Phospholipases A2 in Brain


Arachidonic Acid Docosahexaenoic Acid Bovine Brain Arachidonic Acid Release Cytosolic Phospholipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann E. J.and Dennis E. A. (1995). Mammalian calcium-independent phospholipase A2. Biochim. Biophys. Acta Lipids Lipid Metab. 1259:125–136.Google Scholar
  2. Adachi H., Tsujimoto M., Hattori M., Arai H., and Inoue K. (1995). cDNA cloning of human cytosolic platelet-activating factor acetylhydrolase gamma-subunit and its mRNA expression in human tissue. Biochem. Biophys. Res. Commun. 214:180–187.PubMedGoogle Scholar
  3. Akiba S. and Sato T. (2004). Cellular function of calcium-independent phospholipase A2. Biol. Pharm. Bull. 27:1174–1178.PubMedGoogle Scholar
  4. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2001). Effect of retinoic acid on the Ca2+-independent phospholipase A2 in nuclei of LA-N-1 neuroblastoma cells. Neurochem. Res. 26:83–88.PubMedGoogle Scholar
  5. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2003). Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: a-specific receptor activation mediated with retinoic acid. Mol. Brain Res. 115:187–195.PubMedGoogle Scholar
  6. Asai K., Hirabayashi T., Houjou T., Uozumi N., Taguchi R., and Shimizu T. (2003). Human group IVC phospholipase A2 (cPLA2γ) –– Roles in the membrane remodeling and activation induced by oxidative stress. J.-Biol. Chem. 278:8809–8814.PubMedGoogle Scholar
  7. Atsumi G., Tajima M., Hadano A., Nakatani Y., Murakami M., and Kudo I. (1998). Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2 which undergoes proteolytic inactivation. J.-Biol. Chem. 273:13870–13877.PubMedGoogle Scholar
  8. Atsumi G., Murakami M., Kojima K., Hadano A., Tajima M., and Kudo I. (2000). Distinct roles of two intracellular phospholipase A2s in fatty acid release in the cell death pathway. Proteolytic fragment of type IVA cytosolic phospholipase A inhibits stimulus-induced arachidonate release, whereas that of type VI Ca2+-independent phospholipase A2 augments spontaneous fatty acid release. J.-Biol. Chem. 275:18248–18258.PubMedGoogle Scholar
  9. Balboa M. A., Varela-Nieto I., Lucas K. K., and Dennis E. A. (2002). Expression and function of phospholipase A2 in brain. FEBS Lett. 531:12–17.PubMedGoogle Scholar
  10. Beyerl B. D. (1978). Afferent projections to the central nucleus of the inferior colliculus in the rat. Brain Res. 145:209–223.PubMedGoogle Scholar
  11. Boilard E., Bourgoin S. G., Bernatchez C., Poubelle P. E., and Surette M. E. (2003). Interaction of low molecular weight group IIA phospholipase A2 with apoptotic human T cells: role of heparan sulfate proteoglycans. FASEB J.-17:1068–1080.PubMedGoogle Scholar
  12. Burke J.-R., Witmer M. R., Tredup J., Micanovic R., Gregor K. R., Lahiri J., Tramposch K. M., and Villafranca J.-J. (1995). Cooperativity and binding in the mechanism of cytosolic phospholipase A2. Biochemistry 34:15165–15174.PubMedGoogle Scholar
  13. Calignano A., Piomelli D., Sacktor T. C., and Schwartz J.-H. (1991). A phospholipase A2-stimulating protein regulated by protein kinase C in Aplysia neurons. Mol. Brain Res. 9:347–351.PubMedGoogle Scholar
  14. Chakraborti S. (2003). Phospholipase A2 isoforms: a perspective. Cell. Signal. 15:637–665.PubMedGoogle Scholar
  15. Chiba H., Michibata H., Wakimoto K., Seishima M., Kawasaki S., Okubo K., Mitsui H., Torii H., and Imai Y. (2004). Cloning of a gene for a novel epithelium-specific cytosolic phospholipase A2, cPLA2δ, induced in psoriatic skin. J.-Biol. Chem. 279:12890–12897.PubMedGoogle Scholar
  16. Clark M. A., Conway T. M., Shorr R. G. L., and Crooke S. T. (1987). Identification and isolation of a mammalian protein which is antigenically and functionally related to the phospholipase A2 stimulatory peptide melittin. J.-Biol. Chem. 262:4402–4406.PubMedGoogle Scholar
  17. Clark J.-D., Schievella A. R., Nalefski E. A., and Lin L.-L. (1995). Cytosolic phospholipase A2. J.-Lipid Mediat. Cell Signal. 12:83–117.PubMedGoogle Scholar
  18. DeCoster M. A., Lambeau G., Lazdunski M., and Bazan N. G. (2002). Secreted phospholipase A2 potentiates glutamate-induced calcium increase and cell death in primary neuronal cultures. J.-Neurosci. Res. 67:634–645.PubMedGoogle Scholar
  19. Dennis E. A. (1997). The growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem. Sci. 22:1–2.PubMedGoogle Scholar
  20. Derewenda Z. S. and Derewenda U. (1998). The structure and function of platelet-activating factor acetylhydrolases. Cell Mol. Life Sci. 54:446–455.PubMedGoogle Scholar
  21. Desclin J.-C. (1974). Histological evidence supporting the inferior olive as the major source of cerebellar climbing fibers in the rat. Brain Res. 77:365–384.PubMedGoogle Scholar
  22. Diaz-Arrastia R. and Scott K. S. (1999). Expression of cPLA2-β and cPLA2-γ, novel paralogs of group IV cytosolic phospholipase A2 in mammalian brain. Soc. Neurosci. Abstr. 25:2206.Google Scholar
  23. Evans J.-H., Gerber S. H., Murray D., and Leslie C. C. (2004). The calcium binding loops of the cytosolic phospholipase A2 C2 domain specify targeting to Golgi and ER in live cells. Mol. Biol. Cell 15:371–383.PubMedGoogle Scholar
  24. Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.PubMedGoogle Scholar
  25. Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.PubMedGoogle Scholar
  26. Farooqui A. A., Pendley C. E., II, Taylor W. A., and Horrocks L. A. (1985). Studies on diacylglycerol lipases and lysophospholipases of bovine brain. In: Horrocks L. A., Kanfer J.-N., and Porcellati G. (eds.), Phospholipids in the Nervous System, Vol. II: Physiological Role. Raven Press, New York, pp.-179–192.Google Scholar
  27. Farooqui A. A., Yang H.-C., and Horrocks L. A. (1994). Purification of lipases, phospholipases and kinases by heparin-Sepharose chromatography. J.-Chromatogr. 673:149–158.Google Scholar
  28. Farooqui A. A., Yang H.-C., and Horrocks L. A. (1995). Plasmalogens, phospholipases A2, and signal transduction. Brain Res. Rev. 21:152–161.PubMedGoogle Scholar
  29. Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997a). Phospholipase A2 and its role in brain tissue. J.-Neurochem. 69:889–901.PubMedCrossRefGoogle Scholar
  30. Farooqui A. A., Yang H.-C., and Horrocks L. A. (1997b). Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30:517–522.PubMedGoogle Scholar
  31. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.PubMedGoogle Scholar
  32. Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000b). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.Google Scholar
  33. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum Publishers, London, pp.-335–354.Google Scholar
  34. Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.PubMedGoogle Scholar
  35. Fitzpatrick J.-S. and Baudry M. (1994). Blockade of long-term depression in neonatal hippocampal slices by a phospholipase A2 inhibitor. Dev. Brain Res. 78:81–86.Google Scholar
  36. Fuentes L., Pérez R., Nieto M. L., Balsinde J., and Balboa M. A. (2003). Bromoenol lactone promotes cell death by a mechanism involving phosphatidate phosphohydrolase-1 rather than calcium-independent phospholipase A2. J.-Biol. Chem. 278:44683–44690.PubMedGoogle Scholar
  37. Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Br. J.-Pharmacol. 132:1417–1422.PubMedGoogle Scholar
  38. Gerke V. and Moss S. E. (1997). Annexins and membrane dynamics. Biochim. Biophys. Acta Mol. Cell Res. 1357:129–154.Google Scholar
  39. Gilbert J.-J., Stewart A., Courtney C. A., Fleming M. C., Reid P., Jackson C. G., Wise A., Wakelam M. J., and Harnett M. M. (1996). Antigen receptors on immature, but not mature, B and T cells are coupled to cytosolic phospholipase A2 activation: expression and activation of cytosolic phospholipase A2 correlate with lymphocyte maturation. J.-Immunol. 156:2054–2061.PubMedGoogle Scholar
  40. Gray N. C. C. and Strickland K. P. (1982). The purification and characterization of a phospholipase A2 activity from the 106000·g pellet (microsomal fraction) of bovine brain acting on phosphatidylinositol. Can. J.-Biochem. 60:108–117.PubMedGoogle Scholar
  41. Hamano H., Nabekura J., Nishikawa M., and Ogawa T. (1996). Docosahexaenoic acid reduces GABA response in substantia nigra neuron of rat. J.-Neurophysiol. 75:1264–1270.PubMedGoogle Scholar
  42. Hanasaki K. (2004). Mammalian phospholipase A2: phospholipase A2 receptor. Biol. Pharm. Bull. 27:1165–1167.PubMedGoogle Scholar
  43. Hanasaki K. and Arita H. (2002). Phospholipase A2 receptor: a regulator of biological functions of secretory phospholipase A2. Prostaglandins Other Lipid Mediat. 68–69:71–82.Google Scholar
  44. Hattori M., Adachi H., Tsujimoto M., Arai H., and Inoue K. (1994). Miller-Dieker lissencephaly gene encodes a subunit of brain platelet-activating factor acetylhydrolase. Nature 370:216–218.PubMedGoogle Scholar
  45. Hazen S. L. and Gross R. W. (1993). The specific association of a phosphofructokinase isoform with myocardial calcium-independent phospholipase A2. Implications for the-coordinated regulation of phospholipolysis and glycolysis. J.-Biol. Chem. 268:9892–9900.PubMedGoogle Scholar
  46. Hernández M., Bayón Y., Sánchez Crespo M., and Nieto M. L. (1999). Signaling mechanisms involved in the activation of arachidonic acid metabolism in human astrocytoma cells by tumor necrosis factor-α: phosphorylation of cytosolic phospholipase A2 and transactivation of cyclooxygenase-2. J.-Neurochem. 73:1641–1649.PubMedGoogle Scholar
  47. Hernández M., Nieto M. L., and Sánchez Crespo M. (2000). Cytosolic phospholipase A2 and the distinct transcriptional programs of astrocytoma cells. Trends Neurosci. 23:259–264.PubMedGoogle Scholar
  48. Higuchi Y., Hattori H., Hattori R., and Furusho K. (1996). Increased neurons containing neuronal nitric oxide synthase in the brain of a hypoxic–ischemic neonatal rat model. Brain Dev. 18:369–375.PubMedGoogle Scholar
  49. Hirabayashi T. and Shimizu T. (2000). Localization and regulation of cytosolic phospholipase A2. Biochim. Biophys. Acta 1488:124–138.PubMedGoogle Scholar
  50. Hirabayashi T., Murayama T., and Shimizu T. (2004). Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol. Pharm. Bull. 27:1168–1173.PubMedGoogle Scholar
  51. Hirashima Y., Farooqui A. A., Mills J.-S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J.-Neurochem. 59:708–714.PubMedGoogle Scholar
  52. Karasawa K., Harada A., Satoh N., Inoue K., and Setaka M. (2003). Plasma platelet activating factor-acetylhydrolase (PAF-AH). Prog. Lipid Res. 42:93–114.PubMedGoogle Scholar
  53. Kim D. K., Rordorf G., Nemenoff R. A., Koroshetz W. J., and Bonventre J.-V. (1995). Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem. J.-310:83–90.PubMedGoogle Scholar
  54. Kim S. W., Ko J., Kim J.-H., Choi E. C., and Na D. S. (2001a). Differential effects of annexins I, II, III, and V on cytosolic phospholipase A2 activity: specific interaction model. FEBS Lett. 489:243–248.PubMedGoogle Scholar
  55. Kim S. W., Rhee H. J., Ko J.-S., Kim Y. J., Kim H. G., Yang J.-M., Choi E. C., and Na D. S. (2001b). Inhibition of cytosolic phospholipase A2 by annexin I –– specific interaction model and mapping of the interaction site. J.-Biol. Chem. 276:15712–15719.PubMedGoogle Scholar
  56. Kishimoto K., Matsumura K., Kataoka Y., Morii H., and Watanabe Y. (1999). Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 92:1061–1077.PubMedGoogle Scholar
  57. Kolko M., Rodriguez de Turco E. B., Diemer N. H., and Bazan N. G. (2002). Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors. NeuroReport 13:1963–1966.PubMedGoogle Scholar
  58. Kolko M., Christoffersen N. R., Barreiro S. G., and Bazan N. G. (2004). Expression and location of mRNAs encoding multiple forms of secretory phospholipase A2 in the rat retina. J.-Neurosci. Res. 77:517–524.PubMedGoogle Scholar
  59. Larsson P. K. A., Claesson H. E., and Kennedy B. P. (1998). Multiple splice variants of the human calcium-independent phospholipase A2 and their effect on enzyme activity. J.-Biol. Chem. 273:207–214.PubMedGoogle Scholar
  60. Latorre E., Collado M. P., Fernández I., Aragonés M. D., and Catalán R. E. (2003). Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur. J.-Biochem. 270:36–46.PubMedGoogle Scholar
  61. Leslie C. C. (2004). Regulation of arachidonic acid availability for eicosanoid production. Biochem. Cell Biol. 82:1–17.PubMedGoogle Scholar
  62. Lin T. N., Wang Q., Simonyi A., Chen J.-J., Cheung W. M., He Y. Y., Xu J., Sun A. Y., Hsu C. Y., and Sun G. Y. (2004). Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J.-Neurochem. 90:637–645.PubMedGoogle Scholar
  63. Luo J., Lang J.-A., and Miller M. W. (1998). Transforming growth factor β1 regulates the expression of cyclooxygenase in cultured cortical astrocytes and neurons. J.-Neurochem. 71:526–534.PubMedCrossRefGoogle Scholar
  64. Luscher T. F., Tanner F. C., and Dohi Y. (1992). Age, hypertension and hypercholesterolaemia alter endothelium-dependent vascular regulation. Pharmacol. Toxicol. 70:S32–S39.PubMedGoogle Scholar
  65. Macchioni L., Corazzi L., Nardicchi V., Mannucci R., Arcuri C., Porcellati S., Sposini T., Donato R., and Goracci G. (2004). Rat brain cortex mitochondria release group II secretory phospholipase A2 under reduced membrane potential. J.-Biol. Chem. 279: 37860–37869.PubMedGoogle Scholar
  66. Manya H., Aoki J., Watanabe M., Adachi T., Asou H., Inoue Y., Arai H., and Inoue K. (1998). Switching of platelet-activating factor acetylhydrolase catalytic subunits in developing rat brain. J.-Biol. Chem. 273:18567–18572.PubMedGoogle Scholar
  67. Martelli A. M., Manzoli L., Faenza I., Bortul R., Billi A., and Cocco L. (2002). Nuclear inositol lipid signaling and its potential involvement in malignant transformation. Biochim. Biophys. Acta 1603:11–17.PubMedGoogle Scholar
  68. Martelli A. M., Tabellini G., Borgatti P., Bortul R., Capitani S., and Neri L. M. (2003). Nuclear lipids: new functions for old molecules? J.-Cell Biochem. 88:455–461.PubMedGoogle Scholar
  69. Matsuzawa A., Murakami M., Atsumi G., Imai K., Prados P., Inoue K., and Kudo I. (1996). Release of secretory phospholipase A2 from rat neuronal cells and its possible function in the regulation of catecholamine secretion. Biochem. J.-318:701–709.PubMedGoogle Scholar
  70. McMullen, T. W. P., Li, J., Sheffield, P. J., Aoki, J., Martin, T. W., Arai, H., Inoue, K., and Derewenda, Z. S. (2000). The functional implications of the dimerization of the catalytic subunits of the mammalian brain platelet-activating factor acetylhydrolase (Ib). Protein Eng. 13(12):865–871.PubMedGoogle Scholar
  71. Molloy G. Y., Rattray M., and Williams R. J.-(1998). Genes encoding multiple forms of phospholipase A2 are expressed in rat brain. Neurosci. Lett. 258:139–142.PubMedGoogle Scholar
  72. Moriyama T., Urade R., and Kito M. (1999). Purification and characterization of diacylglycerol lipase from human platelets. J.-Biochem. (Tokyo) 125:1077–1085.PubMedGoogle Scholar
  73. Mosior M., Six D. A., and Dennis E. A. (1998). Group IV cytosolic phospholipase A2 binds with high affinity and specificity to phosphatidylinositol 4,5-bisphosphate resulting in dramatic increases in activity. J.-Biol. Chem. 273:2184–2191.PubMedGoogle Scholar
  74. Moskowitz N., Schook W., and Puszkin S. (1982). Interaction of brain synaptic vesicles induced by endogenous Ca2+-dependent phospholipase A2. Science 216:305–307.PubMedGoogle Scholar
  75. Moskowitz N., Puszkin S., and Schook W. (1983). Characterization of brain synaptic vesicle phospholipase A2 activity and its modulation by calmodulin, prostaglandin E2, prostaglandin F, cyclic AMP and ATP. J.-Neurochem. 41:1576–1586.PubMedGoogle Scholar
  76. Murakami M. and Kudo I. (2004). Secretory phospholipase A2. Biol. Pharm. Bull. 27:1158–1164.PubMedGoogle Scholar
  77. Murakami M., Nakatani Y., Atsumi G., Inoue K., and Kudo I. (1997). Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 17:225–283.PubMedGoogle Scholar
  78. Nakashima S., Ikeno Y., Yokoyama T., Kuwana M., Bolchi A., Ottonello S., Kitamoto K., and Arioka M. (2003). Secretory phospholipases A2 induce neurite outgrowth in PC12 cells. Biochem. J.-376:655–666.PubMedGoogle Scholar
  79. Negre-Aminou P., Nemenoff R. A., Wood M. R., de la Houssaye B. A., and Pfenninger K. H. (1996). Characterization of phospholipase A2 activity enriched in the nerve growth cone. J.-Neurochem. 67:2599–2608.PubMedCrossRefGoogle Scholar
  80. Ong W. Y., Horrocks L. A., and Farooqui A. A. (1999a). Immunocytochemical localization of cPLA2 in rat and monkey spinal cord. J.-Mol. Neurosci. 12:123–130.PubMedGoogle Scholar
  81. Ong W. Y., Sandhya T. L., Horrocks L. A., and Farooqui A. A. (1999b). Distribution of cytoplasmic phospholipase A2 in the normal rat brain. J.-Hirnforsch. 39:391–400.PubMedGoogle Scholar
  82. Ong W. Y., Yeo J.-F., Ling S. F., and Farooqui A. A. (2005). Immunocytochemical localization of calcium-independent phospholipase A2 (iPLA2) in rat and monkey spinal cord. J.-Neurocytol. 34:447–458.PubMedGoogle Scholar
  83. Owada Y., Tominaga T., Yoshimoto T., and Kondo H. (1994). Molecular cloning of rat cDNA for cytosolic phospholipase A2 and the increased gene expression in the dentate gyrus following transient forebrain ischemia. Mol. Brain Res. 25:364–368.PubMedGoogle Scholar
  84. Pardue S., Rapoport S. I., and Bosetti F. (2003). Co-localization of cytosolic phospholipase A2 and cyclooxygenase-2 in Rhesus monkey cerebellum. Mol. Brain Res. 116:106–114.PubMedGoogle Scholar
  85. Pérez R., Melero R., Balboa M. A., and Balsinde J.-(2004). Role of group VIA calcium-independent phospholipase A2 in arachidonic acid release, phospholipid fatty acid incorporation, and apoptosis in U937 cells responding to hydrogen peroxide. J.-Biol. Chem. 279:40385–40391.PubMedGoogle Scholar
  86. Pettus B. J., Bielawska A., Subramanian P., Wijesinghe D. S., Maceyka M., Leslie C. C., Evans J.-H., Freiberg J., Roddy P., Hannun Y. A., and Chalfant C. E. (2004). Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J.-Biol. Chem. 279:11320–11326.PubMedGoogle Scholar
  87. Phillis J.-W. and O’Regan M. H. (2004). A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res. Rev. 44:13–47.PubMedGoogle Scholar
  88. Pickard R. T., Strifler B. A., Kramer R. M., and Sharp J.-D. (1999). Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. J.-Biol. Chem. 274:8823–8831.PubMedGoogle Scholar
  89. Portilla D. and Dai G. (1996). Purification of a novel calcium-independent phospholipase A2 from rabbit kidney. J.-Biol. Chem. 271:15451–15457.PubMedGoogle Scholar
  90. Ross B. M., Kim D. K., Bonventre J.-V., and Kish S. J.-(1995). Characterization of a novel phospholipase A2 activity in human brain. J.-Neurochem. 64:2213–2221.PubMedCrossRefGoogle Scholar
  91. Sandhya T. L., Ong W. Y., Horrocks L. A., and Farooqui A. A. (1998). A light and electron microscopic study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res. 788:223–231.PubMedGoogle Scholar
  92. Seashols S. J., del Castillo Olivares A., Gil G., and Barbour S. E. (2004). Regulation of group VIA phospholipase A2 expression by sterol availability. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1684:29–37.CrossRefGoogle Scholar
  93. Serhan C. N. (2004). A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem. Cell Biol. 122:305–321.PubMedGoogle Scholar
  94. Serhan C. N. (2005). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.PubMedGoogle Scholar
  95. Serhan C. N., Arita M., Hong S., and Gotlinger K. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132.PubMedGoogle Scholar
  96. Shirai Y. and Ito M. (2004). Specific differential expression of phospholipase A2 subtypes in rat cerebellum. J.-Neurocytol. 33:297–307.PubMedGoogle Scholar
  97. Snyder F. (1995). Platelet-activating factor: the biosynthetic and catabolic enzymes. Biochem. J.-305:689–705.PubMedGoogle Scholar
  98. Song C., Chang X. J., Bean K. M., Proia M. S., Knopf J.-L., and Kriz R. W. (1999). Molecular characterization of cytosolic phospholipase A2-². J.-Biol. Chem. 274:17063–17067.PubMedGoogle Scholar
  99. Stephenson D. T., Manetta J.-V., White D. L., Chiou X. G., Cox L., Gitter B., May P. C., Sharp J.-D., Kramer R. M., and Clemens J.-A. (1994). Calcium-sensitive cytosolic phospholipase A2 (cPLA2) is expressed in human brain astrocytes. Brain Res. 637:97–105.PubMedGoogle Scholar
  100. Stephenson D., Rash K., Smalstig B., Roberts E., Johnstone E., Sharp J., Panetta J., Little S., Kramer R., and Clemens J.-(1999). Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 27:110–128.PubMedGoogle Scholar
  101. Strokin M., Sergeeva M., and Reiser G. (2003a). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br. J.-Pharmacol. 139:1014–1022.PubMedGoogle Scholar
  102. Strokin M., Sergeeva M., and Reiser G. (2003b). Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br. J.-Pharmacol. 139:1014–1022.PubMedGoogle Scholar
  103. Sun G. Y., Xu J.-F., Jensen M. D., and Simonyi A. (2004). Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J.-Lipid Res. 45:205–213.PubMedGoogle Scholar
  104. Tay A., Maxwell P., Li Z., Goldberg H., and Skorecki K. (1994). Isolation of promoter for cytosolic phospholipase A2 (cPLA2). Biochim. Biophys. Acta 1217:345–347.PubMedGoogle Scholar
  105. Thomson F. J.-and Clark M. A. (1995). Purification of a phosphatidic-acid-hydrolysing phospholipase A2 from rat brain. Biochem. J.-306:305–309.PubMedGoogle Scholar
  106. Thwin M. M., Ong W. Y., Fong C. W., Sato K., Kodama K., Farooqui A. A., and Gopalakrishnakone P. (2003). Secretory phospholipase A2 activity in the normal and kainate injected rat brain, and inhibition by a peptide derived from python serum. Exp. Brain Res. 150:427–433.PubMedGoogle Scholar
  107. Tjoelker L. W. and Stafforini D. M. (2000). Platelet-activating factor acetylhydrolases in health and disease. Biochim. Biophys. Acta 1488:102–123.PubMedGoogle Scholar
  108. Ueda H., Kobayashi T., Kishimoto M., Tsutsumi T., Watanabe S., and Okuyama H. (1993). The presence of Ca2+-independent phospholipase A1 highly specific for phosphatidylinositol in bovine brain. Biochem. Biophys. Res. Commun. 195:1272–1279.PubMedGoogle Scholar
  109. Webster G. R. and Cooper M. (1968). On the site of action of phosphatide acyl-hydrolase activity of rat brain homogenates on lecithin. J.-Neurochem. 15:795–802.PubMedGoogle Scholar
  110. Wei S., Ong W. Y., Thwin M. M., Fong C. W., Farooqui A. A., Gopalakrishnakone P., and Hong W. J.-(2003). Differential activities of secretory phospholipase A2 (sPLA2) in rat brain and effects of sPLA2 on neurotransmitter release. Neuroscience 121:891–898.PubMedGoogle Scholar
  111. Winstead M. V., Balsinde J., and Dennis E. A. (2000). Calcium-independent phospholipase A2: structure and function. Biochim. Biophys. Acta 1488:28–39.PubMedGoogle Scholar
  112. Woelk H., Goracci G., and Porcellati G. (1974). The action of brain phospholipases A2 on purified, specifically labelled 1,2-diacyl-, 2-acyl-1-alk-1′-enyl- and 2-acyl-1-alkyl-sn-glycero-3-phosphorylcholine. Hoppe-Seyler’s Z. Physiol. Chem. 335:75–81.Google Scholar
  113. Woelk H., Goracci G., Arienti G., and Porcellati G. (1978). On the activity of phospholipases A1 and A2 in glial and neuronal cells. Adv. Prostaglandin Thromboxane Res. 3:77–83.PubMedGoogle Scholar
  114. Wolf M. J., Izumi Y., Zorumski C. F., and Gross R. W. (1995). Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett. 377:358–362.PubMedGoogle Scholar
  115. Xu J.-F., Yu S., Sun A. Y., and Sun G. Y. (2003). Oxidant-mediated AA release from astrocytes involves cPLA2 and iPLA2. Free Radic. Biol. Med. 34:1531–1543.PubMedGoogle Scholar
  116. Yang H.-C., Farooqui A. A., and Horrocks L. A. (1994a). Effects of glycosaminoglycans and glycosphingolipids on cytosolic phospholipases A2 from bovine brain. Biochem. J. 299:91–95.PubMedGoogle Scholar
  117. Yang H.-C., Farooqui A. A., and Horrocks L. A. (1994b). Effects of sialic acid and sialoglycoconjugates on cytosolic phospholipases A2 from bovine brain. Biochem. Biophys. Res. Commun. 199:1158–1166.PubMedGoogle Scholar
  118. Yang H.-C., Farooqui A. A., Rammohan K. W., Haun S. E., and Horrocks L. A. (1997). Occurrence and characterization of plasmalogen-selective phospholipase A2 in brain of various animal species. J.-Neurochem. 69:S205C.Google Scholar
  119. Yang H. C., Mosior M., Ni B., and Dennis E. A. (1999). Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A2 from rat brain. J.-Neurochem. 73:1278–1287.PubMedGoogle Scholar
  120. Yoshida H., Tsujishita Y., Hullin F., Yoshida K., Nakamura S., Kikkawa U., and Asaoka Y. (1998). Isolation and properties of a novel phospholipase A from rat brain that hydrolyses fatty acids at sn-1 and sn-2 positions. Ann. Clin. Biochem. 35:295–301.PubMedGoogle Scholar
  121. Yoshihara Y. and Watanabe Y. (1990). Translocation of phospholipase A2 from cytosol to membranes in rat brain induced by calcium ions. Biochem. Biophys. Res. Commun. 170:484–490.PubMedGoogle Scholar
  122. Yoshihara Y., Yamaji M., Kawasaki M., and Watanabe Y. (1992). Ontogeny of cytosolic phospholipase A2 activity in rat brain. Biochem. Biophys. Res. Commun. 185:350–355.PubMedGoogle Scholar
  123. Zanassi P., Paolillo M., and Schinelli S. (1998). Coexpression of phospholipase A2 isoforms in rat striatal astrocytes. Neurosci. Lett. 247:83–86.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations