Skip to main content

Oxidation Catalysts

  • Chapter
  • First Online:
Handbook of Industrial Catalysts

Part of the book series: Fundamental and Applied Catalysis ((FACA))

Abstract

Oxidation catalysts were among the first to be described and then developed industrially. Because of the energy evolved, oxidation processes were originally known as catalytically induced combustion. Some of the earliest catalytic oxidation reactions used commercially are shown in Table 4.1. This list could also include the Deacon and the Claus processes, which were described in Chapter 2. Subsequently, nitric acid and formaldehyde were produced on a large scale by catalytic oxidation processes. In most early processes, once a reasonable catalyst had been developed, production was limited only by demand and the availability of efficient equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Kuhlmann, Annalen. 29 (1839) 281; French Patent 11331 (1839).

    Google Scholar 

  2. F. Kuhlmann, French Patent 11332 (1839).

    Google Scholar 

  3. T. J. Smith and T. du Motay, British Patent 491 (1871).

    Google Scholar 

  4. Beyer & Company, British Patent 18594 (1903).

    Google Scholar 

  5. BASF British Patent 13848 (1914).

    Google Scholar 

  6. BASF Norwegian Patent 26691 (1916); US Patent 1211394 (1916).

    Google Scholar 

  7. Scott, Ind. Eng. Chem. 16 (1924) 74; Scott and Leech 19 (1927) 170; ICI, Chem. Eng. News. 48, May 25 (1970); C. and I. Girdler, Chem. Eng. 77, No. 14 (1970) 24.

    Google Scholar 

  8. F. Beyer, Chem. Met. Eng. 24 (1921) 305, 347.

    Google Scholar 

  9. J. Zawadski, Disc. Faraday Soc. 8 (1950)140.

    Article  Google Scholar 

  10. W. Ostwald, British Patents 698 (1902), 8300 (1902), 7909 (1908); French Patent 317544 (1902); US Patent 858904 (1902).

    Google Scholar 

  11. W. S. Landis, Chem. Met. Eng. 20 (1919) 471.

    Google Scholar 

  12. K. Kaiser, Chem. Zeit, 14 (1916); German Patent 271517 (1910); British Patent 20325 (1910); US Patent 987375 (1911); Partington, J. Soc. Chem. Ind. 37 (1918) 337R.

    Google Scholar 

  13. N. Caro and A. Frank; German Patents 286991, 303822, 304269 (1914); Schuphans Chem. Met. Eng. 14 (1916) 425.

    Google Scholar 

  14. J. R. Partington, J. Soc. Chem. Ind. 40 (1921) 185R.

    Article  Google Scholar 

  15. E. J. Pranke, Chem. Met. Eng. 19 (1918) 396; Fairlee, Chem. Met. Eng. 20 (1918) 6.

    Google Scholar 

  16. Parsons and Jones, US Patent 1321376; Parsons, J. Ind. Eng. Chem. 11 (1919) 541.

    Google Scholar 

  17. S. L. Handforth and J. N. Tilley, British Patent 306382 (1928); Ind. Eng. Chem. 26 (1934) 1287.

    Article  CAS  Google Scholar 

  18. A. E. Heywood, Plat. Met. Rev. 17 (1973) 118.

    CAS  Google Scholar 

  19. N. H. Harboard, Plat. Met. Rev. 18 (1974) 97.

    Google Scholar 

  20. G. R. Gillespie and R. E. Kenson, Chem. Tech. (1971) 627; British Patents 1347491, 1471327.

    Google Scholar 

  21. A. E. Heywood, Plat. Met. Rev. 26 (1982) 28; Connor, Plat. Met. Rev. 11 (1967) 60; Holzmann, Plat. Met. Rev. 13 (1969) 2.

    Google Scholar 

  22. Hofmann, Berichte 11 (1878) 1685.

    Google Scholar 

  23. A. Trillat, Oxydation des Alcohols, (1901); Bull. Soc. Chem. 27 (3) (1902) 797; 29 (1903) 35; French Patent 199919 (1889); German Patent 55176 (1889).

    Google Scholar 

  24. E. I. Orlov, Formaldehyde, Barth, Leipzig (1909).

    Google Scholar 

  25. Le Blanc and Plaschke Zeit Electrochem. 17 (1911) 45.

    Google Scholar 

  26. Bouliard, French Patent 415501 (1910).

    Google Scholar 

  27. Le Blanc German Patent 228697 (1910); French Patent 418349 (1910).

    Google Scholar 

  28. Morel, J. Pharm. Chem. 21 (1905) 177.

    Google Scholar 

  29. S. J. Green, Industrial Catalysis, Benn, London, 1928, p. 385.

    Google Scholar 

  30. V. E. Meharg and H Adkins, US Patent 1913405 (1923); H. Adkins and W. R. Peterson, J. Am. Chem. Soc. 53 (1931) 1512.

    Google Scholar 

  31. R. N. Hader, R. D. Wallace, and R. W. McKinney (du Pont), Ind. Eng. Chem. 44 (1952) 1508.

    Article  CAS  Google Scholar 

  32. L. F. Marec and D. A. Hahn, Catalytic Oxidation of Organic Compounds in the Vapor Phase, Chem. Catalogue Co, New York, 1932.

    Google Scholar 

  33. J. F. Walker, Formaldehyde, Reinhold, New York (1st Ed.), 1953; (3rd Edition) 1964.

    Google Scholar 

  34. I. E. Wachs and R. J. Madix, J. Catal. 53 (1978) 208.

    Article  CAS  Google Scholar 

  35. J. F. Le Page, Applied Heterogeneous Catalysis, Editions Technip, Paris, 1987, p. 311.

    Google Scholar 

  36. L. Andrussov, German Patent 549055 (1932); US Patent 1934838 (1933); Angew. Chem. 48 (1935) 593.

    Article  Google Scholar 

  37. L. Andrussov, Angew. Chem. 39 (1926) 321; 40 (1927) 166; 41 (1928) 205, 262; 48 (1935) 593; Berichte 59 (1926) 458; 60 (1927) 536, 2005; 71 (1938) 76.

    Google Scholar 

  38. L. Andrussov, Chem. Ing-Tech. 27 (1955) 469; Berichte 60 (1927) 2005; Bull. Soc. Chim., (1951) 45–50.

    Google Scholar 

  39. L. Andrussov, Chem. Ing-Tech. 25 (1953) 697; Plat. Me.t Rev. 22 (1978) 131.

    Google Scholar 

  40. A. B. Stiles, US Patent 2726931 (1955); D. R. Merrill and W. A. Perry, US Patent 2478875 (1948).

    Google Scholar 

  41. US Patent 2831752 (1958); British Patent 785657 (1957).

    Google Scholar 

  42. H. Davy and Erdman, Phil. Trans. 107 (1817) 77.

    Article  Google Scholar 

  43. Fletcher, J. Gas Light 1 (1887) 168.

    Google Scholar 

  44. W. A. Bone, J. Roy. Soc. Arts 62 (1914) 787, 801, 818.

    Google Scholar 

  45. S. J. Green, Industrial Catalysts, p. 113, Benn, London, 1928.

    Google Scholar 

  46. A. B. Lamb, W. C. Bray and J. C. W. Frazer, Ind. Eng. Chem. 12 (1920) 213.

    Article  Google Scholar 

  47. W. A. Whitesell and J. C. W. Frazer, J. Am. Chem. Soc. 45 (1923) 2841.

    Article  CAS  Google Scholar 

  48. M. Katz, Advances in Catalysis, Vol. 5, Academic, New York. 1953, p. 177.

    Google Scholar 

  49. Disc. Faraday Soc. 8 (1950) 215.

    Google Scholar 

  50. J. Mars and D. W. van Krevelan, Chem. Eng. Sci. 3 (1954) 41.

    Article  CAS  Google Scholar 

  51. H. G. Weiss and C. R. Downs, Ind. Eng. Chem. 12 (1920) 228; 15 (1923) 965.

    Google Scholar 

  52. K. Weissermel and H. J. Arpe, Industrial Organic Chemistry, (2nd Edition) VCH, Weinheim, 1993.

    Google Scholar 

  53. Gibbs and Condover; US Patent 1284887–8; 1285117; 1288431; 1303168 (1918/19); British Patents 119517–8; 14150–1 (1917).

    Google Scholar 

  54. Seldom Company, British Patent 170022 (1920).

    Google Scholar 

  55. A. Wohl, British Patent 145071 (1920).

    Google Scholar 

  56. H. G. Weiss and C. R. Downs, US Patents 1374965; 11374720–2; 1377534 (1921).

    Google Scholar 

  57. A. E. Craver, US Patent 1489741 (1924).

    Google Scholar 

  58. Gibbs and Condover, Ind. Eng. Chem. 11 (1919) 1031; 14 (1922) 120.

    Google Scholar 

  59. Gibbs, US Patent 1458478 (1923).

    Google Scholar 

  60. S. J. Green, Industrial Catalysts, Benn, London, 1928, p. 122.

    Google Scholar 

  61. Kusama, J. Chem. Soc. Jap., 44 (1923) 605.

    Google Scholar 

  62. C. R. Downs, US Patents 1589632; 1604739 (1926).

    Google Scholar 

  63. BIOS Report 936, p 6.

    Google Scholar 

  64. W. O. Fugate, US Patent 2698330 (1954); British Patent 702616 (1954).

    Google Scholar 

  65. G. C. Bond, J. Catal. 116 (1989) 531.

    Article  CAS  Google Scholar 

  66. P. Schoen and N. V. Zoon, Dutch Patent 64720 (1949).

    Google Scholar 

  67. G. Cavani, F. Centi, Parrinello, and F. Trefiro, Preparation of Catalysts IV, Ed. by B. Delmon, P. Grange, P. A. Jacobs and G. Poncelet, Elsevier, Amsterdam, 1987, p. 227; Chem. and Eng. News, April 10 (1995) 37.

    Google Scholar 

  68. DuPont, US Patent 2605238 (1952).

    Google Scholar 

  69. R. J. Sampson in Catalysis, Science and Technology, Vol. 8, Ed. by Anderson and Boudart, Springer-Verlag, Berlin, 1987, p. 49.

    Google Scholar 

  70. Hydrocarbon Processing, Nov. (1980) 149.

    Google Scholar 

  71. Petrotex US Patents 3255211–3; 3288721 (1966); British Patent 1095223 (1967).

    Google Scholar 

  72. Distillers, US Patent 2649477.

    Google Scholar 

  73. Atlantic Refining Company, US Patent 2773838.

    Google Scholar 

  74. D. W. van Krevelan, thesis, Delft University, Excelsior, The Hague (1958).

    Google Scholar 

  75. G. J. Hutchings, A. Desmartin-Chomel, R. Oliev and J-C. Volta, Nature, 368, March 3 (1999) 41.

    Google Scholar 

  76. R. J. Sampson in Catalysis, Science and Technology, Vol. 8, Ed. by Anderson and Boudart, Springer-Verlag, Berlin, 1987, p. 54.

    Google Scholar 

  77. Trevida and Culbertson, Maleic Anhydride, Plenum, New York, 1982.

    Google Scholar 

  78. H. Heller, G. Lenz and R. Thiel, Inst. Chem. Eng. Symp. Ser., No. 50 (1977) 121.

    Google Scholar 

  79. Hydrocarbon Processing, Nov. (1977) 180; Nov. (1981) 180.

    Google Scholar 

  80. BASF, German Patent 1443452 (1970); German Offen 2030201 (1971); British Patent 1154148 (1969).

    Google Scholar 

  81. Mitsubishi Chemical Industries Ltd., Chem. Eng. Econ. Reporter, Oct. (1982) 25.

    Google Scholar 

  82. Badger, Chem. Market Reporter, Dec. 8 (1980) 3; Schaffel. et al., Erdol. Kohle 36 (1987) 85.

    Google Scholar 

  83. Sohio/UCB ECN, Sept. 20 (1982) 25; Chem. Week, Oct. 6 (1982) 31.

    Google Scholar 

  84. Alusuisse/Lummus Crest ECN, May 30 (1983) 22.

    Google Scholar 

  85. DuPont Chem. Eng. News, March (1989) 35.

    Google Scholar 

  86. DuPont Chem. Eng. News, April (1995) 20.

    Google Scholar 

  87. T. E. Lefort, French Patent 729952 (1931); US Patent 1998878 (1935).

    Google Scholar 

  88. Scientific Design, British Patents 711601; 721412.

    Google Scholar 

  89. Shell, British Patents 754493; 638319; van Oosten, J. Inst. Petrol., 46 (1960) 347.

    Google Scholar 

  90. D. J. Hucknall, Selective Oxidation of Hydrocarbons, Academic, London, 1974, p. 10.

    Google Scholar 

  91. US Patent 2477435 (1949); British Patent 2043481 (1980).

    Google Scholar 

  92. P. A. Kilty and W. M. H. Sachtler, Catal. Rev.—Sci. Eng. 10 (1974) 1; S. Carra and P. Forzatti, Catal. Rev.—Sci. Eng. 15 (1977) 1.

    Google Scholar 

  93. R. A. van Santen and H. P. C. E. Kuipers, Adv. Catal. 35 (1987) 265; R. A. van Santen, Proc. 9th Int. Conf. Catalysts, Chemical Institute, Canada, 1988, p. 1152.

    Google Scholar 

  94. C. N. Satterfield, Heterogeneous Catalysis in Industrial Practice (2nd Edition), Krieger Malabar, 1996, p. 282.

    Google Scholar 

  95. McKim and Cambron, Can. J. Res. B27 (11) (1949) 813.

    Google Scholar 

  96. G. H. Law and H. C. Chitwood, US Patent 2194602 (1940); US Patent 2279469 (1942).

    Google Scholar 

  97. M. A. Dalin, I. K. Kolchin and B. R.Serebryakov, Acrylonitrile, Technomic, Westport, Conn., 1971.

    Google Scholar 

  98. J. D. Idol US Patent 2904480 (1959); J. L. Callahan, J. J. Szabo and B. Gertuser, US Patent 3186955 (1966); British Patent 821999 (1958).

    Google Scholar 

  99. British Patent 908655 (1962).

    Google Scholar 

  100. J. D. Idol US Patent 2904580 (1959).

    Google Scholar 

  101. J. L. Callahan, R. W. Foreman, and F. Veatch, US Patent 3044966 (1962).

    Google Scholar 

  102. Sohio, US Patents 3198750 (1965); 3308151 (1969).

    Google Scholar 

  103. Nitto Chemical Industries, Co. Ltd., Japanese Patent 7103438 (1971); German Offen 1811063 (1969).

    Google Scholar 

  104. R. K. Grasselli and Burrington, Adv. Catal. 30 (1981) 133; R. A. Sneider and Hill, Catal. Rev.—Sci. Eng. 31 (1989) 43; R. K. Grasselli, Burrington, and Lartisak, J. Catal. 63 (1980) 239.

    Google Scholar 

  105. R. K. Grasselli, Heterogeneous Catalysis: Selected American Histories, Ed. by Davis and Hettinger, ACS Symposium Series, No. 222,1983, p. 317; Appl. Catal. A: General 136 (1996) 205.

    Google Scholar 

  106. P. H. Emmett, Catalysis, Vol 7, Reinhold, New York, 1960, p. 294.

    Google Scholar 

  107. J. M. Thomas and W. J. Thomas, Principles and Practice of Heterogeneous Catalysis, VCH, Weinheim, 1997, p. 345.

    Google Scholar 

  108. R. K. Grasselli and J. L. Callahan, J. Catal. 14 (1969) 93.

    Article  CAS  Google Scholar 

  109. Y. Kim, W. Ueda, and Y. Moro-Oka, New Developments in Selective Oxidation, Elsevier, Amsterdam, 1990, p. 491; Appl. Catal. 70 (1991) 175, 189.

    Google Scholar 

  110. N. Harris, British Patent 1336136 (1973).

    Google Scholar 

  111. G. Centi, F. Trifiro, R. K. Grasselli, and E. Patane, New Developments in Selective Oxidation, Elsevier, Amsterdam, 1990, p.515; Ind. Eng. Chem. Res. 31 (1992) 107; Catal. Today 13 (1992) 661.

    Google Scholar 

  112. M. Bowker, C. R. Bicknell, and P. Kirwin, Appl. Catal. A: General 136, (1996) 205.

    Article  CAS  Google Scholar 

  113. B. P. Amoco, Chem. Eng. News, Sept. 23 (1996) 18.

    Google Scholar 

  114. German Offen 2056614 (1972).

    Google Scholar 

  115. K. W. Furman and G. W. Hearne, US Patent 2991320 (1961).

    Google Scholar 

  116. Hydrocarbon Processing, Nov. (1978) 131; R. J. Rennard and W. L. Kehl, J. Catal. 21 (1971) 282; Massoth and Scarpiello, J. Catal. 21 (1971) 294.

    Google Scholar 

  117. Petrotex, US Patents 3607966 (1971); 3666687 (1972).

    Google Scholar 

  118. Phillips Petroleum, US Patents 3580969 (1971); 3686346 (1972); 3501547 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lloyd, L. (2011). Oxidation Catalysts. In: Handbook of Industrial Catalysts. Fundamental and Applied Catalysis. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49962-8_4

Download citation

Publish with us

Policies and ethics