Advertisement

Docosahexaenoic Acid and Its Metabolites in Brain

Keywords

PC12 Cell Polyunsaturated Fatty Acid Neurite Outgrowth Docosahexaenoic Acid Hexaenoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmad A., Moriguchi T., and Salem N. J.-(2002). Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr. Neurol. 26:210–218.PubMedGoogle Scholar
  2. Akbar M., Calderon F., Wen Z. M., and Kim H. Y. (2005). Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc. Natl Acad. Sci. USA 102:10858–10863.PubMedGoogle Scholar
  3. Akbar M. and Kim H. Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J.-Neurochem. 82:655–665.PubMedGoogle Scholar
  4. Aniksztejn L. and Ben Ari Y. (1991). Novel form of long-term potentiation produced by a K+ channel blocker in the hippocampus. Nature 349:67–69.PubMedGoogle Scholar
  5. Ariel A., Li P. L., Wang W., Tang W. X., Hong S., Gotlinger K. H., and Serhan C. N. (2005). The novel docosatriene, Protectin D1, produced by TH2-polarization promotes human T cell apoptosis via lipid-raft clustering. Clin. Immunol. 115:S263.Google Scholar
  6. Arita M., Bianchini F., Aliberti J., Sher A., Chiang N., Hong S., Yang R., Petasis N. A., and Serhan C. N. (2005). Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J.-Exp. Med. 201:713–722.PubMedGoogle Scholar
  7. Bannenberg G. L., Chiang N., Ariel A., Arita M., Tjonahen E., Gotlinger K. H., Hong S., and Serhan C. N. (2005). Molecular circuits of resolution: formation and actions of resolvins and protectins. J.-Immunol. 174:4345–4355.PubMedGoogle Scholar
  8. Barceló-Coblijn G., Kitajka K., Puskás L. G., Hõgyes E., Zvara A., Hackler L., Jr., and Farkas T. (2003). Gene expression and molecular composition of phospholipids in rat brain in relation to dietary n-6 to n-3 fatty acid ratio. Biochim. Biophys. Acta 1632:72–79.PubMedGoogle Scholar
  9. Bazan N. G. (2005). Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.PubMedCrossRefGoogle Scholar
  10. Berry C. B., Hayes D., Murphy A., Wiessner M., Rauen T., and McBean G. J.-(2005). Differential modulation of the glutamate transporters GLT1, GLAST and EAAC1 by docosahexaenoic acid. Brain Res. 1037:123–133.PubMedGoogle Scholar
  11. Bougnoux P. (1999). n-3 Polyunsaturated fatty acids and cancer. Curr. Opin. Clin. Nutr. Metab. Care 2:121–126.PubMedGoogle Scholar
  12. Brown J.-E. and Wahle K. W. J.-(1990). Effect of fish-oil and vitamin E supplementation on lipid peroxidation and whole-blood aggregation in man. Clin. Chim. Acta 193:147–156.PubMedGoogle Scholar
  13. Calder P. C. (1998). Dietary fatty acids and the immune system. Nutr. Rev. 56:S70–S83.PubMedCrossRefGoogle Scholar
  14. Calder P. C. (2003a). Long-chain n-3 fatty acids and inflammation: potential application in surgical and trauma patients. Braz. J.-Med. Biol. Res. 36:433–446.PubMedGoogle Scholar
  15. Calder P. C. (2003b). n-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids 38:343–352.PubMedGoogle Scholar
  16. Calder P. C. (2004). n-3 fatty acids, inflammation, and immunity – relevance to postsurgical and critically ill patients. Lipids 39:1147–1161.PubMedGoogle Scholar
  17. Calder P. C. and Grimble R. F. (2002). Polyunsaturated fatty acids, inflammation and immunity. Eur. J.-Clin. Nutr. 56:S14–S19.PubMedGoogle Scholar
  18. Calderon F. and Kim H. Y. (2004). Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J.-Neurochem. 90:979–988.PubMedGoogle Scholar
  19. Calon F., Lim G. P., Morihara T., Yang F. S., Ubeda O., Salem N. J., Frautschy S. A., and Cole G. M. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur. J.-Neurosci. 22:617–626.PubMedGoogle Scholar
  20. Cao D. H., Xue R. H., Xu J., and Liu Z. L. (2005). Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J.-Nutr. Biochem. 16:538–546.PubMedGoogle Scholar
  21. Carrie I., Clement M., De Javel D., Frances H., and Bourre J.-M. (2000). Specific phospholipid fatty acid composition of brain regions in mice. Effects of n-3 polyunsaturated fatty acid deficiency and phospholipid supplementation. J.-Lipid Res. 41:465–472.PubMedGoogle Scholar
  22. Carroll D. N. and Roth M. T. (2002). Evidence for the cardioprotective effects of omega-3 fatty acids. Ann. Pharmacother. 36:1950–1956.PubMedGoogle Scholar
  23. Caughey G. E., Mantzioris E., Gibson R. A., Cleland L. G., and James M. J.-(1996). The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am. J.-Clin. Nutr. 63:116–122.PubMedGoogle Scholar
  24. Chalon S., Delion-Vancassel S., Belzung C., Guilloteau D., Leguisquet A. M., Besnard J.-C., and Durand G. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J.-Nutr. 128:2512–2519.PubMedGoogle Scholar
  25. Chen C. and Bazan N. G. (2005). Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat. 77:65–76.PubMedGoogle Scholar
  26. Clarke S. D. (2000). Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. Br. J.-Nutr. 83(Suppl. 1):S59–S66.PubMedGoogle Scholar
  27. Cline H. T. (2001). Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11:118–126.PubMedGoogle Scholar
  28. Combs G. F., Jr., Noguchi T., and Scott M. L. (1975). Mechanisms of action of selenium and vitamin E in protection of biological membranes. Fed. Proc. 34:2090–2095.PubMedGoogle Scholar
  29. Corey E. J., Shih C., and Cashman J.-R. (1983). Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proc. Natl Acad. Sci. USA 80:3581–3584.PubMedGoogle Scholar
  30. Das U. N. (2003). Long-chain polyunsaturated fatty acids in memory formation and consolidation: further evidence and discussion. Nutrition 19:988–993.PubMedGoogle Scholar
  31. de Urquiza A. M., Liu S., Sjöberg M., Zetterström R. H., Griffiths W., Sjövall J., and Perlmann T. (2000). Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 290:2140–2144.PubMedGoogle Scholar
  32. Delton-Vandenbroucke I., Vericel E., Janueli C., Carreras M., Lecomte M., and Lagarde M. (2001). Dual regulation of glutathione peroxidase by docosahexaenoic acid in endothelial cells depending on concentration and vascular bed origin. Free Radic. Biol. Med. 30:895–904.PubMedGoogle Scholar
  33. DeMar J.-C. J., Ma K. Z., Bell J.-M., and Rapoport S. I. (2004). Half-lives of docosahexaenoic acid in rat brain phospholipids are prolonged by 15 weeks of nutritional deprivation of n-3 polyunsaturated fatty acids. J.-Neurochem. 91:1125–1137.PubMedGoogle Scholar
  34. Denys A., Hichami A., and Khan N. A. (2005). n-3PUFAs modulate T-cell activation via protein kinase C-α and -ε and the NF-κ B signaling pathway. J.-Lipid Res. 46:752–758.PubMedGoogle Scholar
  35. Duncan R. E., El Sohemy A., and Archer M. C. (2005). Regulation of HMG-CoA reductase in MCF-7 cells by genistein, EPA, and DHA, alone and in combination with mevastatin. Cancer Lett. 224:221–228.PubMedGoogle Scholar
  36. Farkas T., Kitajka K., Fodor E., Csengeri I., Lahdes E., Yeo Y. K., Krasznai Z., and Halver J.-E. (2000). Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl Acad. Sci. USA 97:6362–6366.PubMedGoogle Scholar
  37. Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.PubMedGoogle Scholar
  38. Farooqui A. A. and Horrocks L. A. (1985). Metabolic and functional aspects of neural membrane phospholipids. In: Horrocks L. A., Kanfer J.-N., and Porcellati G. (eds.), Phospholipids in the Nervous System, Vol. II: Physiological Role. Raven Press, New York, pp.-341–348.Google Scholar
  39. Farooqui A. A. and Horrocks L. A. (2001a). Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J.-Mol. Neurosci. 16:263–272.Google Scholar
  40. Farooqui A. A. and Horrocks L. A. (2001b). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedGoogle Scholar
  41. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.PubMedGoogle Scholar
  42. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.PubMedGoogle Scholar
  43. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum Publishers, London, pp.-335–354.Google Scholar
  44. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacologic effects and therapeutic importance for the treatment of neurologic disorders. Pharm. Rev. (in press).Google Scholar
  45. Feller S. E. and Gawrisch K. (2005). Properties of docosahexaenoic-acid-containing lipids and their influence on the function of rhodopsin. Curr. Opin. Struct. Biol. 15:416–422.PubMedGoogle Scholar
  46. Fernstrom J.-D. (1999). Effects of dietary polyunsaturated fatty acids on neuronal function. Lipids 34:161–169.PubMedGoogle Scholar
  47. Ferrier G. R., Redondo I., Zhu J.-Q., and Murphy M. G. (2002). Differential effects of docosahexaenoic acid on contractions and L-type Ca2+ current in adult cardiac myocytes. Cardiovasc. Res. 54:601–610.PubMedGoogle Scholar
  48. Flower R. J.-and Perretti M. (2005). Controlling inflammation: a fat chance? J.-Exp. Med. 201:671–674.PubMedGoogle Scholar
  49. Fujimoto K., Yao K., Miyazaki T., Hirano H., Nishikawa M., Kimura S., Murayama K., and Nonaka M. (1989). The effect of dietary docosahexaenoate on the learning ability of rats. In: Chandra R. K. (ed.), Health Effects of Fish and Fish Oils. ARTS Biomedical, The Netherlands, pp.-275–284.Google Scholar
  50. Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Br. J.-Pharmacol. 132:1417–1422.PubMedGoogle Scholar
  51. Garcia M. C. and Kim H. Y. (1997). Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res. 768:43–48.PubMedGoogle Scholar
  52. Gerbi A., Zérouga M., Debray M., Durand G., Chanez C., and Bourre J.-M. (1994). Effect of fish oil diet on fatty acid composition of phospholipids of brain membranes and on kinetic properties of Na+, K+-ATPase isoenzymes of weaned and adult rats. J.-Neurochem. 62:1560–1569.PubMedCrossRefGoogle Scholar
  53. Green P., Glozman S., Weiner L., and Yavin E. (2001a). Enhanced free radical scavenging and decreased lipid peroxidation in the rat fetal brain after treatment with ethyl docosahexaenoate. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1532:203–212.CrossRefGoogle Scholar
  54. Green P., Glozman S., and Yavin E. (2001b). Ethyl docosahexaenoate-associated decrease in fetal brain lipid peroxide production is mediated by activation of prostanoid and nitric oxide pathways. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1531:156–164.CrossRefGoogle Scholar
  55. Grimm H., Mayer K., Mayser P., and Eigenbrodt E. (2002). Regulatory potential of n-3 fatty acids in immunological and inflammatory processes. Br. J.-Nutr. 87:S59–S67.PubMedGoogle Scholar
  56. Gronert K., Maheshwari N., Khan N., Hassan I. R., Dunn M., and Schwartzman M. L. (2005). A role for the mouse 12/15-lipoxygenase pathway in promoting epithelial wound healing and host defense. J.-Biol. Chem. 280:15267–15278.PubMedGoogle Scholar
  57. Grundt H., Nilsen D. W., Mansoor M. A., and Nordøy A. (2003). Increased lipid peroxidation during long-term intervention with high doses of n-3 fatty acids (PUFAs) following an acute myocardial infarction. Eur. J.-Clin. Nutr. 57:793–800.PubMedGoogle Scholar
  58. Hamano H., Nabekura J., Nishikawa M., and Ogawa T. (1996). Docosahexaenoic acid reduces GABA response in substantia nigra neuron of rat. J.-Neurophysiol. 75:1264–1270.PubMedGoogle Scholar
  59. Hamilton J., Greiner R., Salem N., Jr., and Kim H. Y. (2000). n-3 fatty acid deficiency decreases phosphatidylserine accumulation selectively in neuronal tissues. Lipids 35:863–869.PubMedGoogle Scholar
  60. Harbige L. S. (2003). Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids 38:323–341.PubMedGoogle Scholar
  61. Hashimoto M., Hossain M. S., Yamasaki H., Yazawa K., and Masumura S. (1999). Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids 34:1297–1304.PubMedGoogle Scholar
  62. Hashimoto M., Hossain S., Shimada T., Sugioka K., Yamasaki H., Fujii Y., Ishibashi Y., Oka J.-I., and Shido O. (2002). Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J.-Neurochem. 81:1084–1091.PubMedGoogle Scholar
  63. Hashimoto M., Tanabe Y., Fujii Y., Kikuta T., Shibata H., and Shido O. (2005). Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid β-infused rats. J.-Nutr. 135:549–555.PubMedGoogle Scholar
  64. Hirafuji M., Machida T., Hamaue N., and Minami M. (2003). Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid. J.-Pharmacol. Sci. 92:308–316.PubMedGoogle Scholar
  65. Hogyes E., Nyakas C., Kiliaan A., Farkas T., Penke B., and Luiten P. G. (2003). Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012.PubMedGoogle Scholar
  66. Hong S., Gronert K., Devchand P. R., Moussignac R. L., and Serhan C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells – autacoids in anti-inflammation. J.-Biol. Chem. 278:14677–14687.PubMedGoogle Scholar
  67. Honore E., Barhanin J., Attali B., Lesage F., and Lazdunski M. (1994). External blockade of the major cardiac delayed-rectifier K+ channel (Kv1.5) by polyunsaturated fatty acids. Proc. Natl Acad. Sci. USA 91:1937–1941.PubMedGoogle Scholar
  68. Horrocks L. A. and Farooqui A. A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.PubMedGoogle Scholar
  69. Horrocks L. A. and Yeo Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40:211–225.PubMedGoogle Scholar
  70. Hossain M. S., Hashimoto M., Gamoh S., and Masumura S. (1999). Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J.-Neurochem. 72:1133–1138.PubMedGoogle Scholar
  71. Hossain M. S., Hashimoto M., and Masumura S. (1998). Influence of docosahexaenoic acid on cerebral lipid peroxide level in aged rats with and without hypercholesterolemia. Neurosci. Lett. 244:157–160.PubMedGoogle Scholar
  72. Huster D., Arnold K., and Gawrisch K. (1998). Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry 37:17299–17308.PubMedGoogle Scholar
  73. Ikemoto A., Kobayashi T., Emoto K., Umeda M., Watanabe S., and Okuyama H. (1999). Effects of docosahexaenoic and arachidonic acids on the synthesis and distribution of aminophospholipids during neuronal differentiation of PC12 cells. Arch. Biochem. Biophys. 364:67–74.PubMedGoogle Scholar
  74. Ikemoto A., Kobayashi T., Watanabe S., and Okuyama H. (1997). Membrane fatty acid modifications of PC12 cells by arachidonate or docosahexaenoate affect neurite outgrowth but not norepinephrine release. Neurochem. Res. 22:671–678.PubMedGoogle Scholar
  75. Ikemoto A., Ohishi M., Hata N., Misawa Y., Fujii Y., and Okuyama H. (2000). Effect of n-3 fatty acid deficiency on fatty acid composition and metabolism of aminophospholipids in rat brain synaptosomes. Lipids 35:1107–1115.PubMedGoogle Scholar
  76. Innis S. M. and Dyer R. A. (2002). Brain astrocyte synthesis of docosahexaenoic acid from n-3 fatty acids is limited at the elongation of docosapentaenoic acid. J.-Lipid Res. 43:1529–1536.PubMedGoogle Scholar
  77. Itokazu N., Ikegaya Y., Nishikawa M., and Matsuki N. (2000). Bidirectional actions of docosahexaenoic acid on hippocampal neurotransmissions in-vivo. Brain Res. 862:211–216.PubMedGoogle Scholar
  78. Izaki Y., Hashimoto M., and Arita J.-(1999). Enhancement by 1-oleoyl-2-docosahexaenoyl phosphatidylcholine of long-term potentiation in the rat hippocampal CA1 region. Neurosci. Lett. 260:146–148.PubMedGoogle Scholar
  79. James M. J., Gibson R. A., and Cleland L. G. (2000). Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J.-Clin. Nutr. 71:343S–348S.PubMedGoogle Scholar
  80. Jan Y. N. and Jan L. Y. (2001). Dendrites. Genes Dev. 15:2627–2641.PubMedGoogle Scholar
  81. Jan Y. N. and Jan L. Y. (2003). The control of dendrite development. Neuron 40:229–242.PubMedGoogle Scholar
  82. Jones C. R., Arai T., and Rapoport S. I. (1997). Evidence for the involvement of docosahexaenoic acid in cholinergic stimulated signal transduction at the synapse. Neurochem. Res. 22:663–670.PubMedGoogle Scholar
  83. Jump D. B. (2002a). Dietary polyunsaturated fatty acids and regulation of gene transcription. Curr. Opin. Lipidol. 13:155–164.PubMedGoogle Scholar
  84. Jump D. B. (2002b). The biochemistry of n-3 polyunsaturated fatty acids. J.-Biol. Chem. 277:8755–8758.PubMedGoogle Scholar
  85. Kim H. Y., Akbar M., Lau A., and Edsall L. (2000). Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J.-Biol. Chem. 275:35215–35223.PubMedGoogle Scholar
  86. Kim H. Y., Edsall L., and Ma Y. C. (1996). Specificity of polyunsaturated fatty acid release from rat brain synaptosomes. Lipids 31(Suppl.):S229–S233.PubMedGoogle Scholar
  87. Kishida E., Yano M., Kasahara M., and Masuzawa Y. (1998). Distinctive inhibitory activity of docosahexaenoic acid against sphingosine-induced apoptosis. Biochim. Biophys. Acta Lipids Lipid Metab. 1391:401–408.Google Scholar
  88. Kitajka K., Puskás L. G., Zvara A., Hackler L. J., Barceló-Coblijn G., Yeo Y. K., and Farkas T. (2002). The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acids. Proc. Natl Acad. Sci. USA 99:2619–2624.PubMedGoogle Scholar
  89. Langelier B., Alessandri J.-M., Perruchot M. H., Guesnet P., and Lavialle M. (2005). Changes of the transcriptional and fatty acid profiles in response to n-3 fatty acids in SH-SY5Y neuroblastoma cells. Lipids 40:719–728.PubMedGoogle Scholar
  90. Lauritzen L., Hansen H. S., Jorgensen M. H., and Michaelsen K. F. (2001). The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 40:1–94.PubMedGoogle Scholar
  91. Lengqvist J., Mata de Urquiza A., Bergman A. C., Willson T. M., Sjövall J., Perlmann T., and Griffiths W. J.-(2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol. Cell. Proteomics 3:692–703.PubMedGoogle Scholar
  92. Li Q. R., Wang M., Tan L., Wang C., Ma J., Li N., Li Y. S., Xu G. W., and Li J.-S. (2005). Docosahexaenoic acid changes lipid composition and interleukin-2 receptor signaling in membrane rafts. J.-Lipid Res. 46:1904–1913.PubMedGoogle Scholar
  93. Litman B. J.-and Mitchell D. C. (1996). A role for phospholipid polyunsaturation in modulating membrane protein function. Lipids 31(Suppl.):S193–S197.PubMedGoogle Scholar
  94. Lonergan P. E., Martin D. S. D., Horrobin D. F., and Lynch M. A. (2004). Neuroprotective actions of eicosapentaenoic acid on lipopolysaccharide-induced dysfunction in rat hippocampus. J.-Neurochem. 91:20–29.PubMedGoogle Scholar
  95. Lu X. R., Ong W. Y., Halliwell B., Horrocks L. A., and Farooqui A. A. (2001). Differential effects of calcium-dependent and calcium-independent phospholipase A2 inhibitors on kainate-induced neuronal injury in rat hippocampal slices. Free Radic. Biol. Med. 30:1263–1273.PubMedGoogle Scholar
  96. Lukiw W. J., Cui J.-G., Marcheselli V. L., Bodker M., Botkjaer A., Gotlinger K., Serhan C. N., and Bazan N. G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J.-Clin. Invest. 115:2774–2783.PubMedGoogle Scholar
  97. Ma D. W. L., Seo J., Switzer K. C., Fan Y. Y., McMurray D. N., Lupton J.-R., and Chapkin R. S. (2004). n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid research. J.-Nutr. Biochem. 15:700–706.PubMedGoogle Scholar
  98. Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J.-M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J.-Biol. Chem. 278:43807–43817.PubMedGoogle Scholar
  99. Marszalek J.-R., Kitidis C., DiRusso C. C., and Lodish H. F. (2005). Long-chain acyl-CoA synthetase 6 preferentially promotes DHA metabolism. J.-Biol. Chem. 280:10817–10826.PubMedGoogle Scholar
  100. Martin R. E. (1998). Docosahexaenoic acid decreases phospholipase A2 activity in the neurites/nerve growth cones of PC12 cells. J.-Neurosci. Res. 54:805–813.PubMedGoogle Scholar
  101. Martin R. E., Wickham J.-Q., Om A. S., Sanders J., and Ceballos N. (2000). Uptake and incorporation of docosahexaenoic acid (DHA) into neuronal cell body and neurite/nerve growth cone lipids: evidence of compartmental DHA metabolism in nerve growth factor-differentiated PC12 cells. Neurochem. Res. 25:715–723.PubMedGoogle Scholar
  102. Mitchell D. C., Gawrisch K., Litman B. J., and Salem N., Jr. (1998). Why is docosahexaenoic acid essential for nervous system function? Biochem. Soc. Trans. 26:365–370.PubMedGoogle Scholar
  103. Miura Y., Takahara K., Murata Y., Utsumi K., Tada M., and Takahata K. (2004). Docosahexaenoic acid induces apoptosis via the bax-independent pathway in HL-60 cells. Biosci. Biotechnol. Biochem. 68:2415–2417.PubMedGoogle Scholar
  104. Mori T. A. (2004). Effect of fish and fish oil-derived omega-3 fatty acids on lipid oxidation. Redox Rep. 9:193–197.PubMedGoogle Scholar
  105. Moriguchi T., Greiner R. S., and Salem N., Jr. (2000). Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J.-Neurochem. 75:2563–2573.PubMedGoogle Scholar
  106. Mozzi R., Buratta S., and Goracci G. (2003). Metabolism and functions of phosphatidylserine in mammalian brain. Neurochem. Res. 28:195–214.PubMedGoogle Scholar
  107. Mukherjee P. K., Marcheselli V. L., Serhan C. N., and Bazan N. G. (2004). Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl Acad. Sci. USA 101:8491–8496.PubMedGoogle Scholar
  108. Nabekura J., Noguchi K., Witt M. R., Nielsen M., and Akaike N. (1998). Functional modulation of human recombinant γ-aminobutyric acid type A receptor by docosahexaenoic acid. J.-Biol. Chem. 273:11056–11061.PubMedGoogle Scholar
  109. Nair P. P., Judd J.-T., Berlin E., Taylor P. R., Shami S., Sainz E., and Bhagavan H. N. (1993). Dietary fish oil-induced changes in the distribution of α-tocopherol, retinol, and β-carotene in plasma, red blood cells, and platelets: modulation by vitamin E. Am. J.-Clin. Nutr. 58:98–102.PubMedGoogle Scholar
  110. Nakamura M. T., Cheon Y., Li Y., and Nara T. Y. (2004). Mechanisms of regulation of gene expression by fatty acids. Lipids 39:1077–1083.PubMedGoogle Scholar
  111. Nakamura M. T. and Nara T. Y. (2003). Essential fatty acid synthesis and its regulation in mammals. Prostaglandins Leukot. Essent. Fatty Acids 68:145–150.PubMedGoogle Scholar
  112. Nishikawa M., Kimura S., and Akaike N. (1994). Facilitatory effect of docosahexaenoic acid on N-methyl-D-aspartate response in pyramidal neurones of rat cerebral cortex. J.-Physiol. (London) 475:83–93.PubMedGoogle Scholar
  113. Niu S. L., Mitchell D. C., Lim S. Y., Wen Z. M., Kim H. Y., Salem N., Jr., and Litman B. J.-(2004). Reduced G protein-coupled signaling efficiency in retinal rod outer segments in response to n-3 fatty acid deficiency. J.-Biol. Chem. 279:31098–31104.PubMedGoogle Scholar
  114. Ong L. W., Jiang B., Tang N., Yeo J.-F., Wei S., Farooqui A. A., and Ong W. Y. (2006). Differential effects of polyunsaturated fatty acids on exocytosis in rat pheochromocytoma-12 cells. Neurochem. Res. 31:41–48.PubMedGoogle Scholar
  115. Phillis J.-W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. (in press).Google Scholar
  116. Pifferi F., Roux F., Langelier B., Alessandri J.-M., Vancassel S., Jouin M., Lavialle M., and Guesnet P. (2005). (n-3) polyunsaturated fatty acid deficiency reduces the expression of both isoforms of the brain glucose transporter GLUT1 in rats. J.-Nutr. 135:2241–2246.PubMedGoogle Scholar
  117. Poling J.-S., Karanian J.-W., Salem N., Jr., and Vicini S. (1995). Time- and voltage-dependent block of delayed rectifier potassium channels by docosahexaenoic acid. Mol. Pharmacol. 47:381–390.PubMedGoogle Scholar
  118. Porcellati G. (1983). Phospholipid metabolism in neural membranes. In: Sun G. Y., Bazan N., Wu J.-Y., Porcellati G., and Sun A. Y. (eds.), Neural Membranes. Humana Press, New York, pp.-3–35.Google Scholar
  119. Poumès-Ballihaut C., Langelier B., Houlier F., Alessandri J.-M., Durand G., Latge C., and Guesnet P. (2001). Comparative bioavailability of dietary alpha-linolenic and docosahexaenoic acids in the growing rat. Lipids 36:793–800.PubMedGoogle Scholar
  120. Price P. T., Nelson C. M., and Clarke S. D. (2000). Omega-3 polyunsaturated fatty acid regulation of gene expression. Curr. Opin. Lipidol. 11:3–7.PubMedGoogle Scholar
  121. Puskás L. G., Kitajka K., Nyakas C., Barcelo-Coblijn G., and Farkas T. (2003). Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc. Natl Acad. Sci. USA 100:1580–1585.Google Scholar
  122. Ramakers G. J., Oestreicher A. B., Wolters P. S., Van Leeuwen F. W., De Graan P. N., and Gispen W. H. (1991). Developmental changes in B-50 (GAP-43) in primary cultures of cerebral cortex: B-50 immunolocalization, axonal elongation rate and growth cone morphology. Int. J.-Dev. Neurosci. 9:215–230.PubMedGoogle Scholar
  123. Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.PubMedGoogle Scholar
  124. Rapoport S. I. (2003). In vivo approaches to quantifying and imaging brain arachidonic and docosahexaenoic acid metabolism. J.-Pediatr. 143:S26–S34.PubMedGoogle Scholar
  125. Rapoport S. I., Chang M. C. J., and Spector A. A. (2001). Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. J.-Lipid Res. 42:678–685.PubMedGoogle Scholar
  126. Reddy T. S. and Bazan N. G. (1984). Long-chain acyl coenzyme A synthetase activity during the postnatal development of the mouse brain. Int. J.-Dev. Neurosci. 2:447–450.Google Scholar
  127. Reddy T. S., Sprecher H., and Bazan N. G. (1984). Long-chain acyl-coenzyme A synthetase from rat brain microsomes. Kinetic studies using [1-14C]docosahexaenoic acid substrate. Eur. J.-Biochem. 145:21–29.PubMedGoogle Scholar
  128. Rotstein N. P., Aveldaño M. I., Barrantes F. J., Roccamo A. M., and Politi L. E. (1997). Apoptosis of retinal photoreceptors during development in-vitro: protective effect of docosahexaenoic acid. J.-Neurochem. 69:504–513.PubMedCrossRefGoogle Scholar
  129. Rotstein N. P., Politi L. E., and Aveldaño M. I. (1998). Docosahexaenoic acid promotes differentiation of developing photoreceptors in culture. Invest. Ophthalmol. Vis. Sci. 39:2750–2758.PubMedGoogle Scholar
  130. Rotstein N. P., Politi L. E., German O. L., and Girotti R. (2003). Protective effect of docosahexaenoic acid on oxidative stress-induced apoptosis of retina photoreceptors. Invest. Ophthalmol. Vis. Sci. 44:2252–2259.PubMedGoogle Scholar
  131. Salem N., Shingu T., Kim H.-Y., Hullin F., Bougnoux P., and Karanian J.-W. (1988). Aberrations in membrane structures and function. In: Karnovsky M. L., Bolis L., and Leaf A. (eds.), Biological Membranes. Alan R. Liss, New York, pp.-319–333.Google Scholar
  132. Sampath H. and Ntambi J.-M. (2005). Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu. Rev. Nutr. 25:317–340.PubMedGoogle Scholar
  133. Sanderson P. and Calder P. C. (1998). Dietary fish oil appears to prevent the activation of phospholipase C-gamma in lymphocytes. Biochim. Biophys. Acta 1392:300–308.PubMedGoogle Scholar
  134. SanGiovanni J.-P. and Chew E. Y. (2005). The role of omega-3 long-chain polyunsaturated fatty acids in health and disease of the retina. Prog. Retinal Eye Res. 24:87–138.Google Scholar
  135. Scott B. L. and Bazan N. G. (1989). Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proc. Natl Acad. Sci. USA 86:2903–2907.PubMedGoogle Scholar
  136. Sergeeva M., Strokin M., and Reiser G. (2005). Regulation of intracellular calcium levels by polyunsaturated fatty acids, arachidonic acid and docosahexaenoic acid, in astrocytes: possible involvement of phospholipase A2. Reprod. Nutr. Dev. 45:633–646.PubMedGoogle Scholar
  137. Serhan C. N. (2005a). Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr. Opin. Clin. Nutr. Metab. Care 8:115–121.PubMedCrossRefGoogle Scholar
  138. Serhan C. N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.PubMedGoogle Scholar
  139. Serhan C. N., Arita M., Hong S., and Gotlinger K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132.PubMedGoogle Scholar
  140. Shaikh S. R., Dumaual A. C., Castillo A., LoCascio D., Siddiqui R. A., Stillwell W., and Wassall S. R. (2004). Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study. Biophys. J.-87:1752–1766.PubMedGoogle Scholar
  141. Shaikh S. R., Dumaual A. C., LoCassio D., Siddiqui R. A., and Stillwell W. (2003). Acyl chain unsaturation in PEs modulates phase separation from lipid raft molecules. Biochem. Biophys. Res. Commun. 311:793–796.Google Scholar
  142. Siddiqui R. A., Jenski L. J., Harvey K. A., Wiesehan J.-D., Stillwell W., and Zaloga G. P. (2003). Cell-cycle arrest in Jurkat leukaemic cells: a possible role for docosahexaenoic acid. Biochem. J.-371:621–629.PubMedGoogle Scholar
  143. Siddiqui R. A., Shaikh S. R., Sech L. A., Yount H. R., Stillwell W., and Zaloga G. P. (2004). Omega 3-fatty acids: health benefits and cellular mechanisms of action. Mini-Rev. Medicin. Chem. 4:859–871.Google Scholar
  144. Siddiqui R. A., Wiesehan J., Stillwel W., Jenski L., and Kovacs R. (2001). Prevention of cytotoxic effects of docosahexaenoic acid in Jurkat leukemic cells by phosphatidic acid. FASEB J.-15:A282.Google Scholar
  145. Songur A., Sarsilmaz M., Sogut S., Ozyurt B., Ozyurt H., Zararsiz I., and Turkoglu A. O. (2004). Hypothalamic superoxide dismutase, xanthine oxidase, nitric oxide, and malondialdehyde in rats fed with fish ω-3 fatty acids. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 28:693–698.Google Scholar
  146. Stillwell W., Shaikh S. R., Zerouga M., Siddiqui R., and Wassall S. R. (2005). Docosahexaenoic acid affects cell signaling by altering lipid rafts. Reprod. Nutr. Develop. 45:559–579.Google Scholar
  147. Stillwell W. and Wassall S. R. (2003). Docosahexaenoic acid: membrane properties of a-unique fatty acid. Chem. Phys. Lipids 126:1–27.PubMedGoogle Scholar
  148. Stinson A. M., Wiegand R. D., and Anderson R. E. (1991). Fatty acid and molecular species compositions of phospholipids and diacylglycerols from rat retinal membranes. Exp. Eye Res. 52:213–218.PubMedGoogle Scholar
  149. Strokin M., Sergeeva M., and Reiser G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br. J.-Pharmacol. 139:1014–1022.PubMedGoogle Scholar
  150. Takahata, K. (1995). Effect of DHA on cultured neuronal cells: studies in PC12 cells. Jpn.-J.-Pharmacol. 67:13S.Google Scholar
  151. Valentine R. C. and Valentine D. L. (2004). Omega-3 fatty acids in cellular membranes: a-unified concept. Prog. Lipid Res. 43:383–402.PubMedGoogle Scholar
  152. Verlengia R., Gorjao R., Kanunfre C. C., Bordin S., de Lima T. M., Martins E. F., and Curi R. (2004a). Comparative effects of eicosapentaenoic acid and docosahexaenoic acid on proliferation, cytokine production, and pleiotropic gene expression in Jurkat cells. J.-Nutr. Biochem. 15:657–665.PubMedGoogle Scholar
  153. Verlengia R., Gorjão R., Kanunfre C. C., Bordin S., Martins de Lima T., Fernandes Martins E., Newsholme P., and Curi R. (2004b). Effects of EPA and DHA on proliferation, cytokine production, and gene expression in Raji cells. Lipids 39:857–864.PubMedGoogle Scholar
  154. Wassall S. R., Brzustowicz M. R., Shaikh S. R., Cherezov V., Caffrey M., and Stillwell W. (2004). Order from disorder, corralling cholesterol with chaotic lipids – the role of polyunsaturated lipids in membrane raft formation. Chem. Phys. Lipids 132:79–88.PubMedGoogle Scholar
  155. Wu D. and Meydani S. N. (1998). n-3 polyunsaturated fatty acids and immune function. Proc. Nutr. Soc. 57:503–509.PubMedGoogle Scholar
  156. Wu M., Harvey K. A., Ruzmetov N., Welch Z. R., Sech L., Jackson K., Stillwell W., Zaloga G. P., and Siddiqui R. A. (2005). Omega-3 polyunsaturated fatty acids attenuate breast cancer growth through activation of a neutral sphingomyelinase-mediated pathway. Int. J.-Cancer 117:340–348.PubMedGoogle Scholar
  157. Xiao Y. F. and Li X. Y. (1999). Polyunsaturated fatty acids modify mouse hippocampal neuronal excitability during excitotoxic or convulsant stimulation. Brain Res. 846:112–121.PubMedGoogle Scholar
  158. Yehuda S., Rabinovitz S., Carasso R. L., and Mostofsky D. I. (2002). The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol. Aging 23:843–853.PubMedGoogle Scholar
  159. Young C., Gean P. W., Chiou L. C., and Shen Y. Z. (2000). Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 37:90–94.PubMedGoogle Scholar
  160. Young C., Gean P. W., Wu S. P., Lin C. H., and Shen Y. Z. (1998). Cancellation of low-frequency stimulation-induced long-term depression by docosahexaenoic acid in the rat hippocampus. Neurosci. Lett. 247:198–200.PubMedGoogle Scholar
  161. Zhao Y., Joshi-Barve S., Barve S., and Chen L. H. (2004). Eicosapentaenoic acid prevents LPS-induced TNF-α expression by preventing NF-κB activation. J.-Am. Coll. Nutr. 23:71–78.PubMedGoogle Scholar
  162. Zimmer L., Delion-Vancassel S., Durand G., Guilloteau D., Bodard S., Besnard J.-C., and Chalon S. (2000). Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n-3 polyunsaturated fatty acids. J.-Lipid Res. 41:32–40.PubMedGoogle Scholar
  163. Zucker R. S. (1989). Short-term synaptic plasticity. Annu. Rev. Neurosci. 12:13–31.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations