Histories, Ed. by Davis and Hettinger, ACS Symposium Series, No. 222,1983, p. 317; Appl. Catal. A: General 136 (1996) 205.Google Scholar
  106. 106.
    P. H. Emmett, Catalysis, Vol 7, Reinhold, New York, 1960, p. 294.Google Scholar
  107. 107.
    J. M. Thomas and W. J. Thomas, Principles and Practice of Heterogeneous Catalysis, VCH, Weinheim, 1997, p. 345.Google Scholar
  108. 108.
    R. K. Grasselli and J. L. Callahan, J. Catal. 14 (1969) 93.CrossRefGoogle Scholar
  109. 109.
    Y. Kim, W. Ueda, and Y. Moro-Oka, New Developments in Selective Oxidation, Elsevier, Amsterdam, 1990, p. 491; Appl. Catal. 70 (1991) 175, 189.Google Scholar
  110. 110.
    N. Harris, British Patent 1336136 (1973).Google Scholar
  111. 111.
    G. Centi, F. Trifiro, R. K. Grasselli, and E. Patane, New Developments in Selective Oxidation, Elsevier, Amsterdam, 1990, p.515; Ind. Eng. Chem. Res. 31 (1992) 107; Catal. Today 13 (1992) 661.Google Scholar
  112. 112.
    M. Bowker, C. R. Bicknell, and P. Kirwin, Appl. Catal. A: General 136, (1996) 205.CrossRefGoogle Scholar
  113. 113.
    B. P. Amoco, Chem. Eng. News, Sept. 23 (1996) 18.Google Scholar
  114. 114.
    German Offen 2056614 (1972).Google Scholar
  115. 115.
    K. W. Furman and G. W. Hearne, US Patent 2991320 (1961).Google Scholar
  116. 116.
    Hydrocarbon Processing, Nov. (1978) 131; R. J. Rennard and W. L. Kehl, J. Catal. 21 (1971) 282; Massoth and Scarpiello, J. Catal. 21 (1971) 294.Google Scholar
  117. 117.
    Petrotex, US Patents 3607966 (1971); 3666687 (1972).Google Scholar
  118. 118.
    Phillips Petroleum, US Patents 3580969 (1971); 3686346 (1972); 3501547 (1970).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lawrie Lloyd
    • 1
  1. 1.BathUK

Personalised recommendations