Roles of Phospholipases A2 in Brain


Arachidonic Acid PC12 Cell Apoptotic Cell Death Neurite Outgrowth Synaptic Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu-Raya S., Bloch-Shilderman E., Shohami E., Trembovler V., Shai Y., Weidenfeld J., Yedgar S., Gutman Y., and Lazarovici P. (1998). Pardaxin, a new pharmacological tool to stimulate the arachidonic acid cascade in PC12 cells. J.-Pharmacol. Exp. Ther. 287:889–896.PubMedGoogle Scholar
  2. Adams J.-M. and Cory S. (1998). The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326.PubMedGoogle Scholar
  3. Akbar M. and Kim H. Y. (2002). Protective effects of docosahexaenoic acid in staurosporine-induced apoptosis: involvement of phosphatidylinositol-3 kinase pathway. J.-Neurochem. 82:655–665.PubMedGoogle Scholar
  4. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2003). Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: a-specific receptor activation mediated with retinoic acid. Mol. Brain Res. 115:187–195.PubMedGoogle Scholar
  5. Atsumi G., Tajima M., Hadano A., Nakatani Y., Murakami M., and Kudo I. (1998). Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2 which undergoes proteolytic inactivation. J.-Biol. Chem. 273:13870–13877.PubMedGoogle Scholar
  6. Atsumi G., Murakami M., Kojima K., Hadano A., Tajima M., and Kudo I. (2000). Distinct roles of two intracellular phospholipase A2s in fatty acid release in the cell death pathway. Proteolytic fragment of type IVA cytosolic phospholipase A inhibits stimulus-induced arachidonate release, whereas that of type VI Ca2+-independent phospholipase A2 augments spontaneous fatty acid release. J.-Biol. Chem. 275:18248–18258.PubMedGoogle Scholar
  7. Baudry M. and Lynch G. (2001). Remembrance of arguments past: how well is the glutamate receptor hypothesis of LTP holding up after 20 years? Neurobiol. Learn. Mem. 76:284–297.PubMedGoogle Scholar
  8. Bazan N. G. (2003). Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J.-Lipid Res. 44:2221–2233.PubMedGoogle Scholar
  9. Bazan N. G. (2005a). Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.PubMedCrossRefGoogle Scholar
  10. Bazan N. G. (2005b). Synaptic signaling by lipids in the life and death of neurons. Mol. Neurobiol. 31:219–230.PubMedGoogle Scholar
  11. Bernard J., Lahsaini A., and Massicotte G. (1994). Potassium-induced long-term potentiation in area CA1 of the hippocampus involves phospholipase activation. Hippocampus 4:447–453.PubMedGoogle Scholar
  12. Bliss T. V. P. and Collingridge G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.PubMedGoogle Scholar
  13. Bloch-Shilderman E., Abu-Raya S., Trembovler V., Boschwitz H., Gruzman A., Linial M., and Lazarovici P. (2002). Pardaxin stimulation of phospholipases A2 and their involvement in exocytosis in PC-12 cells. J.-Pharmacol. Exp. Ther. 301:953–962.PubMedGoogle Scholar
  14. Bonventre J.-V., Huang Z. H., Taheri M. R., O’Leary E., Li E., Moskowitz M. A., and Sapirstein A. (1997). Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390:622–625.PubMedGoogle Scholar
  15. Bramham C. R., Alkon D. L., and Lester D. S. (1994). Arachidonic acid and diacylglycerol act synergistically through protein kinase C to persistently enhance synaptic transmission in the hippocampus. Neuroscience 60:737–743.PubMedGoogle Scholar
  16. Brown W. J., Chambers K., and Doody A. (2003). Phospholipase A2 (PLA2) enzymes in-membrane trafficking: Mediators of membrane shape and function. Traffic 4:214–221.PubMedGoogle Scholar
  17. Brustovetsky T., Antonsson B., Jemmerson R., Dubinsky J.-M., and Brustovetsky N. (2005). Activation of calcium-independent phospholipase A2 (iPLA2) in brain mitochondria and release of apoptogenic factors by BAX and truncated BID. J.-Neurochem. 94:980–994.PubMedGoogle Scholar
  18. Burger K. N. and Verkleij A. J.-(1990). Membrane fusion. Experientia 46:631–644.PubMedGoogle Scholar
  19. Burgoyne R. D. and Morgan A. (1995). Ca2+ and secretory-vesicle dynamics. Trends Neurosci. 18:191–196.PubMedGoogle Scholar
  20. Calderon F. and Kim H. Y. (2004). Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J.-Neurochem. 90:979–988.PubMedGoogle Scholar
  21. Camandola S., Poli G., and Mattson M. P. (2000). The lipid peroxidation product 4-hydroxy-2,3-nonenal increases AP-1-binding activity through caspase activation in neurons. J.-Neurochem. 74:159–168.PubMedGoogle Scholar
  22. Chambers K., Judson B., and Brown W. J.-(2005). A unique lysophospholipid acyltransferase (LPAT) antagonist, CI-976, affects secretory and endocytic membrane trafficking pathways. J.-Cell Sci. 118:3061–3071.PubMedGoogle Scholar
  23. Chen C. and Tonegawa S. (1997). Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci. 20:157–184.PubMedGoogle Scholar
  24. Choukroun G. J., Marshansky V., Gustafson C. E., McKee M., Hajjar R. J., Rosenzweig A., Brown D., and Bonventre J.-V. (2000). Cytosolic phospholipase A2 regulates Golgi structure and modulates intracellular trafficking of membrane proteins. J.-Clin. Invest. 106:983–993.PubMedGoogle Scholar
  25. Chung H. J., Steinberg J.-P., Huganir R. L., and Linden D. J.-(2003). Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–1755.PubMedGoogle Scholar
  26. Clements M. P., Bliss T. V. P., and Lynch M. A. (1991). Increase in arachidonic acid concentration in a postsynaptic membrane fraction following the induction of long-term potentiation in the dentate gyrus. Neuroscience 45:379–389.PubMedGoogle Scholar
  27. Correale J.-and Villa A. (2004). The neuroprotective role of inflammation in nervous system injuries. J.-Neurol. 251:1304–1316.PubMedGoogle Scholar
  28. de Figueiredo P., Drecktrah D., Katzenellenbogen J.-A., Strang M., and Brown W.-J.-(1998). Evidence that phospholipase A2 activity is required for Golgi complex and trans Golgi network membrane tubulation. Proc. Natl Acad. Sci. USA 95:8642–8647.PubMedGoogle Scholar
  29. de Figueiredo P., Polizotto R. S., Drecktrah D., and Brown W. J.-(1999). Membrane tubule-mediated reassembly and maintenance of the Golgi complex is disrupted by phospholipase A2 antagonists. Mol. Biol. Cell 10:1763–1782.PubMedGoogle Scholar
  30. Doherty P., Ashton S. V., Moore S. E., and Walsh F. S. (1991). Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal Ca2+ channels. Cell 67:21–33.PubMedGoogle Scholar
  31. Drecktrah D. and Brown W. J.-(1999). Phospholipase A2 antagonists inhibit nocodazole-induced Golgi ministack formation: evidence of an ER intermediate and constitutive cycling. Mol. Biol. Cell 10:4021–4032.PubMedGoogle Scholar
  32. Drecktrah D., Chambers K., Racoosin E. L., Cluett E. B., Gucwa A., Jackson B., and Brown W. J.(2003). Inhibition of a Golgi complex lysophospholipid acyltransferase induces membrane tubule formation and retrograde trafficking. Mol. Biol. Cell 14:3459–3469.PubMedGoogle Scholar
  33. Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.PubMedGoogle Scholar
  34. Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.PubMedGoogle Scholar
  35. Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedGoogle Scholar
  36. Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp.-107–134.Google Scholar
  37. Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245.PubMedGoogle Scholar
  38. Farooqui, A. A., Anderson, D. K., and Horrocks, L. A. (1994). Potentiation of diacylglycerol and monoacylglycerol lipase activities by glutamate and its analogs. J.-Neurochem. 62:S74B.Google Scholar
  39. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.PubMedGoogle Scholar
  40. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.PubMedGoogle Scholar
  41. Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000c). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.Google Scholar
  42. Farooqui A. A., Ong W. Y., Lu X. R., and Horrocks L. A. (2002). Cytosolic phospholipase A2 inhibitors as therapeutic agents for neural cell injury. Curr. Med. Chem. –– Anti-Inflammatory Anti-Allergy Agents 1:193–204.Google Scholar
  43. Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004a). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.PubMedGoogle Scholar
  44. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004b). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.PubMedGoogle Scholar
  45. Fujita S., Ikegaya Y., Nishiyama N., and Matsuki N. (2000). Ca2+-independent phospholipase A2 inhibitor impairs spatial memory of mice. Jpn. J.-Pharmacol. 83:277–278.PubMedGoogle Scholar
  46. Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Br. J.-Pharmacol. 132:1417–1422.PubMedGoogle Scholar
  47. Furnkranz A. and Leitinger N. (2004). Regulation of inflammatory responses by oxidized phospholipids structure–function relationships. Curr. Pharm. Des. 10:915–921.PubMedGoogle Scholar
  48. Geddis M. S. and Rehder V. (2003). Initial stages of neural regeneration in Helisoma trivolvis are dependent upon PLA2 activity. J.-Neurobiol. 54:555–565.PubMedGoogle Scholar
  49. Ghijsen W. E., Leenders A. G., and Lopes da Silva F. H. (2003). Regulation of vesicle traffic and neurotransmitter release in isolated nerve terminals. Neurochem. Res. 28:1443–1452.PubMedGoogle Scholar
  50. Gilroy D. W., Newson J., Sawmynaden P. A., Willoughby D. A., and Croxtall J.-D. (2004). A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J.-18:489–498.PubMedGoogle Scholar
  51. Grass D. S. (1999). Transgenics in in-vivo models of inflammation. In: Morgan D. W. and Marshall L. A. (eds.), In Vivo Models of Inflammation. Birkhauser Verlag, Berlin, pp.-291–305.Google Scholar
  52. Grewal S., Ponnambalam S., and Walker J.-H. (2003). Association of cPLA2-α and COX-1 with the Golgi apparatus of A549 human lung epithelial cells. J.-Cell Sci. 116:2303–2310.PubMedGoogle Scholar
  53. Grewal S., Herbert S. P., Ponnambalam S., and Walker J.-H. (2005). Cytosolic phospholipase A2-α and cyclooxygenase-2 localize to intracellular membranes of EA.hy.926-endothelial cells that are distinct from the endoplasmic reticulum and the Golgi apparatus. FEBS J.-272:1278–1290.PubMedGoogle Scholar
  54. Hayakawa M., Ishida N., Takeuchi K., Shibamoto S., Hori T., Oku N., Ito F., and Tsujimoto M. (1993). Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J.-Biochem. 268:11290–11295.Google Scholar
  55. Hayakawa M., Jayadev S., Tsujimoto M., Hannun Y. A., and Ito F. (1996). Role of ceramide in stimulation of the transcription of cytosolic phospholipase A2 and cyclooxygenase 2. Biochem. Biophys. Res. Commun. 220:681–686.PubMedGoogle Scholar
  56. Herbert S. P., Ponnambalam S., and Walker J.-H. (2005). Cytosolic phospholipase A2-α mediates endothelial cell proliferation and is inactivated by association with the Golgi apparatus. Mol. Biol. Cell 16:3800–3809.PubMedGoogle Scholar
  57. Higuchi Y. and Yoshimoto T. (2002). Arachidonic acid converts the glutathione depletion-induced apoptosis to necrosis by promoting lipid peroxidation and reducing caspase-3 activity in rat glioma cells. Arch. Biochem. Biophys. 400:133–140.PubMedGoogle Scholar
  58. Hong S., Gronert K., Devchand P. R., Moussignac R. L., and Serhan C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells –– Autacoids in anti-inflammation. J.-Biol. Chem. 278:14677–14687.PubMedGoogle Scholar
  59. Hornfelt M., Ekström P. A. R., and Edström A. (1999). Involvement of axonal phospholipase A2 activity in the outgrowth of adult mouse sensory axons in-vitro. Neuroscience 91:1539–1547.PubMedGoogle Scholar
  60. Hulo S., Alberi S., Laux T., Muller D., and Caroni P. (2002). A point mutant of GAP-43 induces enhanced short-term and long-term hippocampal plasticity. Eur. J.-Neurosci. 15:1976–1982.PubMedGoogle Scholar
  61. Ikemoto A., Kobayashi T., Emoto K., Umeda M., Watanabe S., and Okuyama H. (1999). Effects of docosahexaenoic and arachidonic acids on the synthesis and distribution of aminophospholipids during neuronal differentiation of PC12 cells. Arch. Biochem. Biophys. 364:67–74.PubMedGoogle Scholar
  62. Ikeno Y., Konno N., Cheon S. H., Bolchi A., Ottonello S., Kitamoto K., and Arioka M. (2005). Secretory phospholipases A2 induce neurite outgrowth in PC12 cells through lysophosphatidylcholine generation and activation of G2A receptor. J.-Biol. Chem. 280:28044–28052.PubMedGoogle Scholar
  63. Inagaki M., Tsuri T., Jyoyama H., Ono T., Yamada K., Kobayashi M., Hori Y., Arimura A., Yasui K., Ohno K., Kakudo S., Koizumi K., Suzuki R., Kawai S., Kato M., and Matsumoto S. (2000). Novel antiarthritic agents with 1,2-isothiazolidine-1,1-dioxide (γ-sultam) skeleton: cytokine suppressive dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase. J.-Med. Chem. 43:2040–2048.PubMedGoogle Scholar
  64. Izquierdo I. and Medina J.-H. (1995). Correlation between the pharmacology of long-term potentiation and the pharmacology of memory. Neurobiol. Learn. Mem. 63:19–32.PubMedGoogle Scholar
  65. Jamora C. (1999). 100 years of Golgi complexities. Trends Cell Biol. 9:37–38.PubMedGoogle Scholar
  66. Kater S. B. and Mills L. R. (1991). Regulation of growth cone behavior by calcium. J.-Neurosci. 11:891–899.PubMedGoogle Scholar
  67. Katsuki H. and Okuda S. (1995). Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46:607–636.PubMedGoogle Scholar
  68. Kim H. Y., Akbar M., Lau A., and Edsall L. (2000). Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J.-Biol. Chem. 275:35215–35223.PubMedGoogle Scholar
  69. Kita Y., Kimura K. D., Kobayashi M., Ihara S., Kaibuchi K., Kuroda S., Ui M., Iba H., Konishi H., Kikkawa U., Nagata S., and Fukui Y. (1998). Microinjection of activated phosphatidylinositol-3 kinase induces process outgrowth in rat PC12 cells through the Rac-JNK signal transduction pathway. J.-Cell Sci. 111(Pt 7):907–915.PubMedGoogle Scholar
  70. Kobayashi M., Nagata S., Kita Y., Nakatsu N., Ihara S., Kaibuchi K., Kuroda S., Ui M., Iba H., Konishi H., Kikkawa U., Saitoh I., and Fukui Y. (1997). Expression of a constitutively active phosphatidylinositol 3-kinase induces process formation in rat-PC12 cells. Use of Cre/loxP recombination system. J.-Biol. Chem. 272:16089–16092.PubMedGoogle Scholar
  71. Kuroiwa N., Nakamura M., Tagaya M., and Takatsuki A. (2001). Arachidonyltrifluoromethyl ketone, a phospholipase A2 antagonist, induces dispersal of both Golgi stack- and trans Golgi network-resident proteins throughout the cytoplasm. Biochem. Biophys. Res. Commun. 281:582–588.PubMedGoogle Scholar
  72. Latorre E., Collado M. P., Fernández I., Aragonés M. D., and Catalán R. E. (2003). Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur. J.-Biochem. 270:36–46.PubMedGoogle Scholar
  73. Lauber K., Bohn E., Krober S. M., Xiao Y. J., Blumenthal S. G., Lindemann R. K., Marini P., Wiedig C., Zobywalski A., Baksh S., Xu Y., Autenrieth I. B., Schulze-Osthoff K., Belka C., Stuhler G., and Wesselborg S. (2003). Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113:717–730.PubMedGoogle Scholar
  74. Lazarewicz J.-W., Wroblewski J.-T., and Costa E. (1990). N-methyl-D-aspartate-sensitive glutamate receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J.-Neurochem. 55:1875–1881.PubMedGoogle Scholar
  75. Ledeen R. W. and Wu G. S. (2004). Nuclear lipids: key signaling effectors in the nervous system and other tissues. J.-Lipid Res. 45:1–8.PubMedGoogle Scholar
  76. Leist M. and Nicotera P. (1998). Apoptosis, excitotoxicity, and neuropathology. Exp. Cell Res. 239:183–201.PubMedGoogle Scholar
  77. Lengqvist J., Mata de Urquiza A., Bergman A. C., Willson T. M., Sjövall J., Perlmann T., and Griffiths W. J.-(2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol. Cell. Proteomics 3:692–703.PubMedGoogle Scholar
  78. Li L. and Chin L. S. (2003). The molecular machinery of synaptic vesicle exocytosis. Cell Mol. Life Sci. 60:942–960.PubMedGoogle Scholar
  79. Linden D. J.-and Routtenberg A. (1989). The role of protein kinase C in long-term potentiation: a testable model. Brain Res. Rev. 14:279–296.PubMedGoogle Scholar
  80. MacEwan D. J.-(1996). Elevated cPLA2 levels as a mechanism by which the p70 TNF and p75 NGF receptors enhance apoptosis. FEBS Lett. 379:77–81.PubMedGoogle Scholar
  81. Majno G. and Joris I. (1995). Apoptosis, oncosis, and necrosis: an overview of cell death. Am. J.-Pathol. 146:3–15.PubMedGoogle Scholar
  82. Manguikian A. D. and Barbour S. E. (2004). Cell cycle dependence of group VIA calcium-independent phospholipase A2 activity. J.-Biol. Chem. 279:52881–52892.PubMedGoogle Scholar
  83. Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J.-M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J.-Biol. Chem. 278:43807–43817.PubMedGoogle Scholar
  84. Mark R. J., Lovell M. A., Markesbery W. R., Uchida K., and Mattson M. P. (1997). A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J.-Neurochem. 68:255–264.PubMedCrossRefGoogle Scholar
  85. Massicotte G. (2000). Modification of glutamate receptors by phospholipase A2: its role in adaptive neural plasticity. Cell Mol. Life Sci. 57:1542–1550.PubMedGoogle Scholar
  86. Masuda S., Murakami M., Takanezawa Y., Aoki J., Arai H., Ishikawa Y., Ishii T., Arioka M., and Kudo I. (2005). Neuronal expression and neuritogenic action of group X secreted phospholipase A2. J.-Biol. Chem. 280:23203–23214.PubMedGoogle Scholar
  87. Matsuzawa A., Murakami M., Atsumi G., Imai K., Prados P., Inoue K., and Kudo I. (1996). Release of secretory phospholipase A2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion. Biochem. J.-318:701–709.PubMedGoogle Scholar
  88. Mayorga L. S., Colombo M. I., Lennartz M., Brown E. J., Rahman K. H., Weiss R., Lennon P. J., and Stahl P. D. (1993). Inhibition of endosome fusion by phospholipase A2 (PLA2) inhibitors points to a role for PLA2 in endocytosis. Proc. Natl Acad. Sci. USA 90:10255–10259.PubMedGoogle Scholar
  89. McLean L. R., Hagaman K. A., and Davidson W. S. (1993). Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28:505–509.PubMedGoogle Scholar
  90. Ménard C., Patenaude C., and Massicotte G. (2005a). Phosphorylation of AMPA receptor subunits is differentially regulated by phospholipase A2 inhibitors. Neurosci. Lett. 389:51–56.PubMedGoogle Scholar
  91. Ménard C., Valastro B., Martel M. A., Chartier T., Marineau A., Baudry M., and Massicotte G. (2005b). AMPA receptor phosphorylation is selectively regulated by constitutive phospholipase A2 and 5-lipoxygenase activities. Hippocampus 15:370–380.PubMedGoogle Scholar
  92. Moskowitz N., Schook W., and Puszkin S. (1982). Interaction of brain synaptic vesicles induced by endogenous Ca2+-dependent phospholipase A2. Science 216:305–307.PubMedGoogle Scholar
  93. Mukherjee P. K., Marcheselli V. L., Serhan C. N., and Bazan N. G. (2004). Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl Acad. Sci. USA 101:8491–8496.PubMedGoogle Scholar
  94. Murakami K. and Routtenberg A. (2003). The role of fatty acids in synaptic growth and plasticity. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp.-77–92.Google Scholar
  95. Ng M. N. P., Kitos T. E., and Cornell R. B. (2004). Contribution of lipid second messengers to the regulation of phosphatidylcholine synthesis during cell cycle re-entry. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1686:85–99.CrossRefGoogle Scholar
  96. Nishio H., Takeuchi T., Hata F., and Yagasaki O. (1996). Ca2+-independent fusion of synaptic vesicles with phospholipase A2-treated presynaptic membranes in-vitro. Biochem. J.-318:981–987.PubMedGoogle Scholar
  97. Nomura T., Nishizaki T., Enomoto T., and Itoh H. (2001). A long-lasting facilitation of hippocampal neurotransmission via a phospholipase A2 signaling pathway. Life Sci. 68:2885–2891.PubMedGoogle Scholar
  98. Obermeier H., Hrboticky N., and Sellmayer A. (1995). Differential effects of polyunsaturated fatty acids on cell growth and differentiation of premonocytic U937 cells. Biochim. Biophys. Acta 1266:179–185.PubMedGoogle Scholar
  99. Oka S. and Arita H. (1991). Inflammatory factors stimulate expression of group II phospholipase A2 in rat cultured astrocytes. Two distinct pathways of the gene expression. J.-Biol. Chem. 266:9956–9960.PubMedGoogle Scholar
  100. Okada D., Yamagishi S., and Sugiyama H. (1989). Differential effects of phospholipase inhibitors in long-term potentiation in the rat hippocampal mossy fiber synapses and Schaffer/commissural synapses. Neurosci. Lett. 100:141–146.PubMedGoogle Scholar
  101. O’Regan M. H., Perkins L. M., and Phillis J.-W. (1995a). Arachidonic acid and lysophosphatidylcholine modulate excitatory transmitter amino acid release from the rat cerebral cortex. Neurosci. Lett. 193:85–88.PubMedGoogle Scholar
  102. O’Regan M. H., Smith-Barbour M., Perkins L. M., and Phillis J.-W. (1995b). A possible role for phospholipases in the release of neurotransmitter amino acids from ischemic rat cerebral cortex. Neurosci. Lett. 185:191–194.PubMedGoogle Scholar
  103. O’Regan M. H., Alix S., and Woodbury D. J.(1996). Phospholipase A2-evoked destabilization of planar lipid membranes. Neurosci. Lett. 202:201–203.PubMedGoogle Scholar
  104. Pettus B. J., Bielawski J., Porcelli A. M., Reames D. L., Johnson K. R., Morrow J., Chalfant C. E., Obeid L. M., and Hannun Y. A. (2003). The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-α. FASEB J.-17:1411–1421.PubMedGoogle Scholar
  105. Pettus B. J., Bielawska A., Subramanian P., Wijesinghe D. S., Maceyka M., Leslie C. C., Evans J.-H., Freiberg J., Roddy P., Hannun Y. A., and Chalfant C. E. (2004). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J.-Biol. Chem. 279:11320–11326.PubMedGoogle Scholar
  106. Pettus B. J., Kitatani K., Chalfant C. E., Taha T. A., Kawamori T., Bielawski J., Obeid L. M., and Hannun Y. A. (2005). The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. Mol. Pharmacol. 68:330–335.PubMedGoogle Scholar
  107. Pirianov G., Danielsson C., Carlberg C., James S. Y., and Colston K. W. (1999). Potentiation by vitamin D analogs of TNFα and ceramide-induced apoptosis in MCF-7 cells is associated with activation of cytosolic phospholipase A2. Cell Death Differ. 6:890–901.PubMedGoogle Scholar
  108. Pittman R. N., Messer A., and Mills J.-C. (1998). Asynchronous death as a characteristic feature of apoptosis. In: Koliatsos V. E. and Ratan R. (eds.), Cell Death and Diseases of the Nervous System. Humana Press, Inc., Totowa, NJ, pp.-29–43.Google Scholar
  109. Polizotto R. S., de Figueiredo P., and Brown W. J.(1999). Stimulation of Golgi membrane tubulation and retrograde trafficking to the ER by phospholipase A2 activating protein (PLAP) peptide. J.-Cell Biochem. 74:670–683.PubMedGoogle Scholar
  110. Reynolds L. J., Hughes L. L., Louis A. I., Kramer R. M., and Dennis E. A. (1993). Metal ion and salt effects on the phospholipase A2, lysophospholipase, and transacylase activities of human cytosolic phospholipase A2. Biochim. Biophys. Acta 1167:272–280.PubMedGoogle Scholar
  111. Robinson B. S., Hii C. S. T., Poulos A., and Ferrante A. (1997). Activation of neutral sphingomyelinase in human neutrophils by polyunsaturated fatty acids. Immunology 91:274–280.PubMedGoogle Scholar
  112. Rohrbough J.-and Broadie K. (2005). Lipid regulation of the synaptic vesicle cycle. Nature Rev. Neurosci. 6:139–150.Google Scholar
  113. Roshak A. K., Capper E. A., Stevenson C., Eichman C., and Marshall L. A. (2000). Human calcium-independent phospholipase A2 mediates lymphocyte proliferation. J.-Biol. Chem. 275:35692–35698.PubMedGoogle Scholar
  114. Sapirstein A., Saito H., Texel S. J., Samad T. A., O’Leary E., and Bonventre J.-V. (2005). Cytosolic phospholipase A2α regulates induction of brain cyclooxygenase-2 in a mouse-model of inflammation. Am. J.-Physiol. Regul. Integr. Comp. Physiol. 288:R1774–R1782.PubMedGoogle Scholar
  115. Sastry P. S. and Rao K. S. (2000). Apoptosis and the nervous system. J.-Neurochem. 74:1–20.PubMedGoogle Scholar
  116. Sato T., Kageura T., Hashizume T., Hayama M., Kitatani K., and Akiba S. (1999). Stimulation by ceramide of phospholipase A2 activation through a mechanism related to the phospholipase C-initiated signaling pathway in rabbit platelets. J.-Biochem. (Tokyo) 125:96–102.PubMedGoogle Scholar
  117. Schaeffer E. L. and Gattaz W. F. (2005). Inhibition of calcium-independent phospholipase A2 activity in rat hippocampus impairs acquisition of short- and long-term memory. Psychopharmacology (Berl.) 381:392–400.Google Scholar
  118. Schaeffer E. L., Bassi F. J., and Gattaz W. F. (2005). Inhibition of phospholipase A2 activity reduces membrane fluidity in rat hippocampus. J.-Neural Transm. 112:641–647.PubMedGoogle Scholar
  119. Schmidt A., Wolde M., Thiele C., Fest W., Kratzin H., Podtelejnikov A. V., Witke W., Huttner W. B., and Söling H. D. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401:133–141.PubMedGoogle Scholar
  120. Seidenman K. J., Steinberg J.-P., Huganir R., and Malinow R. (2003). Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J.-Neurosci. 23:9220–9228.PubMedGoogle Scholar
  121. Serhan C. N. (2002). Endogenous chemical mediators in anti-inflammation and pro-resolution. Curr. Med. Chem. –– Anti-Inflammatory Anti-Allergy Agents 1:177–192.Google Scholar
  122. Serhan C. N. (2005a). Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr. Opin. Clin. Nutr. Metab. Care 8:115–121.PubMedCrossRefGoogle Scholar
  123. Serhan C. N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.PubMedGoogle Scholar
  124. Serhan C. N., Arita M., Hong S., and Gotlinger K. (2004a). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132.PubMedGoogle Scholar
  125. Serhan C. N., Gotlinger K., Hong S., and Arita M. (2004b). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis. Prostaglandins Other Lipid Mediat. 73:155–172.PubMedGoogle Scholar
  126. Shirai Y., Balsinde J., and Dennis E. A. (2005). Localization and functional interrelationships among cytosolic Group IV, secreted Group V, and Ca2+-independent group VI phospholipase A2s in P388D1 macrophages using GFP/RFP constructs. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1735:119–129.CrossRefGoogle Scholar
  127. Slomiany A., Grzelinska E., Kasinathan C., Yamaki K., Palecz D., and Slomiany B. L. (1992). Function of intracellular phospholipase A2 in vectorial transport of apoproteins from ER to Golgi. Int. J.-Biochem. 24:1397–1406.PubMedGoogle Scholar
  128. Slomiany A., Nowak P., Piotrowski E., and Slomiany B. L. (1998). Effect of ethanol on intracellular vesicular transport from Golgi to the apical cell membrane: role of phosphatidylinositol 3-kinase and phospholipase A2 in Golgi transport vesicles association and fusion with the apical membrane. Alcohol Clin. Exp. Res. 22:167–175.PubMedGoogle Scholar
  129. Smalheiser N. R., Dissanayake S., and Kapil A. (1996). Rapid regulation of neurite outgrowth and retraction by phospholipase A2-derived arachidonic acid and its metabolites. Brain Res. 721:39–48.PubMedGoogle Scholar
  130. Song I. and Huganir R. L. (2002). Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25:578–588.PubMedGoogle Scholar
  131. St-Gelais F., Ménard C., Congar P., Trudeau L. E., and Massicotte G. (2004). Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission. Hippocampus 14:319–325.PubMedGoogle Scholar
  132. Strokin M., Sergeeva M., and Reiser G. (2003). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2. Br. J.-Pharmacol. 139:1014–1022.PubMedGoogle Scholar
  133. Subramanian P., Stahelin R. V., Szulc Z., Bielawska A., Cho W., and Chalfant C. E. (2005). Ceramide 1-phosphate acts as a positive allosteric activator of group IVA cytosolic phospholipase A and enhances the interaction of the enzyme with phosphatidylcholine. J.-Biol. Chem. 280:17601–17607.PubMedGoogle Scholar
  134. Suburo A. and Cei de Job C. (1986). The biphasic effect of phospholipase A2 inhibitors on axon elongation. Int. J.-Dev. Neurosci. 4:363–367.PubMedGoogle Scholar
  135. Sun G. Y. and MacQuarrie R. A. (1989). Deacylation-reacylation of arachidonoyl groups in cerebral phospholipids. Ann. NY Acad. Sci. 559:37–55.PubMedGoogle Scholar
  136. Tagaya M., Henomatsu N., Yoshimori T., Yamamoto A., Tashiro Y., and Fukui T. (1993). Correlation between phospholipase A2 activity and intra-Golgi protein transport reconstituted in a cell-free system. FEBS Lett. 324:201–204.PubMedGoogle Scholar
  137. Tamagno E., Robino G., Obbili A., Bardini P., Aragno M., Parola M., and Danni O. (2003). H2O2 and 4-hydroxynonenal mediate amyloid beta-induced neuronal apoptosis by activating JNKs and p38MAPK. Exp. Neurol. 180:144–155.PubMedGoogle Scholar
  138. Ueda H. and Fujita R. (2004). Cell death mode switch from necrosis to apoptosis in brain. Biol. Pharm. Bull. 27:950–955.PubMedGoogle Scholar
  139. Vanags D. M., Larsson P., Feltenmark S., Jakobsson P. J., Orrenius S., Claesson H. E., and Aguilar-Santelises M. (1997). Inhibitors of arachidonic acid metabolism reduce DNA and nuclear fragmentation induced by TNF plus cycloheximide in U937 cells. Cell Death Diff. 4:479–486.Google Scholar
  140. van Rossum G. S. A. T., Bijvelt J.-J. M., van den Bosch H., Verkleij A. J., and Boonstra J.-(2002). Cytosolic phospholipase A2 and lipoxygenase are involved in cell cycle progression in neuroblastoma cells. Cell. Mol. Life Sci. 59:181–188.PubMedGoogle Scholar
  141. Webb N. R. (2005). Secretory phospholipase A2 enzymes in atherogenesis. Curr. Opin. Lipidol. 16:341–344.PubMedGoogle Scholar
  142. Weber G. F. (1999). Final common pathways in neurodegenerative diseases: regulatory role of the glutathione cycle. Neurosci. Biobehav. Rev. 23:1079–1086.PubMedGoogle Scholar
  143. Wei S., Ong W. Y., Thwin M. M., Fong C. W., Farooqui A. A., Gopalakrishnakone P., and Hong W. J.-(2003). Differential activities of secretory phospholipase A2 (sPLA2) in rat brain and effects of sPLA2 on neurotransmitter release. Neuroscience 121:891–898.PubMedGoogle Scholar
  144. Williams J.-H., Errington M. L., Lynch M. A., and Bliss T. V. P. (1989). Arachidonic acid induces a long-term activity dependent enhancement of synaptic transmission in the hippocampus. Nature 341:739–742.PubMedGoogle Scholar
  145. Wissing D., Mouritzen H., Egeblad M., Poirier G. G., and Jäättelä M. (1997). Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc. Natl Acad. Sci. USA 94:5073–5077.PubMedGoogle Scholar
  146. Wolf M. J., Izumi Y., Zorumski C. F., and Gross R. W. (1995). Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett. 377:358–362.PubMedGoogle Scholar
  147. Wullner U., Seyfried J., Groscurth P., Beinroth S., Winter S., Gleichmann M., Heneka M., Loschmann P., Schulz J.-B., Weller M., and Klockgether T. (1999). Glutathione depletion and neuronal cell death: the role of reactive oxygen intermediates and mitochondrial function. Brain Res. 826:53–62.PubMedGoogle Scholar
  148. Yagami T., Ueda K., Asakura K., Hata S., Kuroda T., Sakaeda T., Takasu N., Tanaka K., Gemba T., and Hori Y. (2002a). Human group IIA secretory phospholipase A2 induces neuronal cell death via apoptosis. Mol. Pharmacol. 61:114–126.PubMedGoogle Scholar
  149. Yagami T., Ueda K., Asakura K., Hayasaki-Kajiwara Y., Nakazato H., Sakaeda T., Hata S., Kuroda T., Takasu N., and Hori Y. (2002b). Group IB secretory phospholipase A2 induces neuronal cell death via apoptosis. J.-Neurochem. 81:449–461.PubMedGoogle Scholar
  150. Yagami T., Ueda K., Asakura K., Sakaeda T., Hata S., Kuroda T., Sakaguchi G., Itoh N., Hashimoto Y., and Hori Y. (2003). Porcine pancreatic group IB secretory phospholipase A2 potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels. Brain Res. 960:71–80.PubMedGoogle Scholar
  151. Yagami T., Ueda K., Hata S., Kuroda T., Itoh N., Sakaguchi G., Okamura N., Sakaeda T., and Fujimoto M. (2005). S-2474, a novel nonsteroidal anti-inflammatory drug, rescues cortical neurons from human group IIA secretory phospholipase A2-induced apoptosis. Neuropharmacology 49:174–184.PubMedGoogle Scholar
  152. Yeo J.-F., Ong W. Y., Ling S. F., and Farooqui A. A. (2004). Intracerebroventricular injection of phospholipases A2 inhibitors modulates allodynia after facial carrageenan injection in mice. Pain 112:148–155.PubMedGoogle Scholar
  153. Zaleska M. M. and Wilson D. F. (1989). Lipid hydroperoxides inhibit reacylation of phospholipids in neuronal membranes. J.-Neurochem. 52:255–260.PubMedGoogle Scholar
  154. Zhang J., Hannun Y. A., and Obeid L. M. (1999). A novel assay for apoptotic body formation and membrane release during apoptosis. Cell Death Differ. 6:596–598.PubMedGoogle Scholar
  155. Zhao S., Du X. Y., Chai M. Q., Chen J.-S., Zhou Y. C., and Song J.-G. (2002). Secretory phospholipase A2 induces apoptosis via a mechanism involving ceramide generation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1581:75–88.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations