Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anliker B. and Chun J.-(2004). Cell surface receptors in lysophospholipid signaling. Semin. Cell Dev. Biol. 15:457–465.

    Article  PubMed  CAS  Google Scholar 

  • Aoki J., Nagai Y., Hosono H., Inoue K., and Arai H. (2002). Structure and function of phosphatidylserine-specific phospholipase A1. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1582:26–32.

    Article  CAS  Google Scholar 

  • Balsinde J.-(2002). Roles of various phospholipases A2 in providing lysophospholipid acceptors for fatty acid phospholipid incorporation and remodelling. Biochem. J. 364:695–702.

    Article  PubMed  CAS  Google Scholar 

  • Bao S. Z., Miller D. J., Ma Z. M., Wohltmann M., Eng G., Ramanadham S., Moley K., and Turk J.-(2004). Male mice that do not express group VIA phospholipase A2 produce spermatozoa with impaired motility and have greatly reduced fertility. J.-Biol. Chem. 279:38194–38200.

    Article  PubMed  CAS  Google Scholar 

  • Bassa B. V., Roh D. D., Vaziri N. D., Kirschenbaum M. A., and Kamanna V. S. (1999). Lysophosphatidylcholine activates mesangial cell PKC and MAP kinase by PLCγ-1 and tyrosine kinase-Ras pathways. Am. J.-Physiol. 277:F328–F337.

    PubMed  CAS  Google Scholar 

  • Bernoud N., Fenart L., Molière P., Dehouck M. P., Lagarde M., Cecchelli R., and Lecerf J.-(1999). Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in-vitro blood–brain barrier over unesterified docosahexaenoic acid. J.-Neurochem. 72:338–345.

    Article  PubMed  CAS  Google Scholar 

  • Birgbauer E., Rao T. S., and Webb M. (2004). Lysolecithin induces demyelination in-vitro in a cerebellar slice culture system. J.-Neurosci. Res. 78:157–166.

    Article  PubMed  CAS  Google Scholar 

  • Boggs K. P., Rock C. O., and Jackowski S. (1995). Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP: phosphocholine cytidylyltransferase step. J.-Biol. Chem. 270:7757–7764.

    Article  PubMed  CAS  Google Scholar 

  • Bruni A., Bigon E., Boarato E., Mietto L., Leon A., and Toffano G. (1982). Interaction between nerve growth factor and lysophosphatidylserine on rat peritoneal mast cells. FEBS Lett. 138:190–192.

    Article  PubMed  CAS  Google Scholar 

  • Bruni A., Bigon E., Battistella A., Boarato E., Mietto L., and Toffano G. (1984). Lysophosphatidylserine as histamine releaser in mice and rats. Agents Actions 14:619–625.

    Article  PubMed  CAS  Google Scholar 

  • Bruni A., Monastra G., Bellini F., and Toffano G. (1988). Autacoid properties of lysophosphatidylserine. Prog. Clin. Biol. Res. 282:165–179.

    PubMed  CAS  Google Scholar 

  • Caldwell R. A. and Baumgarten C. M. (1998). Plasmalogen-derived lysolipid induces a depolarizing cation current in rabbit ventricular myocytes. Circ. Res. 83:533–540.

    PubMed  CAS  Google Scholar 

  • Casado M. and Ascher P. (1998). Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J.-Physiol. 513(Pt 2):317–330.

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri P., Colles S. M., Damron D. S., and Graham L. M. (2003). Lysophosphatidylcholine inhibits endothelial cell migration by increasing intracellular calcium and activating calpain. Arterioscler. Thromb. Vasc. Biol. 23:218–223.

    Article  PubMed  CAS  Google Scholar 

  • Chernomordik L., Chanturiya A., Green J., and Zimmerberg J.-(1995). The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys. J.-69:922–929.

    Article  PubMed  CAS  Google Scholar 

  • Corr P. B., Yamada K. A., Creer M. H., Wu J., McHowat J., and Yan G. X. (1995). Amphipathic lipid metabolites and arrythmias during ischemia. In: Zipes D. P. and Jalife J.-(eds.), Cardiac Electrophysiology: From Cell to Bedside. W. B. Saunders, Philadelphia, pp.-182–203.

    Google Scholar 

  • Cox D. A. and Cohen M. L. (1996). Lysophosphatidylcholine stimulates phospholipase D in human coronary endothelial cells: Role of PKC. Am. J.-Physiol. Heart Circ. Physiol. 271:H1706–H1710.

    CAS  Google Scholar 

  • Degaonkar M. N., Khubchandhani M., Dhawan J.-K., Jayasundar R., and Jagannathan N. R. (2002). Sequential proton MRS study of brain metabolite changes monitored during a complete pathological cycle of demyelination and remyelination in a lysophosphatidyl choline (LPC)-induced experimental demyelinating lesion model. NMR Biomed. 15:293–300.

    Article  PubMed  CAS  Google Scholar 

  • Degaonkar M. N., Raghunathan P., Jayasundar R., and Jagannathan N. R. (2005). Determination of relaxation characteristics during preacute stage of lysophosphatidyl choline-induced demyelinating lesion in rat brain: an animal model of multiple sclerosis. Magn. Reson. Imaging 23:69–73.

    Article  PubMed  CAS  Google Scholar 

  • Durante W., Liao L., Peyton K. J., and Schafer A. I. (1997). Lysophosphatidylcholine regulates cationic amino acid transport and metabolism in vascular smooth muscle cells. Role in polyamine biosynthesis. J.-Biol. Chem. 272:30154–30159.

    Article  PubMed  CAS  Google Scholar 

  • Falasca M., Silletta M. G., Carvelli A., Di Francesco A. L., Fusco A., Ramakrishna V., and-Corda D. (1995). Signalling pathways involved in the mitogenic action of lysophosphatidylinositol. Oncogene 10:2113–2124.

    PubMed  CAS  Google Scholar 

  • Falasca M., Iurisci C., Carvelli A., Sacchetti A., and Corda D. (1998). Release of the mitogen lysophosphatidylinositol from H-Ras-transformed fibroblasts; a possible mechanism of autocrine control of cell proliferation. Oncogene 16:2357–2365.

    Article  PubMed  CAS  Google Scholar 

  • Fang X., Gibson S., Flowers M., Furui T., Bast R. C., Jr., and Mills G. B. (1997). Lysophosphatidylcholine stimulates activator protein 1 and the c-Jun N-terminal kinase activity. J.-Biol. Chem. 272:13683–13689.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004a). Brain phospholipases A2: a perspective on the history. Prostaglandins Leukot. Essent. Fatty Acids 71:161–169.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004b). Plasmalogens, platelet activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp.-107–134.

    Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Pendley C. E., II, Taylor W. A., and Horrocks L. A. (1985). Studies on diacylglycerol lipases and lysophospholipases of bovine brain. In: Horrocks L. A., Kanfer J.-N., and Porcellati G. (eds.), Phospholipids in the Nervous System, Vol. II: Physiological Role. Raven Press, New York, pp.-179–192.

    Google Scholar 

  • Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997). Phospholipase A2 and its role in brain tissue. J.-Neurochem. 69:889–901.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2006). Choline and ethanolamine glycerophospholipids. In: Tettamanti G. and Goracci G. (eds.), Handbook of Neurochemistry. Springer, New York.

    Google Scholar 

  • Fink K. L. and Gross R. W. (1984). Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds. Circ. Res. 55:585–594.

    PubMed  CAS  Google Scholar 

  • Flemming P. K., Dedman A. M., Xu S. Z., Li J., Zeng F., Naylor J., Benham C. D., Bateson A. N., Muraki K., and Beech D. J.-(2006). Sensing of lysophospholipids by TRPC5 calcium channel. J.-Biol. Chem. 281:4977–4982.

    Article  PubMed  CAS  Google Scholar 

  • Fuller N. and Rand R. P. (2001). The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J.-81:243–254.

    Article  PubMed  CAS  Google Scholar 

  • Garsetti D. E., Ozgur L. E., Steiner M. R., Egan R. W., and Clark M. A. (1992). Isolation and characterization of three lysophospholipases from the murine macrophage cell line WEHI 265.1. Biochim. Biophys. Acta Lipids Lipid Metab. 1165:229–238.

    Article  CAS  Google Scholar 

  • Goel D. P., Ford D. A., and Pierce G. N. (2003). Lysophospholipids do not directly modulate Na+–H+ exchange. Mol. Cell. Biochem. 251:3–7.

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Muñoz A., O’Brien L., Hundal R., and Steinbrecher U. P. (1999). Lysophosphatidylcholine stimulates phospholipase D activity in mouse peritoneal macrophages. J.-Lipid Res. 40:988–993.

    PubMed  Google Scholar 

  • Han X. and Gross R. W. (1991). Proton nuclear magnetic resonance studies on the molecular dynamics of plasmenylcholine/cholesterol and phosphatidylcholine/cholest rol bilayers. Biochim. Biophys. Acta Biomembr. 1063:129–136.

    Article  CAS  Google Scholar 

  • Han X. L., Holtzman D. M., and McKeel D. W., Jr. (2001). Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J.-Neurochem. 77:1168–1180.

    Article  PubMed  CAS  Google Scholar 

  • Horigome K., Tamori-Natori Y., Inoue K., and Nojima S. (1986). Effect of serine phospholipid structure on the enhancement of concanavalin A-induced degranulation in rat mast cells. J.-Biochem. (Tokyo) 100:571–579.

    PubMed  CAS  Google Scholar 

  • Horigome K., Hayakawa M., Inoue K., and Nojima S. (1987). Purification and characterization of phospholipase A2 released from rat platelets. J.-Biochem. (Tokyo) 101:625–631.

    Article  PubMed  CAS  Google Scholar 

  • Horigome K., Pryor J.-C., Bullock E. D., and Johnson E. M., Jr. (1993). Mediator release from mast cells by nerve growth factor. neurotrophin specificity and receptor mediation. J.-Biol. Chem. 268:14881–14887.

    PubMed  CAS  Google Scholar 

  • Hosono H., Aoki J., Nagai Y., Bandoh K., Ishida M., Taguchi R., Arai H., and Inoue K. (2001). Phosphatidylserine-specific phospholipase A1 stimulates histamine release from rat peritoneal mast cells through production of 2-acyl-1-lysophosphatidylserine. J.-Biol. Chem. 276:29664–29670.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y., Fukuoka S., and Kito M. (1997). Increase in lysophosphatidylethanolamine in the cell membrane upon the regulated exocytosis of pancreatic acinar AR42J cells. Biosci. Biotechnol. Biochem. 61:207–209.

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi Y., Nishizaki T., and Matsuoka T. (1995). Lysophosphatidylcholine inhibits NMDA-induced currents by a mechanism independent of phospholipase A2-mediated protein kinase C activation in hippocampal glial cells. Biochem. Biophys. Res. Commun. 217:811–816.

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi Y., Nishizaki T., Matsuoka T., and Sumikawa K. (1997). Long-lasting enhancement of ACh receptor currents by lysophospholipids. Brain Res. Mol. Brain Res. 45:317–320.

    Article  PubMed  CAS  Google Scholar 

  • Inoue K., Kobayashi T., and Kudo I. (1989). Function and metabolism of lysophosphatidylserine in rat mast cell activation. In: Bazan N. G., Horrocks L. A., and Toffano G. (eds.), Phospholipids in the Nervous System, Biochemical and Molecular Pathology. Liviana Press, Padova, pp.-225–231.

    Google Scholar 

  • Iwata H., Ohta A., and Baba A. (1986). Stimulatory effect of veratridine on lysophosphatidylethanolamine formation in rat brain synaptosomes. Jpn J.-Pharmacol. 41:293–297.

    Article  PubMed  CAS  Google Scholar 

  • Ji R. R., Kohno T., Moore K. A., and Woolf C. J.-(2003). Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 26:696–705.

    Article  PubMed  CAS  Google Scholar 

  • Jurkowitz M. S., Horrocks L. A., and Litsky M. L. (1999). Identification and characterization of alkenyl hydrolase (lysoplasmalogenase) in microsomes and identification of a plasmalogen-active phospholipase A2 in cytosol of small intestinal epithelium. Biochim. Biophys. Acta Lipids Lipid Metab. 1437:142–156.

    CAS  Google Scholar 

  • Jurkowitz-Alexander M., Ebata H., Mills J.-S., Murphy E. J., and Horrocks L. A. (1989). Solubilization, purification, and characterization of lysoplasmalogen alkenylhydrolase (lysoplasmalogenase) from rat liver microsomes. Biochim. Biophys. Acta 1002:203–212.

    PubMed  CAS  Google Scholar 

  • Kern R., Joseleau-Petit D., Chattopadhyay M. K., and Richarme G. (2001). Chaperone-like properties of lysophospholipids. Biochem. Biophys. Res. Commun. 289:1268–1274.

    Article  CAS  Google Scholar 

  • Kobayashi T., Kishimoto M., and Okuyama H. (1996). Phospholipases involved in lysophosphatidylinositol metabolism in rat brain. J.-Lipid Mediat. Cell Signal. 14:33–37.

    Article  PubMed  CAS  Google Scholar 

  • Kume N. and Gimbrone M. A., Jr. (1994). Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J.-Clin. Invest. 93:907–911.

    Article  PubMed  CAS  Google Scholar 

  • Kume N., Cybulsky M. I., and Gimbrone M. A., Jr. (1992). Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J.-Clin. Invest. 90:1138–1144.

    Article  PubMed  CAS  Google Scholar 

  • Lambert I. H. and Falktoft B. (2000). Lysophosphatidylcholine induces taurine release from HeLa cells. J.-Membr. Biol. 176:175–185.

    Article  PubMed  CAS  Google Scholar 

  • Lee T. C. (1998). Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394:129–145.

    Article  CAS  Google Scholar 

  • Lee E. S. Y., Chen H. T., Shepherd K. R., Lamango N. S., Soliman K. F. A., and Charlton C. G. (2004). Inhibitory effects of lysophosphatidylcholine on the dopaminergic system. Neurochem. Res. 29:1333–1342.

    Article  PubMed  CAS  Google Scholar 

  • Lee E. S. Y., Soliman K. F. A., and Charlton C. G. (2005). Lysophosphatidylcholine decreases locomotor activities and dopamine turnover rate in rats. Neurotoxicology 26:27–38.

    Article  PubMed  CAS  Google Scholar 

  • Légrádi A., Chitu V., Szukacsov V., Fajka-Boja R., Szücs K. S., and Monostori E. (2004). Lysophosphatidylcholine is a regulator of tyrosine kinase activity and intracellular Ca2+ level in Jurkat T cell line. Immunol. Lett. 91:17–21.

    Article  PubMed  CAS  Google Scholar 

  • Leitinger N. (2005). Oxidized phospholipids as triggers of inflammation in atherosclerosis. Mol. Nutr. Food Res. 49:1063–1071.

    Article  PubMed  CAS  Google Scholar 

  • Leslie C. C. (1991). Kinetic properties of a high molecular mass arachidonoyl-hydrolyzing phospholipase A2 that exhibits lysophospholipase activity. J.-Biol. Chem. 266:11366–11371.

    PubMed  CAS  Google Scholar 

  • Lesnefsky E. J., Stoll M. S. K., Minkler P. E., and Hoppel C. L. (2000). Separation and quantitation of phospholipids and lysophospholipids by high-performance liquid chromatography. Anal. Biochem. 285:246–254.

    Article  PubMed  CAS  Google Scholar 

  • Lourenssen S. and Blennerhassett M. G. (1998). Lysophosphatidylserine potentiates nerve growth factor-induced differentiation of PC12 cells. Neurosci. Lett. 248:77–80.

    Article  PubMed  CAS  Google Scholar 

  • Lovas G., Palkovits M., and Komoly S. (2000). Increased c-Jun expression in neurons affected by lysolecithin-induced demyelination in rats. Neurosci. Lett. 292:71–74.

    Article  PubMed  CAS  Google Scholar 

  • Lundbaek J.-A. and Andersen O. S. (1994). Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J.-Gen. Physiol. 104:645–673.

    Article  PubMed  CAS  Google Scholar 

  • Maingret F., Patel A. J., Lesage F., Lazdunski M., and Honoré E. (2000). Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J.-Biol. Chem. 275:10128–10133.

    Article  PubMed  CAS  Google Scholar 

  • Mazurek N., Weskamp G., Erne P., and Otten U. (1986). Nerve growth factor induces mast cell degranulation without changing intracellular calcium levels. FEBS Lett. 198:315–320.

    Article  PubMed  CAS  Google Scholar 

  • Mietto L., Boarato E., Toffano G., and Bruni A. (1987). Lysophosphatidylserine-dependent interaction between rat leukocytes and mast cells. Biochim. Biophys. Acta 930:145–153.

    Article  PubMed  CAS  Google Scholar 

  • Muir L. V., Born E., Mathur S. N., and Field F. J.-(1996). Lysophosphatidylcholine increases 3-Hydroxy-3-methylglutaryl-coenzyme A reductase gene expression in CaCo-2 cells. Gastroenterology 110:1068–1076.

    Article  PubMed  CAS  Google Scholar 

  • Murugesan G., Rani M. R. S., Gerber C. E., Mukhopadhyay C., Ransohoff R. M., Chisolm G. M., and Kottke-Marchant K. (2003). Lysophosphatidylcholine regulates human microvascular endothelial cell expression of chemokines. J.-Mol. Cell Cardiol. 35:1375–1384.

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y., Aoki J., Sato T., Amano R., Matsuda Y., Arai H., and Inoue K. (1999). An alternative splicing form of phosphatidylserine-specific phospholipase A1 that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans. J.-Biol. Chem. 274:11053–11059.

    Article  PubMed  CAS  Google Scholar 

  • Nakano T., Raines E. W., Abraham J.-A., Klagsbrun M., and Ross R. (1994). Lysophosphatidylcholine upregulates the level of heparin-binding epidermal growth factor-like growth factor mRNA in human monocytes. Proc. Natl Acad. Sci. USA 91:1069–1073.

    Article  PubMed  CAS  Google Scholar 

  • Oishi K., Raynor R. L., Charp P. A., and Kuo J.-F. (1988). Regulation of protein kinase C by lysophospholipids. Potential role in signal transduction. J.-Biol. Chem. 263:6865–6871.

    PubMed  CAS  Google Scholar 

  • Ousman S. S. and David S. (2000). Lysophosphatidylcholine induces rapid recruitment and activation of macrophages in the adult mouse spinal cord. Glia 30:92–104.

    Article  PubMed  CAS  Google Scholar 

  • Park K. S., Lee H. Y., Kim M. K., Shin E. H., and Bae Y. S. (2005). Lysophosphatidylserine stimulates leukemic cells but not normal leukocytes. Biochem. Biophys. Res. Commun. 333:353–358.

    Article  PubMed  CAS  Google Scholar 

  • Park K. S., Lee H. Y., Kim M. K., Shin E. H., Jo S. H., Kim S. D., Im D. S., and Bae Y. S. (2006). Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic migration via a process involving pertussis toxin-sensitive trimeric G-proteins. Mol. Pharmacol. 69:1066–1073.

    PubMed  CAS  Google Scholar 

  • Pete M. J.-and Exton J.-H. (1996). Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl-substituted lysophosphatidylcholine. J.-Biol. Chem. 271:18114–18121.

    Article  PubMed  CAS  Google Scholar 

  • Poole A. R., Howell J.-I., and Lucy J.-A. (1970). Lysolecithin and cell fusion. Nature 227:810–814.

    Article  PubMed  CAS  Google Scholar 

  • Rikitake Y., Hirata K., Kawashima S., Takeuchi S., Shimokawa Y., Kojima Y., Inoue N., and Yokoyama M. (2001). Signaling mechanism underlying COX-2 induction by lysophosphatidylcholine. Biochem. Biophys. Res. Commun. 281:1291–1297.

    Article  PubMed  CAS  Google Scholar 

  • Ross B. M. and Kish S. J.-(1994). Characterization of lysophospholipid metabolizing enzymes in human brain. J.-Neurochem. 63:1839–1848.

    Article  PubMed  CAS  Google Scholar 

  • Ryu S. B. and Palta J.-P. (2000). Specific inhibition of rat brain phospholipase D by lysophospholipids. J.-Lipid Res. 41:940–944.

    PubMed  CAS  Google Scholar 

  • Sakai M., Miyazaki A., Hakamata H., Sasaki T., Yui S., Yamazaki M., Shichiri M., and Horiuchi S. (1994). Lysophosphatidylcholine plays an essential role in the mitogenic effect of oxidized low density lipoprotein on murine macrophages. J.-Biol. Chem. 269:31430–31435.

    PubMed  CAS  Google Scholar 

  • Schilling T., Lehmann F., Ruckert B., and Eder C. (2004). Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia. J.-Physiol. (Lond.) 557:105–120.

    Article  PubMed  CAS  Google Scholar 

  • Seebeck J., Westenberger K., Elgeti T., Ziegler A., and Schutze S. (2001). The exocytotic signaling pathway induced by nerve growth factor in the presence of lyso-phosphatidylserine in rat peritoneal mast cells involves a type D phospholipase. Regul. Pept. 102:93–99.

    Article  PubMed  CAS  Google Scholar 

  • Soga T., Ohishi T., Matsui T., Saito T., Matsumoto M., Takasaki J., Matsumoto S., Kamohara M., Hiyama H., Yoshida S., Momose K., Ueda Y., Matsushime H., Kobori M., and Furuichi K. (2005). Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem. Biophys. Res. Commun. 326:744–751.

    Article  PubMed  CAS  Google Scholar 

  • Sun G. Y. and MacQuarrie R. A. (1989). Deacylation–reacylation of arachidonoyl groups in cerebral phospholipids. Ann. NY Acad. Sci. 559:37–55.

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi T., Kobayashi T., Ueda H., Yamauchi E., Watanabe S., and Okuyama H. (1994). Lysophosphoinositide-specific phospholipase C in rat brain synaptic plasma membranes. Neurochem. Res. 19:399–406.

    Article  PubMed  CAS  Google Scholar 

  • Ueda H., Kobayashi T., Kishimoto M., Tsutsumi T., and Okuyama H. (1993). A possible pathway of phosphoinositide metabolism through EDTA-insensitive phospholipase A1 followed by lysophosphoinositide-specific phospholipase C in rat brain. J.-Neurochem. 61:1874–1881.

    Article  PubMed  CAS  Google Scholar 

  • Vahidi W. H., Ong W. Y., Farooqui A. A., and Yeo J.-F. (2006). Pronociceptive effect of central nervous lysophospholipids in a mouse model of orofacial pain. Exp. Brain Res. (in press).

    Google Scholar 

  • Vogel S. S., Leikina E. A., and Chernomordik L. V. (1993). Lysophosphatidylcholine reversibly arrests exocytosis and viral fusion at a stage between triggering and membrane merger. J.-Biol. Chem. 268:25764–25768.

    PubMed  CAS  Google Scholar 

  • Wang A. and Dennis E. A. (1999). Mammalian lysophospholipases. Biochim. Biophys. Acta 1439:1–16.

    PubMed  CAS  Google Scholar 

  • Wang A., Yang H. C., Friedman P., Johnson C. A., and Dennis E. A. (1999). A specific human lysophospholipase: cDNA cloning, tissue distribution and kinetic characterization. Biochim. Biophys. Acta 1437:157–169.

    PubMed  CAS  Google Scholar 

  • Weltzien H. U. (1979). Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim. Biophys. Acta 559:259–287.

    PubMed  CAS  Google Scholar 

  • Williams S. D. and Ford D. A. (1997). Activation of myocardial cAMP-dependent protein kinase by lysoplasmenylcholine. FEBS Lett. 420:33–38.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A., Watanabe M., Sato K., Miyashita T., Nagatsuka T., Kondo H., Kawagishi N., Nakanishi H., Kamata R., Sugiura T., and Waku K. (2003). Reverse reaction of lysophosphatidylinositol acyltransferase –– functional reconstitution of coenzyme A-dependent transacylation system. J.-Biol. Chem. 278:30382–30393.

    Article  PubMed  CAS  Google Scholar 

  • Yeo J.-F., Ong W. Y., Ling S. F., and Farooqui A. A. (2004). Intracerebroventricular injection of phospholipases A2 inhibitors modulates allodynia after facial carrageenan injection in mice. Pain 112:148–155.

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y., Schoenwaelder S. M., Salem H. H., and Jackson S. P. (1996). The bioactive phospholipid, lysophosphatidylcholine, induces cellular effects via G-protein-dependent activation of adenylyl cyclase. J.-Biol. Chem. 271:27090–27098.

    Article  PubMed  CAS  Google Scholar 

  • Zembowicz A., Jones S. L., and Wu K. K. (1995). Induction of cyclooxygenase-2 in human umbilical vein endothelial cells by lysophosphatidylcholine. J.-Clin. Invest. 96:1688–1692.

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y., Lin J.-H. C., Liao H. L., Verna L., and Stemerman M. B. (1997). Activation of ICAM-1 promoter by lysophosphatidylcholine: possible involvement of protein tyrosine kinases. Biochim. Biophys. Acta Lipids Lipid Metab. 1345:93–98.

    Article  CAS  Google Scholar 

  • Zhu K., Baudhuin L. M., Hong G., Williams F. S., Cristina K. L., Kabarowski J.-H., Witte O. N., and Xu Y. (2001). Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J.-Biol. Chem. 276:41325–41335.

    Article  PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2007). Lyso-Glycerophospholipids. In: Glycerophospholipids in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49931-4_8

Download citation

Publish with us

Policies and ethics