Nonenzymic Metabolites of Arachidonate and Docosahexaenoate in Brain


Reactive Oxygen Species Lipid Peroxidation Lipid Peroxidation Product Lipid Hydroperoxide Peroxyl Radical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaishi T., Nakazawa K., Sato K., Ohno Y., and Ito Y. (2004). 4-Hydroxynonenal modulates the long-term potentiation induced by L-type Ca2+ channel activation in the rat dentate gyrus in-vitro. Neurosci. Lett. 370:155–159.PubMedGoogle Scholar
  2. Allen R. G. and Tresini M. (2000). Oxidative stress and gene regulation. Free Radic. Biol. Med. 28:463–499.PubMedGoogle Scholar
  3. Bacot S., Bernoud-Hubac N., Baddas N., Chantegrel B., Deshayes C., Doutheau A., Lagarde M., and Guichardant M. (2003). Covalent binding of hydroxy-alkenals 4-HDDE, 4-HHE, and 4-HNE to ethanolamine phospholipid subclasses. J.-Lipid Res. 44:917–926.PubMedGoogle Scholar
  4. Barrera G., Pizzimenti S., and Dianzani M. U. (2004). 4-Hydroxynonenal and regulation of cell cycle: effects on the pRb/E2F pathway. Free Radic. Biol. Med. 37:597–606.PubMedGoogle Scholar
  5. Basu S. (2004). Isoprostanes: novel bioactive products of lipid peroxidation. Free Radic. Res. 38:105–122.PubMedGoogle Scholar
  6. Berlett B. S. and Stadtman E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. J.-Biol. Chem. 272:20313–20316.PubMedGoogle Scholar
  7. Bernoud-Hubac N., Davies S. S., Boutaud O., Montine T. J., and Roberts L. J., II (2001). Formation of highly reactive gamma-ketoaldehydes (Neuroketals) as products of the neuroprostane pathway. J.-Biol. Chem. 276:30964–30970.PubMedGoogle Scholar
  8. Buisson A., Lakhmeche N., Verrecchia C., Plotkine M., and Boulu R. G. (1993). Nitric oxide: an endogenous anticonvulsant substance. NeuroReport 4:444–446.PubMedGoogle Scholar
  9. Camandola S., Poli G., and Mattson M. P. (2000). The lipid peroxidation product 4-hydroxy-2,3-nonenal increases AP-1-binding activity through caspase activation in neurons. J.-Neurochem. 74:159–168.PubMedGoogle Scholar
  10. Castegna A., Lauderback C. M., Mohmmad-Abdul H., and Butterfield D. A. (2004). Modulation of phospholipid asymmetry in synaptosomal membranes by the lipid peroxidation products, 4-hydroxynonenal and acrolein: implications for Alzheimer’s disease. Brain Res. 1004:193–197.PubMedGoogle Scholar
  11. Chen J.-J., Bertrand H., and Yu B. P. (1995). Inhibition of adenine nucleotide translocator by lipid peroxidation products. Free Radic. Biol. Med. 19:583–590.PubMedGoogle Scholar
  12. Chiarpotto E., Domenicotti C., Paola D., Vitali A., Nitti M., Pronzato M. A., Biasi F., Cottalasso D., Marinari U. M., Dragonetti A., Cesaro P., Isidoro C., and Poli G. (1999). Regulation of rat hepatocyte protein kinase C beta isoenzymes by the lipid peroxidation product 4-hydroxy-2,3-nonenal: a signaling pathway to modulate vesicular transport of glycoproteins. Hepatology 29:1565–1572.PubMedGoogle Scholar
  13. Choe M., Jackson C., and Yu B. P. (1995). Lipid peroxidation contributes to age-related membrane rigidity. Free Radic. Biol. Med. 18:977–984.PubMedGoogle Scholar
  14. Cleland L. G. and James M. J.-(1997). Rheumatoid arthritis and the balance of dietary n-6 and n-3 essential fatty acids. Br. J Rheumatol. 36:513–514.PubMedGoogle Scholar
  15. Cracowski J.-L. (2004). Isoprostanes: an emerging role in vascular physiology and disease? Chem. Phys. Lipids 128:75–83.PubMedGoogle Scholar
  16. Davies S. S., Amarnath V., and Roberts L. J., II (2004). Isoketals: highly reactive gamma-ketoaldehydes formed from the H-2-isoprostane pathway. Chem. Phys. Lipids 128:85–99.PubMedGoogle Scholar
  17. Dean R. T., Fu S., Stocker R., and Davies M. J.-(1997). Biochemistry and pathology of radical-mediated protein oxidation. Biochem. J.-324:1–18.PubMedGoogle Scholar
  18. Del Corso A., Dal Monte M., Vilardo P. G., Cecconi I., Moschini R., Banditelli S., Cappiello M., Tsai L., and Mura U. (1998). Site-specific inactivation of aldose reductase by 4-hydroxynonenal. Arch. Biochem. Biophys. 350:245–248.PubMedGoogle Scholar
  19. Dickinson D. A., Iles K. E., Watanabe N., Iwamoto T., Zhang H., Krzywanski D. M., and Forman H. J.-(2002). 4-Hydroxynonenal induces glutamate cysteine ligase through JNK in HBE1 cells. Free Radic. Biol. Med. 33:974–987.PubMedGoogle Scholar
  20. Duffy S., So A., and Murphy T. H. (1998). Activation of endogenous antioxidant defenses in neuronal cells prevents free radical-mediated damage. J.-Neurochem. 71:69–77.PubMedCrossRefGoogle Scholar
  21. Esterbauer H., Schaur R. J., and Zollner H. (1991). Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic. Biol. Med. 11:81–128.PubMedGoogle Scholar
  22. Fam S. S. and Morrow J.-D. (2003). The isoprostanes: unique products of arachidonic acid oxidation – a review. Curr. Med. Chem. 10:1723–1740.PubMedGoogle Scholar
  23. Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedGoogle Scholar
  24. Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245.PubMedGoogle Scholar
  25. Farooqui A. A., Yang H.-C., and Horrocks L. A. (1997). Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30:517–522.PubMedGoogle Scholar
  26. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.PubMedGoogle Scholar
  27. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.PubMedGoogle Scholar
  28. Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000c). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.Google Scholar
  29. Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.PubMedGoogle Scholar
  30. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.PubMedGoogle Scholar
  31. Fernstrom J.-D. (1999). Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids 34:161–169.PubMedGoogle Scholar
  32. Fessel J.-P., Porter N. A., Moore K. P., Sheller J.-R., and Roberts L. J., II (2002). Discovery of lipid peroxidation products formed in-vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc. Natl Acad. Sci. USA 99:16713–16718.PubMedGoogle Scholar
  33. Fiez J.-A. (1996). Cerebellar contributions to cognition. Neuron 16:13–15.PubMedGoogle Scholar
  34. Fisher A. B., Dodia C., Manevich Y., Chen J.-W., and Feinstein S. I. (1999). Phospholipid hydroperoxides are substrates for non-selenium glutathione peroxidase. J.-Biol. Chem. 274:21326–21334.PubMedGoogle Scholar
  35. Friguet B., Stadtman E. R., and Szweda L. I. (1994). Modification of glucose-6-phosphate dehydrogenase by 4-hydroxy-2-nonenal. J.-Biol. Chem. 269:21639–21643.PubMedGoogle Scholar
  36. Fukunaga M., Makita N., Roberts L. J., Morrow J.-D., Takahashi K., and Badr K. F. (1993). Evidence for the existence of F2-isoprostane receptors on rat vascular smooth muscle cells. Am. J.-Physiol. 264:C1619–C1624.PubMedGoogle Scholar
  37. Furnkranz A. and Leitinger N. (2004). Regulation of inflammatory responses by oxidized phospholipids structure–function relationships. Curr. Pharm. Des. 10:915–921.PubMedGoogle Scholar
  38. Guichardant M., Bernoud-Hubac N., Chantegrel B., Deshayes C., and Lagarde M. (2002). Aldehydes from n-6 fatty acid peroxidation. Effects on aminophospholipids. Prostaglandins Leukot. Essent. Fatty Acids 67:147–149.PubMedGoogle Scholar
  39. Habib A. and Badr K. F. (2004). Molecular pharmacology of isoprostanes in vascular smooth muscle. Chem. Phys. Lipids 128:69–73.PubMedGoogle Scholar
  40. Halliwell B. (1994). Free radicals and antioxidants: a personal view. Nutr. Rev. 52:253–265.PubMedCrossRefGoogle Scholar
  41. Harrison K. A. and Murphy R. C. (1995). Isoleukotrienes are biologically active free radical products of lipid peroxidation. J.-Biol. Chem. 270:17273–17278.PubMedGoogle Scholar
  42. Heinle H., Gugeler N., Felde R., Okech D., and Spiteller G. (2000). Oxidation of plasmalogens produces highly effective modulators of macrophage function. Z. Naturforsch. [C] 55:115–120.Google Scholar
  43. Horrocks L. A. and Farooqui A. A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.PubMedGoogle Scholar
  44. Jenkinson A. M., Collins A. R., Duthie S. J., Wahle K. W. J., and Duthie G. G. (1999). The effect of increased intakes of polyunsaturated fatty acids and vitamin E on DNA damage in human lymphocytes. FASEB J.-13:2138–2142.PubMedGoogle Scholar
  45. Ji C., Amarnath V., Pietenpol J.-A., and Marnett L. J.-(2001). 4-Hydroxynonenal induces apoptosis via caspase-3 activation and cytochrome c release. Chem. Res. Toxicol. 14:1090–1096.PubMedGoogle Scholar
  46. Kadoya A., Miyake H., and Ohyashiki T. (2003). Contribution of lipid dynamics on the inhibition of bovine brain synaptosomal Na+–K+-ATPase activity induced by 4-hydroxy-2-nonenal. Biol. Pharm. Bull. 26:787–793.PubMedGoogle Scholar
  47. Kehrer J.-P. and Biswal S. S. (2000). The molecular effects of acrolein. Toxicol. Sci. 57:6–15.PubMedGoogle Scholar
  48. Keller J.-N. and Mattson M. P. (1998). Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev. Neurosci. 9:105–116.PubMedGoogle Scholar
  49. Keller J.-N., Mark R. J., Bruce A. J., Blanc E., Rothstein J.-D., Uchida K., Wäg G., and Mattson M. P. (1997). 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 80:685–696.PubMedGoogle Scholar
  50. Kristal B. S., Park B. K., and Yu B. P. (1996). 4-Hydroxyhexenal is a potent inducer of the mitochondrial permeability transition. J.-Biol. Chem. 271:6033–6038.PubMedGoogle Scholar
  51. Kruman I., Bruce-Keller A. J., Bredesen D., Wäg G., and Mattson M. P. (1997). Evidence that 4-hydroxynonenal mediates oxidative stress-induced neuronal apoptosis. J.-Neurosci. 17:5089–5100.PubMedGoogle Scholar
  52. Lahaie I., Hardy P., Hou X., Hassessian H., Asselin P., Lachapelle P., Almazan G., Varma D. R., Morrow J.-D., Roberts L. J., II, and Chemtob S. (1998). A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F on retinal vessels. Am. J.-Physiol. 274:R1406–R1416.PubMedGoogle Scholar
  53. Lauderback C. M., Hackett J.-M., Huang F. F., Keller J.-N., Szweda L. I., Markesbery W. R., and Butterfield D. A. (2001). The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Aβ1–42. J.-Neurochem. 78:413–416.PubMedGoogle Scholar
  54. Lee H., Shi W., Tontonoz P., Wang S., Subbanagounder G., Hedrick C. C., Hama S., Borromeo C., Evans R. M., Berliner J.-A., and Nagy L. (2000a). Role for peroxisome proliferator-activated receptor α in oxidized phospholipid-induced synthesis of monocyte chemotactic protein-1 and interleukin-8 by endothelial cells. Circ. Res. 87:516–521.PubMedGoogle Scholar
  55. Lee S. H., Rindgen D., Bible R. H., Jr., Hajdu E., and Blair I. A. (2000b). Characterization of 2′-deoxyadenosine adducts derived from 4-oxo-2-nonenal, a novel product of lipid peroxidation. Chem. Res. Toxicol. 13:565–574.PubMedGoogle Scholar
  56. Lee J.-Y., Je J.-H., Jung K. J., Yu B. P., and Chung H. Y. (2004a). Induction of endothelial iNOS by 4-hydroxyhexenal through NF-κB activation. Free Radic. Biol. Med. 37:539–548.PubMedGoogle Scholar
  57. Lee J.-Y., Je J.-H., Kim D. H., Chung S. W., Zou Y., Kim N. D., Yoo M. A., Baik H. S., Yu B. P., and Chung H. Y. (2004b). Induction of endothelial apoptosis by 4-hydroxyhexenal. Eur. J.-Biochem. 271:1339–1347.PubMedGoogle Scholar
  58. Leitinger N. (2003). Oxidized phospholipids as modulators of inflammation in atherosclerosis. Curr. Opin. Lipidol. 14:421–430.PubMedGoogle Scholar
  59. Leitinger N. (2005). Oxidized phospholipids as triggers of inflammation in atherosclerosis. Mol. Nutr. Food Res. 49:1063–1071.PubMedGoogle Scholar
  60. Leitinger N., Watson A. D., Faull K. F., Fogelman A. M., and Berliner J.-A. (1997). Monocyte binding to endothelial cells induced by oxidized phospholipids present in minimally oxidized low density lipoprotein is inhibited by a platelet activating factor receptor antagonist. Adv. Exp. Med. Biol. 433:379–382.PubMedGoogle Scholar
  61. Leonard S. S., Harris G. K., and Shi X. (2004). Metal-induced oxidative stress and signal transduction. Free Radic. Biol. Med. 37:1921–1942.PubMedGoogle Scholar
  62. Lin D., Lee H. G., Liu Q., Perry G., Smith M. A., and Sayre L. M. (2005). 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 18:1219–1231.PubMedGoogle Scholar
  63. Lovell M. A., Xie C., and Markesbery W. R. (2000). Acrolein, a product of lipid peroxidation, inhibits glucose and glutamate uptake in primary neuronal cultures. Free Radic. Biol. Med. 29:714–720.PubMedGoogle Scholar
  64. Lu C., Chan S. L., Haughey N., Lee W. T., and Mattson M. P. (2001). Selective and biphasic effect of the membrane lipid peroxidation product 4-hydroxy-2,3-nonenal on N-methyl-D-aspartate channels. J.-Neurochem. 78:577–589.PubMedGoogle Scholar
  65. Luo H. and Shi R. Y. (2004). Acrolein induces axolemmal disruption, oxidative stress, and mitochondrial impairment in spinal cord tissue. Neurochem. Int. 44:475–486.PubMedGoogle Scholar
  66. Lyberg A. M., Fasoli E., and Adlercreutz P. (2005). Monitoring the oxidation of docosahexaenoic acid in lipids. Lipids 40:969–979.PubMedGoogle Scholar
  67. Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J.-M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J.-Biol. Chem. 278:43807–43817.PubMedGoogle Scholar
  68. Mark R. J., Lovell M. A., Markesbery W. R., Uchida K., and Mattson M. P. (1997). A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J.-Neurochem. 68:255–264.PubMedCrossRefGoogle Scholar
  69. McIntyre T. M., Zimmerman G. A., and Prescott S. M. (1999). Biologically active oxidized phospholipids. J.-Biol. Chem. 274:25189–25192.PubMedGoogle Scholar
  70. McLean L. R., Hagaman K. A., and Davidson W. S. (1993). Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28:505–509.PubMedGoogle Scholar
  71. Mertsch K., Blasig I., and Grune T. (2001). 4-Hydroxynonenal impairs the permeability of an in-vitro rat blood–brain barrier. Neurosci. Lett. 314:135–138.PubMedGoogle Scholar
  72. Milatovic D., Zaja-Milatovic S., Montine K. S., Horner P. J., and Montine T. J.-(2003). Pharmacologic suppression of neuronal oxidative damage and dendritic degeneration following direct activation of glial innate immunity in mouse cerebrum. J.-Neurochem. 87:1518–1526.PubMedCrossRefGoogle Scholar
  73. Montine T. J., Milatovic D., Gupta R. C., Valyi-Nagy T., Morrow J.-D., and Breyer R. M. (2002). Neuronal oxidative damage from activated innate immunity is EP2 receptor-dependent. J.-Neurochem. 83:463–470.PubMedGoogle Scholar
  74. Morrow J.-D., Harris T. M., and Roberts L. J., II (1990). Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Anal. Biochem. 184:1–10.PubMedGoogle Scholar
  75. Morrow J.-D., Hill K. E., Burk R. F., Nammour T. M., Badr K. F., and Roberts L. J.-(1991). Formation of unique biologically active prostaglandins in-vivo by a non-cyclooxygenase free radical catalyzed mechanism. Adv. Prostaglandin Thromboxane Leukot. Res. 21A:125–128.PubMedGoogle Scholar
  76. Morrow J.-D., Awad J.-A., Boss H. J., Blair I. A., and Roberts L. J., II (1992). Non-cyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in-situ on phospholipids. Proc. Natl Acad. Sci. USA 89:10721–10725.PubMedGoogle Scholar
  77. Morrow J.-D., Awad J.-A., Wu A., Zackert W. E., Daniel V. C., and Roberts L. J., II (1996). Nonenzymatic free radical-catalyzed generation of thromboxane-like compounds (isothromboxanes) in-vivo. J.-Biol. Chem. 271:23185–23190.PubMedGoogle Scholar
  78. Morrow J.-D., Tapper A. R., Zackert W. E., Yang J., Sanchez S. C., Montine T. J., and Roberts L. J., II (1999). Formation of novel isoprostane-like compounds from docosahexaenoic acid. Adv. Exp. Med. Biol. 469:343–347.PubMedGoogle Scholar
  79. Murakami M., Nakatani Y., Atsumi G., Inoue K., and Kudo I. (1997). Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 17:225–283.PubMedGoogle Scholar
  80. Musiek E. S., Milne G. L., McLaughlin B., and Morrow J.-D. (2005). Cyclopentenone eicosanoids as mediators of neurodegeneration: a pathogenic mechanism of oxidative stress-mediated and cyclooxygenase-mediated neurotoxicity. Brain Pathol. 15:149–158.PubMedCrossRefGoogle Scholar
  81. Natarajan V., Scribner W. M., and Taher M. M. (1993). 4-Hydroxynonenal, a metabolite of lipid peroxidation, activates phospholipase D in vascular endothelial cells. Free Radic. Biol. Med. 15:365–375.PubMedGoogle Scholar
  82. Neely M. D., Sidell K. R., Graham D. G., and Montine T. J.-(1999). The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. J.-Neurochem. 72:2323–2333.PubMedGoogle Scholar
  83. Nourooz-Zadeh J., Halliwell B., and Änggård E. E. (1997). Evidence for the formation of F3-isoprostanes during peroxidation of eicosapentaenoic acid. Biochem. Biophys. Res. Commun. 236:467–472.Google Scholar
  84. Nourooz-Zadeh J., Liu E. H. C., Yhlen B., Änggård E. E., and Halliwell B. (1999). F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J.-Neurochem. 72:734–740.PubMedGoogle Scholar
  85. Numazawa S., Ishikawa M., Yoshida A., Tanaka S., and Yoshida T. (2003). Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am. J.-Physiol. Cell Physiol. 285:C334–C342.PubMedGoogle Scholar
  86. Ong W. Y., Hu C. Y., Hjelle O. P., Ottersen O. P., and Halliwell B. (2000). Changes in glutathione in the hippocampus of rats injected with kainate: depletion in neurons and upregulation in glia. Exp. Brain Res. 132:510–516.PubMedGoogle Scholar
  87. Opere C. A., Zheng W. D., Huang J.-F., Adewale A., Kruglet M., and Ohia S. E. (2005). Dual effect of isoprostanes on the release of [3H]D-aspartate from isolated bovine retinae: role of arachidonic acid metabolites. Neurochem. Res. 30:129–137.PubMedGoogle Scholar
  88. Page S., Fischer C., Baumgartner B., Haas M., Kreusel U., Loidl G., Hayn M., Ziegler-Heitbrock H. W., Neumeier D., and Brand K. (1999). 4-Hydroxynonenal prevents NF-κB activation and tumor necrosis factor expression by inhibiting IκB phosphorylation and subsequent proteolysis. J.-Biol. Chem. 274:11611–11618.PubMedGoogle Scholar
  89. Paradisi L., Panagini C., Parola M., Barrera G., and Dianzani M. U. (1985). Effects of 4-hydroxynonenal on adenylate cyclase and 5′-nucleotidase activities in rat liver plasma membranes. Chem. Biol. Interact. 53:209–217.PubMedGoogle Scholar
  90. Picklo M. J.-and Montine T. J.-(2001). Acrolein inhibits respiration in isolated brain mitochondria. Biochim. Biophys. Acta 1535:145–152.PubMedGoogle Scholar
  91. Picklo M. J., Amarnath V., McIntyre J.-O., Graham D. G., and Montine T. J.-(1999). 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. J.-Neurochem. 72:1617–1624.PubMedGoogle Scholar
  92. Picklo M. J., Olson S. J., Markesbery W. R., and Montine T. J.-(2001). Expression and activities of aldo–keto oxidoreductases in Alzheimer disease. J.-Neuropathol. Exp. Neurol. 60:686–695.PubMedGoogle Scholar
  93. Pocernich C. B., Cardin A. L., Racine C. L., Lauderback C. M., and Butterfield D. A. (2001). Glutathione elevation and its protective role in acrolein-induced protein damage in synaptosomal membranes: relevance to brain lipid peroxidation in neurodegenerative disease. Neurochem. Int. 39:141–149.PubMedGoogle Scholar
  94. Pratico D., Rokach J., Lawson J., and FitzGerald G. A. (2004). F-2-isoprostanes as indices of lipid peroxidation in inflammatory diseases. Chem. Phys. Lipids 128:165–171.PubMedGoogle Scholar
  95. Ray P., Ray R., Broomfield C. A., and Berman J.-D. (1994). Inhibition of bioenergetics alters intracellular calcium, membrane composition, and fluidity in a neuronal cell line. Neurochem. Res. 19:57–63.PubMedGoogle Scholar
  96. Reich E. E., Markesbery W. R., Roberts L. J., II, Swift L. L., Morrow J.-D., and Montine T. J.-(2001). Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. Am. J.-Pathol. 158:293–297.PubMedGoogle Scholar
  97. Roberts L. J., II and Fessel J.-P. (2004). The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chem. Phys. Lipids 128:173–186.PubMedGoogle Scholar
  98. Roberts L. J., II, Montine T. J., Markesbery W. R., Tapper A. R., Hardy P., Chemtob S., Dettbarn W. D., and Morrow J.-D. (1998). Formation of isoprostane-like compounds (neuroprostanes) in-vivo from docosahexaenoic acid. J.-Biol. Chem. 273:13605–13612.PubMedGoogle Scholar
  99. Roberts L. J., II, Fessel J.-P., and Davies S. S. (2005). The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Brain Pathol. 15:143–148.PubMedCrossRefGoogle Scholar
  100. Rossi M. A., Di Mauro C., and Dianzani M. U. (1993). Action of lipid peroxidation products on phosphoinositide specific phospholipase C. Mol. Aspects Med. 14:273–279.PubMedGoogle Scholar
  101. Schneider C., Porter N. A., and Brash A. R. (2004). Autoxidative transformation of chiral ω6 hydroxy linoleic and arachidonic acids to chiral 4-hydroxy-2E-nonenal. Chem. Res. Toxicol. 17:937–941.PubMedGoogle Scholar
  102. Selley M. L., Close D. R., and Stern S. E. (2002). The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and-cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol. Aging 23:383–388.PubMedGoogle Scholar
  103. Stillwell W. and Wassall S. R. (2003). Docosahexaenoic acid: membrane properties of a unique fatty acid. Chem. Phys. Lipids 126:1–27.PubMedGoogle Scholar
  104. Subramaniam R., Roediger F., Jordan B., Mattson M. P., Keller J.-N., Wäg G., and Butterfield D. A. (1997). The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J.-Neurochem. 69:1161–1169.PubMedCrossRefGoogle Scholar
  105. Takahashi K., Nammour T. M., Fukunaga M., Ebert J., Morrow J.-D., Roberts L. J., Hoover R. L., and Badr K. F. (1992). Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2α, in the rat. Evidence for interaction with thromboxane A2 receptors. J.-Clin. Invest. 90:136–141.PubMedGoogle Scholar
  106. Tamagno E., Robino G., Obbili A., Bardini P., Aragno M., Parola M., and Danni O. (2003). H2O2 and 4-hydroxynonenal mediate amyloid beta-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp. Neurol. 180:144–155.PubMedGoogle Scholar
  107. Uchida K. (2003). 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog. Lipid Res. 42:318–343.PubMedGoogle Scholar
  108. Valko M., Morris H., and Cronin M. T. (2005). Metals, toxicity and oxidative stress. Curr. Med. Chem. 12:1161–1208.PubMedGoogle Scholar
  109. van Kuijk F. J.-G. M., Sevanian A., Handelman G. J., and Dratz E. A. (1987). A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. Trends Biochem. Sci. 12:31–34.Google Scholar
  110. West J.-D. and Marnett L. J.-(2005). Alterations in gene expression induced by the lipid peroxidation product, 4-hydroxy-2-nonenal. Chem. Res. Toxicol. 18:1642–1653.PubMedGoogle Scholar
  111. West J.-D., Ji C., Duncan S. T., Amarnath V., Schneider C., Rizzo C. J., Brash A. R., and Marnett L. J.-(2004). Induction of apoptosis in colorectal carcinoma cells treated with 4-hydroxy-2-nonenal and structurally related aldehydic products of lipid peroxidation. Chem. Res. Toxicol. 17:453–462.PubMedGoogle Scholar
  112. Yeh M., Leitinger N., de Martin R., Onai N., Matsushima K., Vora D. K., Berliner J.-A., and Reddy S. T. (2001). Increased transcription of IL-8 in endothelial cells is differentially regulated by TNF-alpha and oxidized phospholipids. Arterioscler. Thromb. Vasc. Biol. 21:1585–1591.PubMedGoogle Scholar
  113. Yin H. Y., Musiek E. S., Gao L., Porter N. A., and Morrow J.-D. (2005). Regiochemistry of neuroprostanes generated from the peroxidation of docosahexaenoic acid in-vitro and in-vivo. J.-Biol. Chem. 280:26600–26611.PubMedGoogle Scholar
  114. Yura T., Fukunaga M., Khan R., Nassar G. N., Badr K. F., and Montero A. (1999). Free-radical-generated F2-isoprostane stimulates cell proliferation and endothelin-1 expression on endothelial cells. Kidney Int. 56:471–478.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations