Future Perspectives: Metabolic and Functional Aspects of Neural Membrane Glycerophospholipids


Positron Emission Tomography Molecular Species Functional Aspect Subcellular Level Cytosolic Phospholipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler D. H., Phillips J.-A. I., Cogan J.-D., Morrow I. D., Boutaud O., and Oates J.-A. (2006). First description: cytosolic phospholipase A2-alpha deficiency. J.-Invest. Med. 54:S257.Google Scholar
  2. Andresen T. L. and Jorgensen K. (2005). Synthesis and membrane behavior of a new class of unnatural phospholipid analogs useful as phospholipase A2 degradable liposomal drug carriers. Biochim. Biophys. Acta Biomembr. 1669:1–7.CrossRefGoogle Scholar
  3. Balboa M. A., Varela-Nieto I., Lucas K. K., and Dennis E. A. (2002). Expression and function of phospholipase A2 in brain. FEBS Lett. 531:12–17.PubMedCrossRefGoogle Scholar
  4. Banno Y. (2002). Regulation and possible role of mammalian phospholipase D in cellular functions. J.-Biochem. (Tokyo) 131:301–306.Google Scholar
  5. Bazan N. G. (2005a). Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32:89–103.PubMedCrossRefGoogle Scholar
  6. Bazan N. G. (2005b). Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.PubMedCrossRefGoogle Scholar
  7. Bonventre J.-V. and Sapirstein A. (2002). Group IV cytosolic phospholipase A2 (PLA2) function: Insights from the knockout mouse. In: Honn K. V., Marnett L. J., Nigam S., Dennis E., and Serhan C. (eds.), Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, 5. Kluwer Academic/Plenum Publ., New York, pp.-25–31.Google Scholar
  8. Bonventre J.-V., Huang Z. H., Taheri M. R., O’Leary E., Li E., Moskowitz M. A., and Sapirstein A. (1997). Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390:622–625.PubMedCrossRefGoogle Scholar
  9. Bosetti F., Bell J.-M., and Manickam P. (2005). Microarray analysis of rat brain gene expression after chronic administration of sodium valproate. Brain Res. Bull. 65:331–338.PubMedCrossRefGoogle Scholar
  10. Cafiso D. S. (2005). Structure and interactions of C2 domains at membrane surfaces. In: Tamm L. K. (ed.), Membrane Domains to Cellular Networks. Wiley-VCH Verlag GmbH, Weinheim, pp.-403–422.Google Scholar
  11. Colangelo V., Schurr J., Ball M. J., Pelaez R. P., Bazan N. G., and Lukiw W. J.-(2002). Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J.-Neurosci. Res. 70:462–473.PubMedCrossRefGoogle Scholar
  12. Davletov B., Perisic O., and Williams R. L. (1998). Calcium-dependent membrane penetration is a hallmark of the C2 domain of cytosolic phospholipase A2 whereas the C2A domain of synaptotagmin binds membranes electrostatically. J.-Biol. Chem. 273:19093–19096.PubMedCrossRefGoogle Scholar
  13. Farooqui A. A. and Horrocks L. A. (2004). Brain phospholipases A2: a perspective on the history. Prostaglandins Leukot. Essent. Fatty Acids 71:161–169.PubMedCrossRefGoogle Scholar
  14. Farooqui A. A. and Horrocks L. A. (2005). Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod. Nutr. Dev. 45:613–631.PubMedCrossRefGoogle Scholar
  15. Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245.PubMedCrossRefGoogle Scholar
  16. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000a). Deacylation and reacylation of neural membrane glycerophospholipids. J.-Mol. Neurosci. 14:123–135.PubMedCrossRefGoogle Scholar
  17. Farooqui A. A., Horrocks L. A., and Farooqui T. (2000b). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.PubMedCrossRefGoogle Scholar
  18. Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000c). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.CrossRefGoogle Scholar
  19. Farooqui A. A., Farooqui T., and Horrocks L. A. (2002). Molecular species of phospholipids during brain development. Their occurrence, separation and roles. In: Skinner E. R. (ed.), Brain Lipids and Disorders in Biological Psychiatry. Elsevier Science B.V., Amsterdam, pp.-147–158.CrossRefGoogle Scholar
  20. Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.PubMedCrossRefGoogle Scholar
  21. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2006). Inhibitors of brain phospholipase A2 activity: their neuropharmacologic effects and therapeutic importance for the treatment of neurologic disorders. Pharm. Rev. (in press).Google Scholar
  22. Forrester J.-S., Milne S. B., Ivanova P. T., and Brown H. A. (2004). Computational lipidomics: a multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol. Pharmacol. 65:813–821.PubMedCrossRefGoogle Scholar
  23. Fukami K. (2002). Structure, regulation, and function of phospholipase C isozymes. J.-Biochem. (Tokyo) 131:293–299.Google Scholar
  24. Gross R. W., Jenkins C. M., Yang J.-Y., Mancuso D. J., and Han X. L. (2005). Functional lipidomics: the roles of specialized lipids and lipid–protein interactions in modulating neuronal function. Prostaglandins Other Lipid Mediat. 77:52–64.PubMedCrossRefGoogle Scholar
  25. Hampel H., Teipel S. J., Alexander G. E., Pogarell O., Rapoport S. I., and Moller H. J.-(2002). In vivo imaging of region and cell type specific neocortical neurodegeneration in Alzheimer’s disease –– perspectives of MRI derived corpus callosum measurement for mapping disease progression and effects of therapy. Evidence from studies with MRI, EEG and PET. J.-Neural Transm. 109:837–855.PubMedCrossRefGoogle Scholar
  26. Hirashima Y., Farooqui A. A., Mills J.-S., and Horrocks L. A. (1992). Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J.-Neurochem. 59:708–714.PubMedCrossRefGoogle Scholar
  27. Hovland A. R., Nahreini P., Andreatta C. P., Edwards-Prasad J., and Prasad K. N. (2001). Identifying genes involved in regulating differentiation of neuroblastoma cells. J.-Neurosci. Res. 64:302–310.CrossRefGoogle Scholar
  28. Ivanova P. T., Milne S. B., Forrester J.-S., and Brown H. A. (2004). Lipid arrays: new tools in the understanding of membrane dynamics and lipid signaling. Mol. Interv. 4:86–96.PubMedCrossRefGoogle Scholar
  29. Jin J.-K., Kim N. H., Min D. S., Kim J.-I., Choi J.-K., Jeong B. H., Choi S. I., Choi E. K., Carp R. I., and Kim Y. S. (2005). Increased expression of phospholipase D1 in the brains of scrapie-infected mice. J.-Neurochem. 92:452–461.PubMedCrossRefGoogle Scholar
  30. Karim M., Jackson P., and Jackowski S. (2003). Gene structure, expression and identification of a new CTP:phosphocholine cytidylyltransferase isoform. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1633:1–12.CrossRefGoogle Scholar
  31. Kim M. D., Min D. S., Sim K. B., Cho H. J., and Shin T. (2004). Expression and potential role of phospholipase D1 in cryoinjured cerebral cortex of rats. Histol. Histopathol. 19:1015–1019.PubMedGoogle Scholar
  32. Kishimoto K., Matsumura K., Kataoka Y., Morii H., and Watanabe Y. (1999). Localization of cytosolic phospholipase A2 messenger RNA mainly in neurons in the rat brain. Neuroscience 92:1061–1077.PubMedCrossRefGoogle Scholar
  33. Klivenyi P., Beal M. F., Ferrante R. J., Andreassen O. A., Wermer M., Chin M. R., and Bonventre J.-V. (1998). Mice deficient in group IV cytosolic phospholipase A2 are resistant to MPTP neurotoxicity. J.-Neurochem. 71:2634–2637.PubMedCrossRefGoogle Scholar
  34. Lee S. H., Williams M. V., and Blair I. A. (2005). Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediat. 77:141–157.PubMedCrossRefGoogle Scholar
  35. Malmberg N. J., Van Buskirk D. R., and Falke J.-J. (2003). Membrane-docking loops of the cPLA2 C2 domain: detailed structural analysis of the protein–membrane interface via site-directed spin-labeling. Biochemistry 42:13227–13240.PubMedCrossRefGoogle Scholar
  36. Molloy G. Y., Rattray M., and Williams R. J.-(1998). Genes encoding multiple forms of phospholipase A2 are expressed in rat brain. Neurosci. Lett. 258:139–142.PubMedCrossRefGoogle Scholar
  37. Negre-Aminou P., Nemenoff R. A., Wood M. R., de la Houssaye B. A., and Pfenninger K. H. (1996). Characterization of phospholipase A2 activity enriched in the nerve growth cone. J.-Neurochem. 67:2599–2608.PubMedCrossRefGoogle Scholar
  38. Oram J.-F., Wolfbauer G., Vaughan A. M., Tang C. R., and Albers J.-J. (2003). Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J.-Biol. Chem. 278:52379–52385.PubMedCrossRefGoogle Scholar
  39. Perisic O., Paterson H. F., Mosedale G., Lara-González S., and Williams R. L. (1999). Mapping the phospholipid-binding surface and translocation determinants of the C2 domain from cytosolic phospholipase A2. J.-Biol. Chem. 274:14979–14987.PubMedCrossRefGoogle Scholar
  40. Pete M. J.-and Exton J.-H. (1996). Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl-substituted lysophosphatidylcholine. J.-Biol. Chem. 271:18114–18121.PubMedCrossRefGoogle Scholar
  41. Pete M. J., Ross A. H., and Exton J.-H. (1994). Purification and properties of phospholipase A1 from bovine brain. J.-Biol. Chem. 269:19494–19500.PubMedGoogle Scholar
  42. Phillis J.-W. and O’Regan M. H. (2004). A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res. Rev. 44:13–47.PubMedCrossRefGoogle Scholar
  43. Phillis J.-W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. (in press).Google Scholar
  44. Piomelli D. (2005). The challenge of brain lipidomics. Prostaglandins Other Lipid Mediat. 77:23–34.PubMedCrossRefGoogle Scholar
  45. Purdon A. D., Rosenberger T. A., Shetty H. U., and Rapoport S. I. (2002). Energy consumption by phospholipid metabolism in mammalian brain. Neurochem. Res. 27:1641–1647.PubMedCrossRefGoogle Scholar
  46. Rapoport S. I. (1999). In vivo fatty acid incorporation into brain phospholipids in relation to signal transduction and membrane remodeling. Neurochem. Res. 24:1403–1415.PubMedCrossRefGoogle Scholar
  47. Rapoport S. I. (2001). In vivo fatty acid incorporation into brain phospholipids in relation to plasma availability, signal transduction and membrane remodeling. J.-Mol. Neurosci. 16:243–261.PubMedCrossRefGoogle Scholar
  48. Rapoport S. I. (2005). In vivo approaches and rationale for quantifying kinetics and imaging brain lipid metabolic pathways. Prostaglandins Other Lipid Mediat. 77:185–196.PubMedCrossRefGoogle Scholar
  49. Rosenberger T. A., Villacreses N. E., Contreras M. A., Bonventre J.-V., and Rapoport S. I. (2003). Brain lipid metabolism in the cPLA2 knockout mouse. J.-Lipid Res. 44:109–117.PubMedCrossRefGoogle Scholar
  50. Serhan C. N. (2005a). Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr. Opin. Clin. Nutr. Metab. Care 8:115–121.PubMedCrossRefGoogle Scholar
  51. Serhan C. N. (2005b). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.PubMedCrossRefGoogle Scholar
  52. Thomas D. M., Francescutti-Verbeem D. M., and Kuhn D. M. (2006). Gene expression profile of activated microglia under conditions associated with dopamine neuronal damage. FASEB J.-20:515–517.PubMedGoogle Scholar
  53. Uozumi N. and Shimizu T. (2002). Roles for cytosolic phospholipase A2α as revealed by gene-targeted mice. Prostaglandins Other Lipid Mediat. 68–69:59–69.PubMedCrossRefGoogle Scholar
  54. Vallée B., Teyssier C., Maget-Dana R., Ramstein J., Bureaud N., and Schoentgen F. (1999). Stability and physicochemical properties of the bovine brain phosphatidylethanolamine-binding protein. Eur. J.-Biochem. 266:40–52.PubMedCrossRefGoogle Scholar
  55. Van Meer G. and Sprong H. (2004). Membrane lipids and vesicular traffic. Curr. Opin. Cell Biol. 16:373–378.PubMedCrossRefGoogle Scholar
  56. Vigh L., Escriba P. V., Sonnleitner A., Sonnleitner M., Piotto S., Maresca B., Horvath I., and Harwood J.-L. (2005). The significance of lipid composition for membrane activity: new concepts and ways of assessing function. Prog. Lipid Res. 44:303–344.PubMedCrossRefGoogle Scholar
  57. Voelker D. R. (2003). New perspectives on the regulation of intermembrane glycerophospholipid traffic. J.-Lipid Res. 44:441–449.PubMedCrossRefGoogle Scholar
  58. Voelker D. R. (2004). Genetic analysis of intracellular aminoglycerophospholipid traffic. Biochem. Cell Biol. 82:156–169.PubMedCrossRefGoogle Scholar
  59. Voelker D. R. (2005). Protein and lipid motifs regulate phosphatidylserine traffic in yeast. Biochem. Soc. Trans. 33:1141–1145.PubMedCrossRefGoogle Scholar
  60. Yang H. C., Mosior M., Ni B., and Dennis E. A. (1999). Regional distribution, ontogeny, purification, and characterization of the Ca2+-independent phospholipase A2 from rat brain. J.-Neurochem. 73:1278–1287.PubMedCrossRefGoogle Scholar
  61. Yoshikawa T., Sakaeda T., Sugawara T., Hirano K., and Stella V. J.-(1999). A novel chemical delivery system for brain targeting. Adv. Drug Deliv. Rev. 36:255–275.PubMedCrossRefGoogle Scholar
  62. Zanassi P., Paolillo M., and Schinelli S. (1998). Coexpression of phospholipase A2 isoforms in rat striatal astrocytes. Neurosci. Lett. 247:83–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations