Advertisement

Lyso-Glycerophospholipids

Keywords

Mast Cell Nerve Growth Factor Pertussis Toxin Signal Transduction Process Taurine Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anliker B. and Chun J.-(2004). Cell surface receptors in lysophospholipid signaling. Semin. Cell Dev. Biol. 15:457–465.PubMedCrossRefGoogle Scholar
  2. Aoki J., Nagai Y., Hosono H., Inoue K., and Arai H. (2002). Structure and function of phosphatidylserine-specific phospholipase A1. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1582:26–32.CrossRefGoogle Scholar
  3. Balsinde J.-(2002). Roles of various phospholipases A2 in providing lysophospholipid acceptors for fatty acid phospholipid incorporation and remodelling. Biochem. J. 364:695–702.PubMedCrossRefGoogle Scholar
  4. Bao S. Z., Miller D. J., Ma Z. M., Wohltmann M., Eng G., Ramanadham S., Moley K., and Turk J.-(2004). Male mice that do not express group VIA phospholipase A2 produce spermatozoa with impaired motility and have greatly reduced fertility. J.-Biol. Chem. 279:38194–38200.PubMedCrossRefGoogle Scholar
  5. Bassa B. V., Roh D. D., Vaziri N. D., Kirschenbaum M. A., and Kamanna V. S. (1999). Lysophosphatidylcholine activates mesangial cell PKC and MAP kinase by PLCγ-1 and tyrosine kinase-Ras pathways. Am. J.-Physiol. 277:F328–F337.PubMedGoogle Scholar
  6. Bernoud N., Fenart L., Molière P., Dehouck M. P., Lagarde M., Cecchelli R., and Lecerf J.-(1999). Preferential transfer of 2-docosahexaenoyl-1-lysophosphatidylcholine through an in-vitro blood–brain barrier over unesterified docosahexaenoic acid. J.-Neurochem. 72:338–345.PubMedCrossRefGoogle Scholar
  7. Birgbauer E., Rao T. S., and Webb M. (2004). Lysolecithin induces demyelination in-vitro in a cerebellar slice culture system. J.-Neurosci. Res. 78:157–166.PubMedCrossRefGoogle Scholar
  8. Boggs K. P., Rock C. O., and Jackowski S. (1995). Lysophosphatidylcholine and 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway of phosphatidylcholine synthesis at the CTP: phosphocholine cytidylyltransferase step. J.-Biol. Chem. 270:7757–7764.PubMedCrossRefGoogle Scholar
  9. Bruni A., Bigon E., Boarato E., Mietto L., Leon A., and Toffano G. (1982). Interaction between nerve growth factor and lysophosphatidylserine on rat peritoneal mast cells. FEBS Lett. 138:190–192.PubMedCrossRefGoogle Scholar
  10. Bruni A., Bigon E., Battistella A., Boarato E., Mietto L., and Toffano G. (1984). Lysophosphatidylserine as histamine releaser in mice and rats. Agents Actions 14:619–625.PubMedCrossRefGoogle Scholar
  11. Bruni A., Monastra G., Bellini F., and Toffano G. (1988). Autacoid properties of lysophosphatidylserine. Prog. Clin. Biol. Res. 282:165–179.PubMedGoogle Scholar
  12. Caldwell R. A. and Baumgarten C. M. (1998). Plasmalogen-derived lysolipid induces a depolarizing cation current in rabbit ventricular myocytes. Circ. Res. 83:533–540.PubMedGoogle Scholar
  13. Casado M. and Ascher P. (1998). Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. J.-Physiol. 513(Pt 2):317–330.PubMedCrossRefGoogle Scholar
  14. Chaudhuri P., Colles S. M., Damron D. S., and Graham L. M. (2003). Lysophosphatidylcholine inhibits endothelial cell migration by increasing intracellular calcium and activating calpain. Arterioscler. Thromb. Vasc. Biol. 23:218–223.PubMedCrossRefGoogle Scholar
  15. Chernomordik L., Chanturiya A., Green J., and Zimmerberg J.-(1995). The hemifusion intermediate and its conversion to complete fusion: regulation by membrane composition. Biophys. J.-69:922–929.PubMedCrossRefGoogle Scholar
  16. Corr P. B., Yamada K. A., Creer M. H., Wu J., McHowat J., and Yan G. X. (1995). Amphipathic lipid metabolites and arrythmias during ischemia. In: Zipes D. P. and Jalife J.-(eds.), Cardiac Electrophysiology: From Cell to Bedside. W. B. Saunders, Philadelphia, pp.-182–203.Google Scholar
  17. Cox D. A. and Cohen M. L. (1996). Lysophosphatidylcholine stimulates phospholipase D in human coronary endothelial cells: Role of PKC. Am. J.-Physiol. Heart Circ. Physiol. 271:H1706–H1710.Google Scholar
  18. Degaonkar M. N., Khubchandhani M., Dhawan J.-K., Jayasundar R., and Jagannathan N. R. (2002). Sequential proton MRS study of brain metabolite changes monitored during a complete pathological cycle of demyelination and remyelination in a lysophosphatidyl choline (LPC)-induced experimental demyelinating lesion model. NMR Biomed. 15:293–300.PubMedCrossRefGoogle Scholar
  19. Degaonkar M. N., Raghunathan P., Jayasundar R., and Jagannathan N. R. (2005). Determination of relaxation characteristics during preacute stage of lysophosphatidyl choline-induced demyelinating lesion in rat brain: an animal model of multiple sclerosis. Magn. Reson. Imaging 23:69–73.PubMedCrossRefGoogle Scholar
  20. Durante W., Liao L., Peyton K. J., and Schafer A. I. (1997). Lysophosphatidylcholine regulates cationic amino acid transport and metabolism in vascular smooth muscle cells. Role in polyamine biosynthesis. J.-Biol. Chem. 272:30154–30159.PubMedCrossRefGoogle Scholar
  21. Falasca M., Silletta M. G., Carvelli A., Di Francesco A. L., Fusco A., Ramakrishna V., and-Corda D. (1995). Signalling pathways involved in the mitogenic action of lysophosphatidylinositol. Oncogene 10:2113–2124.PubMedGoogle Scholar
  22. Falasca M., Iurisci C., Carvelli A., Sacchetti A., and Corda D. (1998). Release of the mitogen lysophosphatidylinositol from H-Ras-transformed fibroblasts; a possible mechanism of autocrine control of cell proliferation. Oncogene 16:2357–2365.PubMedCrossRefGoogle Scholar
  23. Fang X., Gibson S., Flowers M., Furui T., Bast R. C., Jr., and Mills G. B. (1997). Lysophosphatidylcholine stimulates activator protein 1 and the c-Jun N-terminal kinase activity. J.-Biol. Chem. 272:13683–13689.PubMedCrossRefGoogle Scholar
  24. Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedCrossRefGoogle Scholar
  25. Farooqui A. A. and Horrocks L. A. (2004a). Brain phospholipases A2: a perspective on the history. Prostaglandins Leukot. Essent. Fatty Acids 71:161–169.PubMedCrossRefGoogle Scholar
  26. Farooqui A. A. and Horrocks L. A. (2004b). Plasmalogens, platelet activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp.-107–134.Google Scholar
  27. Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245.PubMedCrossRefGoogle Scholar
  28. Farooqui A. A., Pendley C. E., II, Taylor W. A., and Horrocks L. A. (1985). Studies on diacylglycerol lipases and lysophospholipases of bovine brain. In: Horrocks L. A., Kanfer J.-N., and Porcellati G. (eds.), Phospholipids in the Nervous System, Vol. II: Physiological Role. Raven Press, New York, pp.-179–192.Google Scholar
  29. Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997). Phospholipase A2 and its role in brain tissue. J.-Neurochem. 69:889–901.PubMedCrossRefGoogle Scholar
  30. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.PubMedCrossRefGoogle Scholar
  31. Farooqui A. A., Horrocks L. A., and Farooqui T. (2006). Choline and ethanolamine glycerophospholipids. In: Tettamanti G. and Goracci G. (eds.), Handbook of Neurochemistry. Springer, New York.Google Scholar
  32. Fink K. L. and Gross R. W. (1984). Modulation of canine myocardial sarcolemmal membrane fluidity by amphiphilic compounds. Circ. Res. 55:585–594.PubMedGoogle Scholar
  33. Flemming P. K., Dedman A. M., Xu S. Z., Li J., Zeng F., Naylor J., Benham C. D., Bateson A. N., Muraki K., and Beech D. J.-(2006). Sensing of lysophospholipids by TRPC5 calcium channel. J.-Biol. Chem. 281:4977–4982.PubMedCrossRefGoogle Scholar
  34. Fuller N. and Rand R. P. (2001). The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J.-81:243–254.PubMedCrossRefGoogle Scholar
  35. Garsetti D. E., Ozgur L. E., Steiner M. R., Egan R. W., and Clark M. A. (1992). Isolation and characterization of three lysophospholipases from the murine macrophage cell line WEHI 265.1. Biochim. Biophys. Acta Lipids Lipid Metab. 1165:229–238.CrossRefGoogle Scholar
  36. Goel D. P., Ford D. A., and Pierce G. N. (2003). Lysophospholipids do not directly modulate Na+–H+ exchange. Mol. Cell. Biochem. 251:3–7.PubMedCrossRefGoogle Scholar
  37. Gómez-Muñoz A., O’Brien L., Hundal R., and Steinbrecher U. P. (1999). Lysophosphatidylcholine stimulates phospholipase D activity in mouse peritoneal macrophages. J.-Lipid Res. 40:988–993.PubMedGoogle Scholar
  38. Han X. and Gross R. W. (1991). Proton nuclear magnetic resonance studies on the molecular dynamics of plasmenylcholine/cholesterol and phosphatidylcholine/cholest rol bilayers. Biochim. Biophys. Acta Biomembr. 1063:129–136.CrossRefGoogle Scholar
  39. Han X. L., Holtzman D. M., and McKeel D. W., Jr. (2001). Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J.-Neurochem. 77:1168–1180.PubMedCrossRefGoogle Scholar
  40. Horigome K., Tamori-Natori Y., Inoue K., and Nojima S. (1986). Effect of serine phospholipid structure on the enhancement of concanavalin A-induced degranulation in rat mast cells. J.-Biochem. (Tokyo) 100:571–579.PubMedGoogle Scholar
  41. Horigome K., Hayakawa M., Inoue K., and Nojima S. (1987). Purification and characterization of phospholipase A2 released from rat platelets. J.-Biochem. (Tokyo) 101:625–631.PubMedCrossRefGoogle Scholar
  42. Horigome K., Pryor J.-C., Bullock E. D., and Johnson E. M., Jr. (1993). Mediator release from mast cells by nerve growth factor. neurotrophin specificity and receptor mediation. J.-Biol. Chem. 268:14881–14887.PubMedGoogle Scholar
  43. Hosono H., Aoki J., Nagai Y., Bandoh K., Ishida M., Taguchi R., Arai H., and Inoue K. (2001). Phosphatidylserine-specific phospholipase A1 stimulates histamine release from rat peritoneal mast cells through production of 2-acyl-1-lysophosphatidylserine. J.-Biol. Chem. 276:29664–29670.PubMedCrossRefGoogle Scholar
  44. Ikeda Y., Fukuoka S., and Kito M. (1997). Increase in lysophosphatidylethanolamine in the cell membrane upon the regulated exocytosis of pancreatic acinar AR42J cells. Biosci. Biotechnol. Biochem. 61:207–209.PubMedCrossRefGoogle Scholar
  45. Ikeuchi Y., Nishizaki T., and Matsuoka T. (1995). Lysophosphatidylcholine inhibits NMDA-induced currents by a mechanism independent of phospholipase A2-mediated protein kinase C activation in hippocampal glial cells. Biochem. Biophys. Res. Commun. 217:811–816.PubMedCrossRefGoogle Scholar
  46. Ikeuchi Y., Nishizaki T., Matsuoka T., and Sumikawa K. (1997). Long-lasting enhancement of ACh receptor currents by lysophospholipids. Brain Res. Mol. Brain Res. 45:317–320.PubMedCrossRefGoogle Scholar
  47. Inoue K., Kobayashi T., and Kudo I. (1989). Function and metabolism of lysophosphatidylserine in rat mast cell activation. In: Bazan N. G., Horrocks L. A., and Toffano G. (eds.), Phospholipids in the Nervous System, Biochemical and Molecular Pathology. Liviana Press, Padova, pp.-225–231.Google Scholar
  48. Iwata H., Ohta A., and Baba A. (1986). Stimulatory effect of veratridine on lysophosphatidylethanolamine formation in rat brain synaptosomes. Jpn J.-Pharmacol. 41:293–297.PubMedCrossRefGoogle Scholar
  49. Ji R. R., Kohno T., Moore K. A., and Woolf C. J.-(2003). Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 26:696–705.PubMedCrossRefGoogle Scholar
  50. Jurkowitz M. S., Horrocks L. A., and Litsky M. L. (1999). Identification and characterization of alkenyl hydrolase (lysoplasmalogenase) in microsomes and identification of a plasmalogen-active phospholipase A2 in cytosol of small intestinal epithelium. Biochim. Biophys. Acta Lipids Lipid Metab. 1437:142–156.Google Scholar
  51. Jurkowitz-Alexander M., Ebata H., Mills J.-S., Murphy E. J., and Horrocks L. A. (1989). Solubilization, purification, and characterization of lysoplasmalogen alkenylhydrolase (lysoplasmalogenase) from rat liver microsomes. Biochim. Biophys. Acta 1002:203–212.PubMedGoogle Scholar
  52. Kern R., Joseleau-Petit D., Chattopadhyay M. K., and Richarme G. (2001). Chaperone-like properties of lysophospholipids. Biochem. Biophys. Res. Commun. 289:1268–1274.CrossRefGoogle Scholar
  53. Kobayashi T., Kishimoto M., and Okuyama H. (1996). Phospholipases involved in lysophosphatidylinositol metabolism in rat brain. J.-Lipid Mediat. Cell Signal. 14:33–37.PubMedCrossRefGoogle Scholar
  54. Kume N. and Gimbrone M. A., Jr. (1994). Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J.-Clin. Invest. 93:907–911.PubMedCrossRefGoogle Scholar
  55. Kume N., Cybulsky M. I., and Gimbrone M. A., Jr. (1992). Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces mononuclear leukocyte adhesion molecules in cultured human and rabbit arterial endothelial cells. J.-Clin. Invest. 90:1138–1144.PubMedCrossRefGoogle Scholar
  56. Lambert I. H. and Falktoft B. (2000). Lysophosphatidylcholine induces taurine release from HeLa cells. J.-Membr. Biol. 176:175–185.PubMedCrossRefGoogle Scholar
  57. Lee T. C. (1998). Biosynthesis and possible biological functions of plasmalogens. Biochim. Biophys. Acta Lipids Lipid Metab. 1394:129–145.CrossRefGoogle Scholar
  58. Lee E. S. Y., Chen H. T., Shepherd K. R., Lamango N. S., Soliman K. F. A., and Charlton C. G. (2004). Inhibitory effects of lysophosphatidylcholine on the dopaminergic system. Neurochem. Res. 29:1333–1342.PubMedCrossRefGoogle Scholar
  59. Lee E. S. Y., Soliman K. F. A., and Charlton C. G. (2005). Lysophosphatidylcholine decreases locomotor activities and dopamine turnover rate in rats. Neurotoxicology 26:27–38.PubMedCrossRefGoogle Scholar
  60. Légrádi A., Chitu V., Szukacsov V., Fajka-Boja R., Szücs K. S., and Monostori E. (2004). Lysophosphatidylcholine is a regulator of tyrosine kinase activity and intracellular Ca2+ level in Jurkat T cell line. Immunol. Lett. 91:17–21.PubMedCrossRefGoogle Scholar
  61. Leitinger N. (2005). Oxidized phospholipids as triggers of inflammation in atherosclerosis. Mol. Nutr. Food Res. 49:1063–1071.PubMedCrossRefGoogle Scholar
  62. Leslie C. C. (1991). Kinetic properties of a high molecular mass arachidonoyl-hydrolyzing phospholipase A2 that exhibits lysophospholipase activity. J.-Biol. Chem. 266:11366–11371.PubMedGoogle Scholar
  63. Lesnefsky E. J., Stoll M. S. K., Minkler P. E., and Hoppel C. L. (2000). Separation and quantitation of phospholipids and lysophospholipids by high-performance liquid chromatography. Anal. Biochem. 285:246–254.PubMedCrossRefGoogle Scholar
  64. Lourenssen S. and Blennerhassett M. G. (1998). Lysophosphatidylserine potentiates nerve growth factor-induced differentiation of PC12 cells. Neurosci. Lett. 248:77–80.PubMedCrossRefGoogle Scholar
  65. Lovas G., Palkovits M., and Komoly S. (2000). Increased c-Jun expression in neurons affected by lysolecithin-induced demyelination in rats. Neurosci. Lett. 292:71–74.PubMedCrossRefGoogle Scholar
  66. Lundbaek J.-A. and Andersen O. S. (1994). Lysophospholipids modulate channel function by altering the mechanical properties of lipid bilayers. J.-Gen. Physiol. 104:645–673.PubMedCrossRefGoogle Scholar
  67. Maingret F., Patel A. J., Lesage F., Lazdunski M., and Honoré E. (2000). Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J.-Biol. Chem. 275:10128–10133.PubMedCrossRefGoogle Scholar
  68. Mazurek N., Weskamp G., Erne P., and Otten U. (1986). Nerve growth factor induces mast cell degranulation without changing intracellular calcium levels. FEBS Lett. 198:315–320.PubMedCrossRefGoogle Scholar
  69. Mietto L., Boarato E., Toffano G., and Bruni A. (1987). Lysophosphatidylserine-dependent interaction between rat leukocytes and mast cells. Biochim. Biophys. Acta 930:145–153.PubMedCrossRefGoogle Scholar
  70. Muir L. V., Born E., Mathur S. N., and Field F. J.-(1996). Lysophosphatidylcholine increases 3-Hydroxy-3-methylglutaryl-coenzyme A reductase gene expression in CaCo-2 cells. Gastroenterology 110:1068–1076.PubMedCrossRefGoogle Scholar
  71. Murugesan G., Rani M. R. S., Gerber C. E., Mukhopadhyay C., Ransohoff R. M., Chisolm G. M., and Kottke-Marchant K. (2003). Lysophosphatidylcholine regulates human microvascular endothelial cell expression of chemokines. J.-Mol. Cell Cardiol. 35:1375–1384.PubMedCrossRefGoogle Scholar
  72. Nagai Y., Aoki J., Sato T., Amano R., Matsuda Y., Arai H., and Inoue K. (1999). An alternative splicing form of phosphatidylserine-specific phospholipase A1 that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans. J.-Biol. Chem. 274:11053–11059.PubMedCrossRefGoogle Scholar
  73. Nakano T., Raines E. W., Abraham J.-A., Klagsbrun M., and Ross R. (1994). Lysophosphatidylcholine upregulates the level of heparin-binding epidermal growth factor-like growth factor mRNA in human monocytes. Proc. Natl Acad. Sci. USA 91:1069–1073.PubMedCrossRefGoogle Scholar
  74. Oishi K., Raynor R. L., Charp P. A., and Kuo J.-F. (1988). Regulation of protein kinase C by lysophospholipids. Potential role in signal transduction. J.-Biol. Chem. 263:6865–6871.PubMedGoogle Scholar
  75. Ousman S. S. and David S. (2000). Lysophosphatidylcholine induces rapid recruitment and activation of macrophages in the adult mouse spinal cord. Glia 30:92–104.PubMedCrossRefGoogle Scholar
  76. Park K. S., Lee H. Y., Kim M. K., Shin E. H., and Bae Y. S. (2005). Lysophosphatidylserine stimulates leukemic cells but not normal leukocytes. Biochem. Biophys. Res. Commun. 333:353–358.PubMedCrossRefGoogle Scholar
  77. Park K. S., Lee H. Y., Kim M. K., Shin E. H., Jo S. H., Kim S. D., Im D. S., and Bae Y. S. (2006). Lysophosphatidylserine stimulates L2071 mouse fibroblast chemotactic migration via a process involving pertussis toxin-sensitive trimeric G-proteins. Mol. Pharmacol. 69:1066–1073.PubMedGoogle Scholar
  78. Pete M. J.-and Exton J.-H. (1996). Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl-substituted lysophosphatidylcholine. J.-Biol. Chem. 271:18114–18121.PubMedCrossRefGoogle Scholar
  79. Poole A. R., Howell J.-I., and Lucy J.-A. (1970). Lysolecithin and cell fusion. Nature 227:810–814.PubMedCrossRefGoogle Scholar
  80. Rikitake Y., Hirata K., Kawashima S., Takeuchi S., Shimokawa Y., Kojima Y., Inoue N., and Yokoyama M. (2001). Signaling mechanism underlying COX-2 induction by lysophosphatidylcholine. Biochem. Biophys. Res. Commun. 281:1291–1297.PubMedCrossRefGoogle Scholar
  81. Ross B. M. and Kish S. J.-(1994). Characterization of lysophospholipid metabolizing enzymes in human brain. J.-Neurochem. 63:1839–1848.PubMedCrossRefGoogle Scholar
  82. Ryu S. B. and Palta J.-P. (2000). Specific inhibition of rat brain phospholipase D by lysophospholipids. J.-Lipid Res. 41:940–944.PubMedGoogle Scholar
  83. Sakai M., Miyazaki A., Hakamata H., Sasaki T., Yui S., Yamazaki M., Shichiri M., and Horiuchi S. (1994). Lysophosphatidylcholine plays an essential role in the mitogenic effect of oxidized low density lipoprotein on murine macrophages. J.-Biol. Chem. 269:31430–31435.PubMedGoogle Scholar
  84. Schilling T., Lehmann F., Ruckert B., and Eder C. (2004). Physiological mechanisms of lysophosphatidylcholine-induced de-ramification of murine microglia. J.-Physiol. (Lond.) 557:105–120.PubMedCrossRefGoogle Scholar
  85. Seebeck J., Westenberger K., Elgeti T., Ziegler A., and Schutze S. (2001). The exocytotic signaling pathway induced by nerve growth factor in the presence of lyso-phosphatidylserine in rat peritoneal mast cells involves a type D phospholipase. Regul. Pept. 102:93–99.PubMedCrossRefGoogle Scholar
  86. Soga T., Ohishi T., Matsui T., Saito T., Matsumoto M., Takasaki J., Matsumoto S., Kamohara M., Hiyama H., Yoshida S., Momose K., Ueda Y., Matsushime H., Kobori M., and Furuichi K. (2005). Lysophosphatidylcholine enhances glucose-dependent insulin secretion via an orphan G-protein-coupled receptor. Biochem. Biophys. Res. Commun. 326:744–751.PubMedCrossRefGoogle Scholar
  87. Sun G. Y. and MacQuarrie R. A. (1989). Deacylation–reacylation of arachidonoyl groups in cerebral phospholipids. Ann. NY Acad. Sci. 559:37–55.PubMedCrossRefGoogle Scholar
  88. Tsutsumi T., Kobayashi T., Ueda H., Yamauchi E., Watanabe S., and Okuyama H. (1994). Lysophosphoinositide-specific phospholipase C in rat brain synaptic plasma membranes. Neurochem. Res. 19:399–406.PubMedCrossRefGoogle Scholar
  89. Ueda H., Kobayashi T., Kishimoto M., Tsutsumi T., and Okuyama H. (1993). A possible pathway of phosphoinositide metabolism through EDTA-insensitive phospholipase A1 followed by lysophosphoinositide-specific phospholipase C in rat brain. J.-Neurochem. 61:1874–1881.PubMedCrossRefGoogle Scholar
  90. Vahidi W. H., Ong W. Y., Farooqui A. A., and Yeo J.-F. (2006). Pronociceptive effect of central nervous lysophospholipids in a mouse model of orofacial pain. Exp. Brain Res. (in press).Google Scholar
  91. Vogel S. S., Leikina E. A., and Chernomordik L. V. (1993). Lysophosphatidylcholine reversibly arrests exocytosis and viral fusion at a stage between triggering and membrane merger. J.-Biol. Chem. 268:25764–25768.PubMedGoogle Scholar
  92. Wang A. and Dennis E. A. (1999). Mammalian lysophospholipases. Biochim. Biophys. Acta 1439:1–16.PubMedGoogle Scholar
  93. Wang A., Yang H. C., Friedman P., Johnson C. A., and Dennis E. A. (1999). A specific human lysophospholipase: cDNA cloning, tissue distribution and kinetic characterization. Biochim. Biophys. Acta 1437:157–169.PubMedGoogle Scholar
  94. Weltzien H. U. (1979). Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim. Biophys. Acta 559:259–287.PubMedGoogle Scholar
  95. Williams S. D. and Ford D. A. (1997). Activation of myocardial cAMP-dependent protein kinase by lysoplasmenylcholine. FEBS Lett. 420:33–38.PubMedCrossRefGoogle Scholar
  96. Yamashita A., Watanabe M., Sato K., Miyashita T., Nagatsuka T., Kondo H., Kawagishi N., Nakanishi H., Kamata R., Sugiura T., and Waku K. (2003). Reverse reaction of lysophosphatidylinositol acyltransferase –– functional reconstitution of coenzyme A-dependent transacylation system. J.-Biol. Chem. 278:30382–30393.PubMedCrossRefGoogle Scholar
  97. Yeo J.-F., Ong W. Y., Ling S. F., and Farooqui A. A. (2004). Intracerebroventricular injection of phospholipases A2 inhibitors modulates allodynia after facial carrageenan injection in mice. Pain 112:148–155.PubMedCrossRefGoogle Scholar
  98. Yuan Y., Schoenwaelder S. M., Salem H. H., and Jackson S. P. (1996). The bioactive phospholipid, lysophosphatidylcholine, induces cellular effects via G-protein-dependent activation of adenylyl cyclase. J.-Biol. Chem. 271:27090–27098.PubMedCrossRefGoogle Scholar
  99. Zembowicz A., Jones S. L., and Wu K. K. (1995). Induction of cyclooxygenase-2 in human umbilical vein endothelial cells by lysophosphatidylcholine. J.-Clin. Invest. 96:1688–1692.PubMedCrossRefGoogle Scholar
  100. Zhu Y., Lin J.-H. C., Liao H. L., Verna L., and Stemerman M. B. (1997). Activation of ICAM-1 promoter by lysophosphatidylcholine: possible involvement of protein tyrosine kinases. Biochim. Biophys. Acta Lipids Lipid Metab. 1345:93–98.CrossRefGoogle Scholar
  101. Zhu K., Baudhuin L. M., Hong G., Williams F. S., Cristina K. L., Kabarowski J.-H., Witte O. N., and Xu Y. (2001). Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J.-Biol. Chem. 276:41325–41335.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations