Arachidonic Acid and Its Metabolites in Brain


Arachidonic Acid Docosahexaenoic Acid Spinal Cord Neuron Arachidonic Acid Release Cytosolic Phospholipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam-Vizi V. (1992). External Ca2+-independent release of neurotransmitters. J. Neurochem. 58:395–405.PubMedGoogle Scholar
  2. Akbar M. and Kim H. Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J. Neurochem. 82:655–665.PubMedGoogle Scholar
  3. Akiyama N., Hatori Y., Takashiro Y., Hirabayashi T., Saito T., and Murayama T. (2004). Nerve growth factor-induced up-regulation of cytosolic phospholipase A2α level in rat PC12 cells. Neurosci. Lett. 365:218–222.PubMedGoogle Scholar
  4. Almeida T., Cunha R. A., and Ribeiro J. A. (1999). Facilitation by arachidonic acid of acetylcholine release from the rat hippocampus. Brain Res. 826:104–111.PubMedGoogle Scholar
  5. Alonso-Galicia M., Drummond H. A., Reddy K. K., Falck J. R., and Roman R. J. (1997). Inhibition of 20-HETE production contributes to the vascular responses to nitric oxide. Hypertension 29:320–325.PubMedGoogle Scholar
  6. Alonso-Galicia M., Hudetz A. G., Shen H., Harder D. R., and Roman R. J. (1999). Contribution of 20-HETE to vasodilator actions of nitric oxide in the cerebral microcirculation. Stroke 30:2727–2734.PubMedGoogle Scholar
  7. Anderson R. E., Landis D. J., and Dudley P. A. (1976). Essential fatty acid deficiency and renewal of rod outer segments in the albino rat. Invest Ophthalmol. 15:232–236.PubMedGoogle Scholar
  8. Atsumi G., Tajima M., Hadano A., Nakatani Y., Murakami M., and Kudo I. (1998). Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2 which undergoes proteolytic inactivation. J. Biol. Chem. 273:13870–13877.PubMedGoogle Scholar
  9. Audubert F., Klapisz E., Berguerand M., Gouache P., Jouniaux A. M., Béréziat G., and Masliah J. (1999). Differential potentiation of arachidonic acid release by rat α2 adrenergic receptor subtypes. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1437:265–276.CrossRefGoogle Scholar
  10. Bayón Y., Hernández M., Alonso A., Nunez L., Garcia-Sancho J., Leslie C., Crespo M. S., and Nieto M. L. (1997). Cytosolic phospholipase A2 is coupled to muscarinic receptors in the human astrocytoma cell line 1321N1: characterization of the transducing mechanism. Biochem. J. 323:281–287.PubMedGoogle Scholar
  11. Bazan N. G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J. Lipid Res. 44:2221–2233.PubMedGoogle Scholar
  12. Bazan N. G., Fletcher B. S., Herschman H. R., and Mukherjee P. K. (1994). Platelet-activating factor and retinoic acid synergistically activate the inducible prostaglandin synthase gene. Proc. Natl Acad. Sci. USA 91:5252–5256.PubMedGoogle Scholar
  13. Bendani M. K., Palluy O., Cook-Moreau J., Beneytout J. L., Rigaud M., and Vallat J. M. (1995). Localization of 12-lipoxygenase mRNA in cultured oligodendrocytes and astrocytes by in situ reverse transcriptase and polymerase chain reaction. Neurosci. Lett. 189:159–162.PubMedGoogle Scholar
  14. Bordayo E. Z., Fawcett J. R., Lagalwar S., Svitak A. L., and Frey W. H. I. (2005). Inhibition of ligand binding to G protein-coupled receptors by arachidonic acid. J. Mol. Neurosci. 27:185–194.PubMedGoogle Scholar
  15. Bruner G. and Murphy S. (1993). Purinergic P2Y receptors on astrocytes are directly coupled to phospholipase A2. Glia 7:219–224.PubMedGoogle Scholar
  16. Cao Y., Murphy K. J., McIntyre T. M., Zimmerman G. A., and Prescott S. M. (2000). Expression of fatty acid-CoA ligase 4 during development and in brain. FEBS Lett. 467:263–267.PubMedGoogle Scholar
  17. Cazevieille C., Muller A., Meynier F., Dutrait N., and Bonne C. (1994). Protection by prostaglandins from glutamate toxicity in cortical neurons. Neurochem. Int. 24:395–398.PubMedGoogle Scholar
  18. Chabot C., Gagné J., Giguère C., Bernard J., Baudry M., and Massicotte G. (1998). Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus 8:299–309.PubMedGoogle Scholar
  19. Chalimoniuk M., King-Pospisil K., Pedersen W. A., Malecki A., Wylegala E., Mattson M. P., Hennig B., and Toborek M. (2004). Arachidonic acid increases choline acetyltransferase activity in spinal cord neurons through a protein kinase C-mediated mechanism. J. Neurochem. 90:629–636.PubMedGoogle Scholar
  20. Chandrasekharan N. V., Dai H., Roos K. L., Evanson N. K., Tomsik J., Elton T. S., and Simmons D. L. (2002). COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proc. Natl Acad. Sci. USA 99:13926–13931.PubMedGoogle Scholar
  21. Chiang N., Arita M., and Serhan C. N. (2005). Anti-inflammatory circuitry: Lipoxin, aspirin-triggered lipoxins and their receptor ALX. Prostaglandins Leukot. Essent. Fatty Acids 73:163–177.PubMedGoogle Scholar
  22. Coleman R. A., Smith W. L., and Narumiya S. (1994). International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol. Rev. 46:205–229.PubMedGoogle Scholar
  23. Coleman R. A., Lewin T. M., and Muoio D. M. (2000). Physiological and nutritional regulation of enzymes of triacylglycerol synthesis. Annu. Rev. Nutr. 20:77–103.PubMedGoogle Scholar
  24. Corbin D. R. and Sun G. Y. (1978). Characterization of the enzymic transfer of arachidonoyl groups to 1-acyl-phosphoglycerides in mouse synaptosome fraction. J. Neurochem. 30:77–82.PubMedGoogle Scholar
  25. Danbolt N. C. (1994). The high affinity uptake system for excitatory amino acid in brain. Prog. Neurobiol. 44:377–396.PubMedGoogle Scholar
  26. Das U. N. (2003). Long-chain polyunsaturated fatty acids in memory formation and consolidation: Further evidence and discussion. Nutrition 19:988–993.PubMedGoogle Scholar
  27. Davies N. M., Good R. L., Roupe K. A., and Yanez J. A. (2004). Cyclooxygenase-3: axiom, dogma, anomaly, enigma or splice error?—Not as easy as 1, 2, 3. J. Pharm. Pharm. Sci. 7:217–226.PubMedGoogle Scholar
  28. DeGeorge J. J., Noronha J. G., Bell J., Robinson P., and Rapoport S. I. (1989). Intravenous injection of [1-14C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J. Neurosci. Res. 24:413–423.PubMedGoogle Scholar
  29. Doolan C. M. and Keenan A. K. (1994). Inhibition by fatty acids of cyclic AMP-dependent protein kinase activity in brush border membranes isolated from human placental vesicles. Br. J. Pharmacol. 111:509–514.PubMedGoogle Scholar
  30. Dumuis A., Sebben M., Haynes L., Pin J.-P., and Bockaert J. (1988). NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70.PubMedGoogle Scholar
  31. Dumuis A., Pin P., Oomagari K., Sebben M., and Bockaert J. (1990). Arachidonic acid release from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347:182–184.PubMedGoogle Scholar
  32. Dunican D. J., Griffiths R., Williams D. C., and O’Neill L. A. (1996). Endothelin-1 increases arachidonic acid release in C6 glioma cells through a potassium-modulated influx of calcium. J. Neurochem. 67:830–837.PubMedCrossRefGoogle Scholar
  33. Faergeman N. J. and Knudsen J. (1997). Role of long-chain fatty acyl-CoA esters in the regulation of metabolism and in cell signalling. Biochem. J. 323 (Pt 1):1–12.PubMedGoogle Scholar
  34. Farooqui A. A. and Horrocks L. A. (1985). Metabolic and functional aspects of neural membrane phospholipids. In: Horrocks L. A., Kanfer J. N., and Porcellati G. (eds.), Phospholipids in the Nervous System, Vol. II: Physiological Role. Raven Press, New York, pp. 341–348.Google Scholar
  35. Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.PubMedGoogle Scholar
  36. Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.PubMedGoogle Scholar
  37. Farooqui A. A. and Horrocks L. A. (1997). Excitatory neurotransmitters and their involvement in neurodegeneration. Encycl. Hum. Biol. 3:845–851.Google Scholar
  38. Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J. Mol. Neurosci. 16:263–272.Google Scholar
  39. Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245.PubMedGoogle Scholar
  40. Farooqui A. A., Rammohan K. W., and Horrocks L. A. (1989). Isolation, characterization and regulation of diacylglycerol lipases from bovine brain. Ann. NY Acad. Sci. 559:25–36.PubMedGoogle Scholar
  41. Farooqui A. A., Anderson D. K., and Horrocks L. A. (1993). Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures. Brain Res. 604:180–184.PubMedGoogle Scholar
  42. Farooqui A. A., Rosenberger T. A., and Horrocks L. A. (1997a). Arachidonic acid, neurotrauma, and neurodegenerative diseases. In: Yehuda S. and Mostofsky D. I. (eds.), Handbook of Essential Fatty Acid Biology. Humana Press, Totowa, NJ, pp. 277–295.Google Scholar
  43. Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997b). Phospholipase A2 and its role in brain tissue. J. Neurochem. 69:889–901.PubMedCrossRefGoogle Scholar
  44. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J. Mol. Neurosci. 14:123–135.PubMedGoogle Scholar
  45. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.PubMedGoogle Scholar
  46. Farooqui A. A., Farooqui T., and Horrocks L. A. (2002a). Molecular species of phospholipids during brain development. Their occurrence, separation and roles. In: Skinner E. R. (ed.), Brain Lipids and Disorders in Biological Psychiatry. Elsevier Science B.V., Amsterdam, pp. 147–158.Google Scholar
  47. Farooqui A. A., Ong W. Y., Lu X. R., and Horrocks L. A. (2002b). Cytosolic phospholipase A2 inhibitors as therapeutic agents for neural cell injury. Curr. Med. Chem. –– Anti-Inflammatory Anti-Allergy Agents 1:193–204.Google Scholar
  48. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003a). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum Publishers, London, pp. 335–354.Google Scholar
  49. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003b). Stimulation of lipases and phospholipases in Alzheimer disease. In: Szuhaj B. and van Nieuwenhuyzen W. (eds.), Nutrition and Biochemistry of Phospholipids. AOCS Press, Champaign, pp. 14–29.Google Scholar
  50. Felder C. C., Kanterman R. Y., Ma A. L., and Axelrod J. (1990). Serotonin stimulates phospholipase a2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis. Proc. Natl Acad. Sci. USA 87:2187–2191.PubMedGoogle Scholar
  51. Felder C. C., Williams H. L., and Axelrod J. (1991). A transduction pathway associated with receptors coupled to the inhibitory guanine nucleotide binding protein gi that amplifies atp-mediated arachidonic acid release. Proc. Natl Acad. Sci. USA 88:6477–6480.PubMedGoogle Scholar
  52. Fiebich B. L., Hüll M., Lieb K., Gyufko K., Berger M., and Bauer J. (1997). Prostaglandin E2 induces interleukin-6 synthesis in human astrocytoma cells. J. Neurochem. 68:704–709.PubMedCrossRefGoogle Scholar
  53. Fonlupt P., Croset M., and Lagarde M. (1994). Incorporation of arachidonic and docosahexaenoic acids into phospholipids of rat brain membranes. Neurosci. Lett. 171:137–141.PubMedGoogle Scholar
  54. Fujino T. and Yamamoto T. (1992). Cloning and functional expression of a novel long-chain acyl-CoA synthetase expressed in brain. J. Biochem. (Tokyo) 111:197–203.PubMedGoogle Scholar
  55. Fujino T., Kang M. J., Suzuki H., Iijima H., and Yamamoto T. (1996). Molecular characterization and expression of rat acyl-CoA synthetase 3. J. Biol. Chem. 271:16748–16752.PubMedGoogle Scholar
  56. Funk C. D. (1996). The molecular biology of mammalian lipoxygenases and the quest for eicosanoid functions using lipoxygenase-deficient mice. Biochim. Biophys. Acta Lipids Lipid Metab. 1304:65–84.Google Scholar
  57. Gamberucci A., Fulceri R., Bygrave F. L., and Benedetti A. (1997). Unsaturated fatty acids mobilize intracellular calcium independent of IP3 generation and VIA insertion at the plasma membrane. Biochem. Biophys. Res. Commun. 241:312–316.PubMedGoogle Scholar
  58. Garcia M. C. and Kim H. Y. (1997). Mobilization of arachidonate and docosahexaenoate by stimulation of the 5-HT2A receptor in rat C6 glioma cells. Brain Res. 768:43–48.PubMedGoogle Scholar
  59. Garrido R., Mattson M. P., Hennig B., and Toborek M. (2001). Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome c release and apoptosis of cultured spinal cord neurons. J. Neurochem. 76:1395–1403.PubMedGoogle Scholar
  60. Gebremedhin D., Lange A. R., Narayanan J., Aebly M. R., Jacobs E. R., and Harder D. R. (1998). Cat cerebral arterial smooth muscle cells express cytochrome P450 4A2 enzyme and produce the vasoconstrictor 20-HETE which enhances L-type Ca2+ current. J. Physiol. 507(Pt 3):771–781.PubMedGoogle Scholar
  61. Gebremedhin D., Lange A. R., Lowry T. F., Taheri M. R., Birks E. K., Hudetz A. G., Narayanan J., Falck J. R., Okamoto H., Roman R. J., Nithipatikom K., Campbell W. B., and Harder D. R. (2000). Production of 20-HETE and its role in autoregulation of cerebral blood flow. Circ. Res. 87:60–65.PubMedGoogle Scholar
  62. Gilroy D. W., Newson J., Sawmynaden P. A., Willoughby D. A., and Croxtall J. D. (2004). A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J. 18:489–498.PubMedGoogle Scholar
  63. Gronert K. (2005). Lipoxins in the eye and their role in wound healing. Prostaglandins Leukot. Essent. Fatty Acids 73:221–229.Google Scholar
  64. Han C., Demetris A. J., Liu Y. H., Shelhamer J. H., and Wu T. (2004). Transforming growth factor-beta (TGF-β) activates cytosolic phospholipase A2α (cPLA2α)-mediated prostaglandin E2 (PGE2)/EP1 and peroxisome proliferator-activated receptor-γ (PPAR-γ)/Smad signaling pathways in human liver cancer cells – a novel mechanism for subversion of TGF-β-induced mitoinhibition. J. Biol. Chem. 279:44344–44354.PubMedGoogle Scholar
  65. Harder D. R., Roman R. J., Gebremedhin D., Birks E. K., and Lange A. R. (1998). A common pathway for regulation of nutritive blood flow to the brain: arterial muscle membrane potential and cytochrome P450 metabolites. Acta Physiol. Scand. 164:527–532.PubMedGoogle Scholar
  66. Hernández M., Nieto M. L., and Sánchez Crespo M. (2000). Cytosolic phospholipase A2 and the distinct transcriptional programs of astrocytoma cells. Trends Neurosci. 23:259–264.PubMedGoogle Scholar
  67. Hoffmann C. (2000). COX-2 in brain and spinal cord implications for therapeutic use. Curr. Med. Chem. 7:1113–1120.PubMedGoogle Scholar
  68. Horrocks L. A. (1972). Content, composition, and metabolism of mammalian and avian lipids that contain ether groups. In: Snyder F. (ed.), Ether Lipids: Chemistry and Biology. Academic Press, New York, pp. 177–272.Google Scholar
  69. Horrocks L. A. and Yeo Y. K. (1999). Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 40:211–225.PubMedGoogle Scholar
  70. Jupp O. J., Vandenabeele P., and MacEwan D. J. (2003). Distinct regulation of cytosolic phospholipase A2 phosphorylation, translocation, proteolysis and activation by tumour necrosis factor-receptor subtypes. Biochem. J. 374:453–461.PubMedGoogle Scholar
  71. Kantarci A. and Van Dyke T. E. (2003). Lipoxins in chronic inflammation. Crit. Rev. Oral Biol. Med. 14:4–12.PubMedGoogle Scholar
  72. Kantarci A. and Van Dyke T. E. (2005). Lipoxin signaling in neutrophils and their role in periodontal disease. Prostaglandins Leukot. Essent. Fatty Acids 73:289–299.PubMedGoogle Scholar
  73. Katsuki H. and Okuda S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.PubMedGoogle Scholar
  74. Kee H. J., Koh J. T., Yang S. Y., Lee Z. H., Baik Y. H., and Kim K. K. (2003). A novel murine long-chain acyl-CoA synthetase expressed in brain participates in neuronal cell proliferation. Biochem. Biophys. Res. Commun. 305:925–933.PubMedGoogle Scholar
  75. Kim D. K., Rordorf G., Nemenoff R. A., Koroshetz W. J., and Bonventre J. V. (1995). Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem. J. 310:83–90.PubMedGoogle Scholar
  76. Kis B., Snipes J. A., and Busija D. W. (2005). Acetaminophen and the cyclooxygenase-3 puzzle: sorting out facts, fictions, and uncertainties. J. Pharmacol. Exp. Ther. 315:1–7.PubMedGoogle Scholar
  77. Kolko M., DeCoster M. A., Rodriguez de Turco E. B., and Bazan N. G. (1996). Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures. J. Biol. Chem. 271:32722–32728.PubMedGoogle Scholar
  78. Kurrasch-Orbaugh D. M., Parrish J. C., Watts V. J., and Nichols D. E. (2003). A complex signaling cascade links the serotonin2A receptor to phospholipase A2 activation: the involvement of MAP kinases. J. Neurochem. 86:980–991.PubMedGoogle Scholar
  79. Lazarewicz J. W., Wroblewski J. T., Palmer M. E., and Costa E. (1988). Activation of N-methyl-D-aspartate-sensitive glutamate receptors stimulates arachidonic acid release in primary cultures of cerebellar granule cells. Neuropharmacology 27:765–769.PubMedGoogle Scholar
  80. Lazarewicz J. W., Wroblewski J. T., and Costa E. (1990). N-methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J. Neurochem. 55:1875–1881.PubMedGoogle Scholar
  81. Lewin T. M., Kim J. H., Granger D. A., Vance J. E., and Coleman R. A. (2001). Acyl-CoA synthetase isoforms 1, 4, and 5 are present in different subcellular membranes in rat liver and can be inhibited independently. J. Biol. Chem. 276:24674–24679.PubMedGoogle Scholar
  82. Li Y., Maher P., and Schubert D. (1997). A role for 12-lipoxygenase in nerve cell death caused by glutathione depletion. Neuron 19:453–463.PubMedGoogle Scholar
  83. Lipton S. A. and Rosenberg P. A. (1994). Excitatory amino acids as a final common pathway for neurologic disorders. N. Engl. J. Med. 330:613–622.PubMedGoogle Scholar
  84. Liu D. X., Li L. P., and Augustus L. (2001). Prostaglandin release by spinal cord injury mediates production of hydroxyl radical, malondialdehyde and cell death: a site of the neuroprotective action of methylprednisolone. J. Neurochem. 77:1036–1047.PubMedGoogle Scholar
  85. Lynch M. A. and Voss K. L. (1990). Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue. J. Neurochem. 55:215–221.PubMedGoogle Scholar
  86. Maccarrone M., Melino G., and Finazzi-Agro A. (2001). Lipoxygenases and their involvement in programmed cell death. Cell Death Diff. 8:776–784.Google Scholar
  87. MacDonald J. I. S. and Sprecher H. (1991). Phospholipid fatty acid remodeling in mammalian cells. Biochim. Biophys. Acta 1084:105–121.PubMedGoogle Scholar
  88. Manev H., Uz T., Sugaya K., and Qu T. Y. (2000). Putative role of neuronal 5-lipoxygenase in an aging brain. FASEB J. 14:1464–1469.PubMedGoogle Scholar
  89. Martínez M. and Mougan I. (1998). Fatty acid composition of human brain phospholipids during normal development. J. Neurochem. 71:2528–2533.PubMedCrossRefGoogle Scholar
  90. Martínez-Cayuela M. (1995). Oxygen free radicals and human disease. Biochimie 77:147–161.PubMedGoogle Scholar
  91. Matsuzawa A., Murakami M., Atsumi G., Imai K., Prados P., Inoue K., and Kudo I. (1996). Release of secretory phospholipase A2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion. Biochem. J. 318:701–709.PubMedGoogle Scholar
  92. McGahon B., Clements M. P., and Lynch M. A. (1997). The ability of aged rats to sustain long-term potentiation is restored when the age-related decrease in membrane arachidonic acid concentration is reversed. Neuroscience 81:9–16.PubMedGoogle Scholar
  93. Minghetti L. (2004). Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 63:901–910.PubMedGoogle Scholar
  94. Minghetti L. and Levi G. (1998). Microglia as effector cells in brain damage and repair: focus on prostanoids and nitric oxide. Prog. Neurobiol. 54:99–125.PubMedGoogle Scholar
  95. Munzenmaier D. H. and Harder D. R. (2000). Cerebral microvascular endothelial cell tube formation: role of astrocytic epoxyeicosatrienoic acid release. Am. J. Physiol Heart Circ. Physiol. 278:H1163–H1167.PubMedGoogle Scholar
  96. Murakami K. and Routtenberg A. (2003). The role of fatty acids in synaptic growth and plasticity. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp. 77–92.Google Scholar
  97. Norel X. and Brink C. (2004). The quest for new cysteinyl-leukotriene and lipoxin receptors: recent clues. Pharmacol. Ther. 103:81–94.PubMedGoogle Scholar
  98. O’Banion M. K. (1999). Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev. Neurobiol. 13:45–82.PubMedGoogle Scholar
  99. O’Regan M. H., Perkins L. M., and Phillis J. W. (1995). Arachidonic acid and lysophosphatidylcholine modulate excitatory transmitter amino acid release from the rat cerebral cortex. Neurosci. Lett. 193:85–88.PubMedGoogle Scholar
  100. Ojima A., Nakagawa Y., Sugiura T., Masuzawa Y., and Waku K. (1987). Selective transacylation of 1-0-alkylglycerophosphoethanolamine by docosahexaenoate and arachidonate in rat brain microsomes. J. Neurochem. 48:1403–1410.PubMedGoogle Scholar
  101. Patel T. B. (2004). Single transmembrane spanning heterotrimeric G protein-coupled receptors and their signaling cascades. Pharmacol. Rev. 56:371–385.PubMedGoogle Scholar
  102. Peng X., Zhang C., Alkayed N. J., Harder D. R., and Koehler R. C. (2004). Dependency of cortical functional hyperemia to forepaw stimulation on epoxygenase and nitric oxide synthase activities in rats. J. Cereb. Blood Flow Metab. 24:509–517.PubMedGoogle Scholar
  103. Phillis J. W., Smith-Barbour M., and O’Regan M. H. (1996). Changes in extracellular amino acid neurotransmitters and purines during and following ischemias of different durations in the rat cerebral cortex. Neurochem. Int. 29:115–120.PubMedGoogle Scholar
  104. Phillis J. W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. (in press).Google Scholar
  105. Pirianov G., Danielsson C., Carlberg C., James S. Y., and Colston K. W. (1999). Potentiation by vitamin D analogs of TNFα and ceramide-induced apoptosis in MCF-7 cells is associated with activation of cytosolic phospholipase A2. Cell Death Diff. 6:890–901.Google Scholar
  106. Porcellati G. (1983). Phospholipid metabolism in neural membranes. In: Sun G. Y., Bazan N., Wu J. Y., Porcellati G., and Sun A. Y. (eds.), Neural Membranes. Humana Press, New York, pp. 3–35.Google Scholar
  107. Powell W. S. and Rokach J. (2005). Biochemistry, biology and chemistry of the 5-lipoxygenase product 5-oxo-ETE. Prog. Lipid Res. 44:154–183.PubMedGoogle Scholar
  108. Prasad K. N., La Rosa F. G., and Prasad J. E. (1998). Prostaglandins act as neurotoxin for differentiated neuroblastoma cells in culture and increase levels of ubiquitin and beta-amyloid. In Vitro Cell Dev. Biol. Anim. 34:265–274.PubMedGoogle Scholar
  109. Qu Y., Chang L., Klaff J., Seeman R., Balbo A., and Rapoport S. I. (2003a). Imaging of brain serotonergic neurotransmission involving phospholipase A2 activation and arachidonic acid release in unanesthetized rats. Brain Res. Protocols 12:16–25.Google Scholar
  110. Qu Y., Chang L., Klaff J., Seemann R., and Rapoport S. I. (2003b). Imaging brain phospholipase A2-mediated signal transduction in response to acute fluoxetine administration in unanesthetized rats. Neuropsychopharmacology 28:1219–1226.PubMedGoogle Scholar
  111. Qu Y., Villacreses N., Murphy D. L., and Rapoport S. I. (2005). 5-HT2A/2C receptor signaling via phospholipase A2 and arachidonic acid is attenuated in mice lacking the serotonin reuptake transporter. Psychopharmacology 180:12–20.PubMedGoogle Scholar
  112. Rao K. V., Vaidyanathan V. V., and Sastry P. S. (1994). Diacylglycerol kinase is stimulated by arachidonic acid in neural membranes. J. Neurochem. 63:1454–1459.PubMedGoogle Scholar
  113. Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.PubMedGoogle Scholar
  114. Ray P., Ray R., Broomfield C. A., and Berman J. D. (1994). Inhibition of bioenergetics alters intracellular calcium, membrane composition, and fluidity in a neuronal cell line. Neurochem. Res. 19:57–63.PubMedGoogle Scholar
  115. Reddy T. S. and Bazan N. G. (1984). Long-chain acyl coenzyme A synthetase activity during the postnatal development of the mouse brain. Int. J. Dev. Neurosci. 2:447–450.Google Scholar
  116. Reddy T. S., Sprecher H., and Bazan N. G. (1984). Long-chain acyl-coenzyme A synthetase from rat brain microsomes. Kinetic studies using [1-14C]docosahexaenoic acid substrate. Eur. J. Biochem. 145:21–29.PubMedGoogle Scholar
  117. Ross B. M. (2003). Phospholipase A2-associated processes in the human brain and their role in neuropathology and psychopathology. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp. 163–182.Google Scholar
  118. Ross B. M. and Kish S. J. (1994). Characterization of lysophospholipid metabolizing enzymes in human brain. J. Neurochem. 63:1839–1848.PubMedCrossRefGoogle Scholar
  119. Rothman S. M. and Olney J. W. (1986). Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann. Neurol. 19:105–111.PubMedGoogle Scholar
  120. Sakata A., Ida E., Tominaga M., and Onoue K. (1987). Arachidonic acid acts as an intracellular activator of NADPH-oxidase in Fc gamma receptor-mediated superoxide generation in macrophages. J. Immunol. 138:4353–4359.PubMedGoogle Scholar
  121. Salem N., Jr., Kim H. Y., and Yergey J. A. (1986). Docosahexaenoic acid: membrane function and metabolism. In: Simopoulos A. P., Kifer R. R., and Martin R. E. (eds.), Health Effects of Polyunsaturated Fatty Acids in Seafoods. Academic Press, Orlando, pp. 263–318.Google Scholar
  122. Sánchez-Prieto J., Sihra T. S., and Nicholls D. G. (1987). Characterization of the exocytotic release of glutamate from guinea-pig cerebral cortical synaptosomes. J. Neurochem. 49:58–64.PubMedGoogle Scholar
  123. Sanfeliu C., Hunt A., and Patel A. J. (1990). Exposure to N-methyl-D-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res. 526:241–248.PubMedGoogle Scholar
  124. Sawyer D. B. and Andersen O. S. (1989). Platelet-activating factor is a general membrane perturbant. Biochim. Biophys. Acta 987:129–132.PubMedGoogle Scholar
  125. Schapira A. H. (1996). Oxidative stress and mitochondrial dysfunction in neurodegeneration. Curr. Opin. Neurol. 9:260–264.PubMedGoogle Scholar
  126. Schmidt A., Wolde M., Thiele C., Fest W., Kratzin H., Podtelejnikov A. V., Witke W., Huttner W. B., and Söling H. D. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401:133–141.PubMedGoogle Scholar
  127. Serhan C. N. (1994). Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim. Biophys. Acta 1212:1–25.PubMedGoogle Scholar
  128. Serhan C. N. (2005). Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot. Essent. Fatty Acids 73:141–162.PubMedGoogle Scholar
  129. Serhan C. N. and Levy B. (2003). Novel pathways and endogenous mediators in anti-inflammation and resolution. Chem. Immunol. Allergy 83:115–145.PubMedGoogle Scholar
  130. Simmons D. L., Botting R. M., and Hla T. (2004). Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 56:387–437.PubMedGoogle Scholar
  131. Singh I., Bhuskan A. S., Relan N. K., and Hashimoto T. (1988). Acyl-CoA ligase from rat brain microsome: an immunochemical study. Biochim. Biophys. Acta 963:509–514.PubMedGoogle Scholar
  132. Smith W. L., DeWitt D. L., and Garavito R. M. (2000). Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69:145–182.PubMedGoogle Scholar
  133. Söderberg M., Edlund C., Kristensson K., and Dallner G. (1991). Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421–425.PubMedGoogle Scholar
  134. Spector A. A., Fang X., Snyder G. D., and Weintraub N. L. (2004). Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function. Prog. Lipid Res. 43:55–90.PubMedGoogle Scholar
  135. Stella N., Estelles A., Siciliano J., Tencé M., Desagher S., Piomelli D., Glowinski J., and Prémont J. (1997). Interleukin-1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes. J. Neurosci. 17:2939–2946.PubMedGoogle Scholar
  136. Sun G. Y. and MacQuarrie R. A. (1989). Deacylation-reacylation of arachidonoyl groups in cerebral phospholipids. Ann. NY Acad. Sci. 559:37–55.PubMedGoogle Scholar
  137. Sun G. Y. and Su K. L. (1979). Metabolism of arachidonoyl phosphoglycerides in mouse brain subcellular fractions. J. Neurochem. 32:1053–1059.PubMedGoogle Scholar
  138. Sun C. W., Falck J. R., Okamoto H., Harder D. R., and Roman R. J. (2000). Role of cGMP versus 20-HETE in the vasodilator response to nitric oxide in rat cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 279:H339–H350.PubMedGoogle Scholar
  139. Sun G. Y., Xu J. F., Jensen M. D., Yu S., Wood W. G., Gonzalez F. A., Simonyi A., Sun A. Y., and Weisman G. A. (2005). Phospholipase A2 in astrocytes –– responses to oxidative stress, inflammation, and G protein-coupled receptor agonists. Mol. Neurobiol. 31:27–41.PubMedGoogle Scholar
  140. Szatkowski M. and Attwell D. (1994). Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci. 17:359–365.PubMedGoogle Scholar
  141. Tanford C. (1980). The hydrophobic effects: formation of micelles and biological membranes. John Wiley and Sons, New York.Google Scholar
  142. Tencé M., Cordier J., Glowinski J., and Prémont J. (1992). Endothelin-evoked release of arachidonic acid from mouse astrocytes in primary culture. Eur. J. Neurosci. 4:993–999.PubMedGoogle Scholar
  143. Toborek M., Malecki A., Garrido R., Mattson M. P., Hennig B., and Young B. (1999). Arachidonic acid-induced oxidative injury to cultured spinal cord neurons. J. Neurochem. 73:684–692.PubMedGoogle Scholar
  144. Toborek M., Garrido R., Malecki A., Kaiser S., Mattson M. P., Hennig B., and Young B. (2000). Nicotine attenuates arachidonic acid-induced overexpression of nitric oxide synthase in cultured spinal cord neurons. Exp. Neurol. 161:609–620.PubMedGoogle Scholar
  145. Tone O., Miller J. C., Bell J. M., and Rapoport S. I. (1987). Regional cerebral palmitate incorporation following transient bilateral carotid occlusion in awake gerbils. Stroke 18:1120–1127.PubMedGoogle Scholar
  146. Tong W., Shah D., Xu J. F., Diehl J. A., Hans A., Hannink M., and Sun G. Y. (1999). Involvement of lipid mediators on cytokine signaling and induction of secretory phospholipase A2 in immortalized astrocytes (DITNC). J. Mol. Neurosci. 12:89–99.PubMedGoogle Scholar
  147. Trevisi L., Bova S., Cargnelli G., Ceolotto G., and Luciani S. (2002). Endothelin-1-induced arachidonic acid release by cytosolic phospholipase A2 activation in rat vascular smooth muscle via extracellular signal-regulated kinases pathway. Biochem. Pharmacol. 64:425–431.PubMedGoogle Scholar
  148. Uz T., Pesold C., Longone P., and Manev H. (1998). Aging-associated up-regulation of neuronal 5-lipoxygenase expression: putative role in neuronal vulnerability. FASEB J. 12:439–449.PubMedGoogle Scholar
  149. Vane J. R., Bakhle Y. S., and Botting R. M. (1998). Cyclooxygenases 1 and 2. Annu. Rev. Pharmacol. Toxicol. 38:97–120.PubMedGoogle Scholar
  150. Van Horn C. G., Caviglia J. M., Li L. O., Wang S., Granger D. A., and Coleman R. A. (2005). Characterization of recombinant long-chain rat acyl-CoA synthetase isoforms 3 and 6: identification of a novel variant of isoform 6. Biochemistry 44:1635–1642.PubMedGoogle Scholar
  151. Vial D. and Piomelli D. (1995). Dopamine D2 receptors potentiate arachidonate release via activation of cytosolic, arachidonate-specific phospholipase A2. J. Neurochem. 64:2765–2772.PubMedCrossRefGoogle Scholar
  152. Wakabayashi S., Freed L. M., Bell J. M., and Rapoport S. I. (1994). In vivo cerebral incorporation of radiolabeled fatty acids after acute unilateral orbital enucleation in adult hooded Long-Evans rats. J. Cereb. Blood Flow Metab. 14:312–323.PubMedGoogle Scholar
  153. Wang X. H., Yan G. T., Wang L. H., Hao X. H., Zhang K., and Xue H. (2004). The mediating role of cPLA2 in IL-1 beta and IL-6 release in LPS-induced HeLa cells. Cell Biochem. Funct. 22:41–44.PubMedGoogle Scholar
  154. Wang Y., Wei X., Xiao X., Hui R., Card J. W., Carey M. A., Wang D. W., and Zeldin D. C. (2005). Arachidonic acid epoxygenase metabolites stimulate endothelial cell growth and angiogenesis via mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways. J. Pharmacol. Exp. Ther. 314:522–532.PubMedGoogle Scholar
  155. Washizaki K., Smith Q. R., Rapoport S. I., and Purdon A. D. (1994). Brain arachidonic acid incorporation and precursor pool specific activity during intravenous infusion of unesterified [3H]arachidonate in the anesthetized rat. J. Neurochem. 63:727–736.PubMedCrossRefGoogle Scholar
  156. Watanabe T., Medina J. F., Haeggstrom J. Z., Radmark O., and Samuelsson B. (1993). Molecular cloning of a 12-lipoxygenase cDNA from rat brain. Eur. J. Biochem. 212:605–612.PubMedGoogle Scholar
  157. Wolfe L. S. and Horrocks L. A. (1994). Eicosanoids. In: Siegel G. J., Agranoff B. W., Albers R. W., and Molinoff P. B. (eds.), Basic Neurochemistry. Raven Press, New York, pp. 475–490.Google Scholar
  158. Xing M., Wilkins P. L., McConnell B. K., and Mattera R. (1994). Regulation of phospholipase A2 activity in undifferentiated and neutrophil-like HL60 cells. Linkage between impaired responses to agonists and absence of protein kinase C-dependent phosphorylation of cytosolic phospholipase A2. J. Biol. Chem. 269:3117–3124.PubMedGoogle Scholar
  159. Xu J. F., Yu S., Sun A. Y., and Sun G. Y. (2003). Oxidant-mediated AA release from astrocytes involves cPLA2 and iPLA2. Free Radic. Biol. Med. 34:1531–1543.PubMedGoogle Scholar
  160. Yagami T., Ueda K., Sakaeda T., Okamura N., Nakazato H., Kuroda T., Hata S., Sakaguchi G., Itoh N., Hashimoto Y., and Fujimoto M. (2005). Effects of an endothelin B receptor agonist on secretory phospholipase A2-IIA-induced apoptosis in cortical neurons. Neuropharmacology 48:291–300.PubMedGoogle Scholar
  161. Yamashita A., Sugiura T., and Waku K. (1997). Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J. Biochem. (Tokyo) 122:1–16.PubMedGoogle Scholar
  162. Zaleska M. M. and Wilson D. F. (1989). Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J. Neurochem. 52:255–260.PubMedGoogle Scholar
  163. Zeldin D. C. (2001). Epoxygenase pathways of arachidonic acid metabolism. J. Biol. Chem. 276:36059–36062.PubMedGoogle Scholar
  164. Zhang Q., Yoshida S., Sakai K., Liu J., and Fukunaga K. (2000). Changes of free fatty acids and acyl-CoAs in rat brain hippocampal slice with tetraethylammonium-induced long-term potentiation. Biochem. Biophys. Res. Commun. 267:208–212.Table 5.1. Coupling of PLA2 isoforms responsible for arachidonic acid release with various receptors in brain tissue.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations