Advertisement

Glycerophospholipids and Phospholipases A2 in Neuropsychiatric Disorders

Keywords

Arachidonic Acid Bipolar Disorder Schizophrenic Patient Essential Fatty Acid Docosahexaenoic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acosta M. T. and Pearl P. L. (2003). The neurobiology of autism: new pieces of the puzzle. Curr. Neurol. Neurosci. Rep. 3:149–156.PubMedGoogle Scholar
  2. Albers M., Meurer H., Marki F., and Klotz J.-(1993). Phospholipase A2 activity in serum of neuroleptic-naive psychiatric inpatients. Pharmacopsychiatry 26:94–98.PubMedGoogle Scholar
  3. Aleman A., Hijman R., de Haan E. H., and Kahn R. S. (1999). Memory impairment in schizophrenia: a meta-analysis. Am. J.-Psychiatry 156:1358–1366.PubMedGoogle Scholar
  4. American Psychiatric Association (1994). Diagnostic and Statistical Manual of Mental Disorders.Google Scholar
  5. André A., Juanéda P., Sébédio J.-L., and Chardigny J.-M. (2005). Effects of aging and dietary n-3 fatty acids on rat brain phospholipids: focus on plasmalogens. Lipids 40:799–806.PubMedGoogle Scholar
  6. André A., Juanéda P., Sébédio J.-L., and Chardigny J.-M. (2006). Plasmalogen metabolism-related enzymes in rat brain during aging: influence of n-3 fatty acid intake. Biochimie 88:103–111.PubMedGoogle Scholar
  7. Antony P., Freysz L., Horrocks L. A., and Farooqui A. A. (2003). Ca2+-independent phospholipases A2 and production of arachidonic acid in nuclei of LA-N-1 cell cultures: a-specific receptor activation mediated with retinoic acid. Mol. Brain Res. 115:187–195.PubMedGoogle Scholar
  8. Arnold L. E. (2001). Alternative treatments for adults with attention-deficit hyperactivity disorder (ADHD). In: Wasserstein J., Wolf L. E., and LeFever F. F. (eds.), Adult Attention Deficit Disorder. New York Academy of Sciences, New York, pp.-310–341.Google Scholar
  9. Arnold L. E. and DiSilvestro R. A. (2005). Zinc in attention-deficit/hyperactivity disorder. J.-Child Adolesc. Psychopharmacol. 15:619–627.PubMedGoogle Scholar
  10. Arnold L. E., Kleykamp D., Votolato N. A., Gibson R. A., and Horrocks L. (1994). Potential link between dietary intake of fatty acids and behavior: pilot exploration of serum lipids in attention-deficit hyperactivity disorder. J.-Child Adolesc. Psychopharmacol. 4:171–182.Google Scholar
  11. Ayton A. K., Azaz A., and Horrobin D. F. (2004). Rapid improvement of severe anorexia nervosa during treatment with ethyl-eicosapentaenoate and micronutrients. Eur. Psychiatry 19:317–319.PubMedGoogle Scholar
  12. Barbour B., Szatkowski M., Ingledew N., and Attwell D. (1989). Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342:918–920.PubMedGoogle Scholar
  13. Bell R., Collier D. A., Rice S. Q., Roberts G. W., Macphee C. H., Kerwin R. W., Price J., and Gloger I. S. (1997). Systematic screening of the LDL-PLA2 gene for polymorphic variants and case-control analysis in schizophrenia. Biochem. Biophys. Res. Commun. 241:630–635.PubMedGoogle Scholar
  14. Bell J.-G., Sargent J.-R., Tocher D. R., and Dick J.-R. (2000). Red blood cell fatty acid compositions in a patient with autistic spectrum disorder: a characteristic abnormality in neurodevelopmental disorders? Prostaglandins Leukot. Essent. Fatty Acids 63:21–25.PubMedGoogle Scholar
  15. Bell J.-G., MacKinlay E. E., Dick J.-R., Macdonald D. J., Boyle R. M., and Glen A. C. A. (2004). Essential fatty acids and phospholipase A2 in autistic spectrum disorders. Prostaglandins Leukot. Essent. Fatty Acids 71:201–204.PubMedGoogle Scholar
  16. Benes F. M., Walsh J., Bhattacharyya S., Sheth A., and Berretta S. (2003). DNA fragmentation decreased in schizophrenia but not bipolar disorder. Arch. Gen. Psychiatry 60:359–364.PubMedGoogle Scholar
  17. Boston P. F., Bennett A., Horrobin D. F., and Bennett C. N. (2004). Ethyl-EPA in Alzheimer’s disease – a pilot study. Prostaglandins Leukot. Essent. Fatty Acids 71:341–346.PubMedGoogle Scholar
  18. Brites P., Waterham H. R., and Wanders R. J.-A. (2004). Functions and biosynthesis of plasmalogens in health and disease. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1636:219–231.CrossRefGoogle Scholar
  19. Browne J.-C., Scott K. M., and Silvers K. M. (2006). Fish consumption in pregnancy and omega-3 status after birth are not associated with postnatal depression. J.-Affect. Disord. 90:131–139.PubMedGoogle Scholar
  20. Buka S. L., Tsuang M. T., Torrey E. F., Klebanoff M. A., Wagner R. L., and Yolken R. H. (2001). Maternal cytokine levels during pregnancy and adult psychosis. Brain Behav. Immun. 15:411–420.PubMedGoogle Scholar
  21. Burgess J.-R. and Stevens L. (2003). Essential fatty acids in relation to attention-deficit/hyperactivity disorder: an update. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp.-511–519.Google Scholar
  22. Buydens-Branch, Branchey M., McMakin D. L., and Hibbeln J.-R. (2003a). Polyunsaturated fatty acid status and aggression in cocaine addicts. Drug Alcohol Depend. 71:319–323.Google Scholar
  23. Buydens-Branch, Branchey M., McMakin D. L., and Hibbeln J.-R. (2003b). Polyunsaturated fatty acid status and relapse vulnerability in cocaine addicts. Psychiatry Res. 120:29–35.Google Scholar
  24. Calon F., Lim G. P., Morihara T., Yang F. S., Ubeda O., Salem N. J., Frautschy S. A., and Cole G. M. (2005). Dietary n-3 polyunsaturated fatty acid depletion activates caspases and decreases NMDA receptors in the brain of a transgenic mouse model of Alzheimer’s disease. Eur. J.-Neurosci. 22:617–626.PubMedGoogle Scholar
  25. Carlezon W. A. J., Mague S. D., Parow A. M., Stoll A. L., Cohen B. M., and Renshaw P.-F. (2005). Antidepressant-like effects of uridine and omega-3 fatty acids are potentiated by combined treatment in rats. Biol. Psychiatry. 57:343–350.PubMedGoogle Scholar
  26. Chalon S., Delion-Vancassel S., Belzung C., Guilloteau D., Leguisquet A. M., Besnard J.-C., and Durand G. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J.-Nutr. 128:2512–2519.PubMedGoogle Scholar
  27. Chang M. C. J.-and Jones C. R. (1998). Chronic lithium treatment decreases brain phospholipase A2 activity. Neurochem. Res. 23:887–892.PubMedGoogle Scholar
  28. Charles H. C., Lazeyras F., Krishnan K. R., Boyko O. B., Payne M., and Moore D. (1994). Brain choline in depression: in-vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. Prog. Neuropsychopharmacol. Biol. Psychiatry 18:1121–1127.PubMedGoogle Scholar
  29. Charney D. S., Southwick S. M., Delgado P. L., and Krystal J.-H. (1990). Current status of the receptor sensitivity hypothesis of antidepressant action. In: Amsterdam J.-D. (ed.), Psychopharmacology of Depression. Marcel Dekker, New York, pp.-13–34.Google Scholar
  30. Chauhan V., Chauhan A., Cohen I. L., Brown W. T., and Sheikh A. (2004). Alteration in amino-glycerophospholipids levels in the plasma of children with autism: a potential biochemical diagnostic marker. Life Sci. 74:1635–1643.PubMedGoogle Scholar
  31. Contreras M. A., Chang M. C. J., Rosenberger T. A., Greiner R. S., Myers C. S., Salem N. J., and Rapoport S. I. (2001). Chronic nutritional deprivation of n-3 α-linolenic acid does not affect n-6 arachidonic acid recycling within brain phospholipids of awake rats. J.-Neurochem. 79:1090–1099.PubMedGoogle Scholar
  32. Das U. N. (2003). Long-chain polyunsaturated fatty acids in memory formation and consolidation: Further evidence and discussion. Nutrition 19:988–993.PubMedGoogle Scholar
  33. Das U. N. (2004). Can perinatal supplementation of long-chain polyunsaturated fatty acids prevents schizophrenia in adult life? Med. Sci. Monitor 10:HY33–HY37.Google Scholar
  34. De la Presa-Owens S. and Innis S. M. (1999). Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and α-linolenic acid deficient diet in formula-fed piglets. J.-Nutr. 129:2088–2093.PubMedGoogle Scholar
  35. Delgado P. L. (2004). Common pathways of depression and pain. J.-Clin. Psychiatry 65(Suppl. 12):16–19.PubMedGoogle Scholar
  36. Delion S., Chalon S., Guilloteau D., Besnard J.-C., and Durand G. (1996). α-Linolenic acid dietary deficiency alters age-related changes of dopaminergic and serotoninergic neurotransmission in the rat frontal cortex. J.-Neurochem. 66:1582–1591.PubMedCrossRefGoogle Scholar
  37. Delion S., Chalon S., Guilloteau D., Lejeune B., Besnard J.-C., and Durand G. (1997). Age-related changes in phospholipid fatty acid composition and monoaminergic neurotransmission in the hippocampus of rats fed a balanced or an n-3 polyunsaturated fatty acid-deficient diet. J.-Lipid Res. 38:680–689.PubMedGoogle Scholar
  38. De Vriese S. R., Christophe A. B., and Maes M. (2003). Lowered serum n-3 polyunsaturated fatty acid (PUFA) levels predict the occurrence of postpartum depression: further evidence that lowered n-PUFAs are related to major depression. Life Sci. 73:3181–3187.PubMedGoogle Scholar
  39. Doris A. B., Wahle K., MacDonald A., Morris S., Coffey I., Muir W., and Blackwood D. (1998). Red cell membrane fatty acids, cytosolic phospholipase-A2 and schizophrenia. Schizophr. Res. 31:185–196.PubMedGoogle Scholar
  40. Dracheva S., Davis K. L., Chin B., Woo D. A., Schmeidler J., and Haroutunian V. (2006). Myelin-associated mRNA and protein expression deficits in the anterior cingulate cortex and hippocampus in elderly schizophrenia patients. Neurobiol. Dis. 21:531–540.PubMedGoogle Scholar
  41. Dubovsky S. L., Christiano J., Daniell L. C., Franks R. D., Murphy J., Adler L., Baker N., and Harris R. A. (1989). Increased platelet intracellular calcium concentration in patients with bipolar affective disorders. Arch. Gen. Psychiatry 46:632–638.PubMedGoogle Scholar
  42. Edwards R., Peet M., Shay J., and Horrobin D. (1998). Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J.-Affect. Disord. 48:149–155.PubMedGoogle Scholar
  43. Ende G., Braus D. F., Walter S., Weber-Fahr W., and Henn F. A. (2000). The hippocampus in patients treated with electroconvulsive therapy: a proton magnetic resonance spectroscopic imaging study. Arch. Gen. Psychiatry 57:937–943.PubMedGoogle Scholar
  44. Evans K. L., Cropper J.-D., Berg K. A., and Clarke W. P. (2001). Mechanisms of regulation of agonist efficacy at the 5-HT1A receptor by phospholipid-derived signaling components. J.-Pharmacol. Exp. Ther. 297:1025–1035.PubMedGoogle Scholar
  45. Evans D. R., Parikh V. V., Khan M. M., Coussons C., Buckley P. F., and Mahadik S. P. (2003). Red blood cell membrane essential fatty acid metabolism in early psychotic patients following antipsychotic drug treatment. Prostaglandins Leukot. Essent. Fatty Acids 69:393–399.PubMedGoogle Scholar
  46. Farkas T., Kitajka K., Fodor E., Csengeri I., Lahdes E., Yeo Y. K., Krasznai Z., and Halver J.-E. (2000). Docosahexaenoic acid-containing phospholipid molecular species in brains of vertebrates. Proc. Natl Acad. Sci. USA 97:6362–6366.PubMedGoogle Scholar
  47. Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens, phospholipase A2, and docosahexaenoic acid turnover in brain tissue. J.-Mol. Neurosci. 16:263–272.Google Scholar
  48. Farooqui A. A. and Horrocks L. A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245.PubMedGoogle Scholar
  49. Farooqui A. A., Antony P., Ong W. Y., Horrocks L. A., and Freysz L. (2004). Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res. Rev. 45:179–195.PubMedGoogle Scholar
  50. Fatemi S. H., Reutiman T. J., Folsom T. D., Bell C., Nos L., Fried P., Pearce D. A., Singh S., Siderovski D. P., Willard F. S., and Fukuda M. (2006). Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacology doi:10.1038/sj.npp.1301002.Google Scholar
  51. Frieboes R. M., Moises H. W., Gattaz W. F., Yang L., Li T., Liu X. H., Vetter P., Macciardi F., Hwu H. G., and Henn F. (2001). Lack of association between schizophrenia and the phospholipase-A2 genes cPLA2 and sPLA2. Am. J.-Med. Genet. 105:246–249.PubMedGoogle Scholar
  52. Gallagher S. (2004). Neurocognitive models of schizophrenia: a neurophenomenological critique. Psychopathology 37:8–19.PubMedGoogle Scholar
  53. Gattaz W. F., Kollisch M., Thuren T., Virtanen J.-A., and Kinnunen P. K. (1987). Increased plasma phospholipase A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol. Psychiatry 22:421–426.PubMedGoogle Scholar
  54. Glatt S. J., Everall I. P., Kremen W. S., Corbeil J., Sasik R., Khanlou N., Han M., Liew C.-C., and Tsuang M. T. (2005). Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc. Natl Acad. Sci. USA 102:15533–15538.PubMedGoogle Scholar
  55. Glen A. I. M., Glen E. M. T., Horrobin D. F., Vaddadi K. S., Spellman M., Morse-Fisher N., Ellis K., and Skinner F. S. (1994). A red cell membrane abnormality in a subgroup of schizophrenic patients: evidence for two diseases. Schizophr. Res. 12:53–61.PubMedGoogle Scholar
  56. Goodman A. B. (1995). Chromosomal locations and modes of action of genes of the retinoid (vitamin A) system support their involvement in the etiology of schizophrenia. Am. J.-Med. Genet. 60:335–348.PubMedGoogle Scholar
  57. Goodman A. B. (1998). Three independent lines of evidence suggest retinoids as causal to schizophrenia. Proc. Natl Acad. Sci. USA 95:7240–7244.PubMedGoogle Scholar
  58. Hamano H., Nabekura J., Nishikawa M., and Ogawa T. (1996). Docosahexaenoic acid reduces GABA response in substantia nigra neuron of rat. J.-Neurophysiol. 75:1264–1270.PubMedGoogle Scholar
  59. Harrison P. J.-and Owen M. J.-(2003). Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361:417–419.PubMedGoogle Scholar
  60. Hibbeln J.-R. (2002). Seafood consumption, the DHA content of mothers’ milk and prevalence rates of postpartum depression: a cross-national, ecological analysis. J.-Affect. Disord. 69:15–29.PubMedGoogle Scholar
  61. Hibbeln J.-R., Bissette G., Umhau J.-C., and George D. T. (2004a). Omega-3 status and cerebrospinal fluid corticotrophin releasing hormone in perpetrators of domestic violence. Biol. Psychiatry 56:895–897.PubMedGoogle Scholar
  62. Hibbeln J.-R., Nieminen L. R. G., and Lands W. E. M. (2004b). Increasing homicide rates and linoleic acid consumption among five western countries, 1961–2000. Lipids 39:1207–1213.PubMedGoogle Scholar
  63. Hirashima F., Parow A. M., Stoll A. L., Demopulos C. M., Damico K. E., Rohan M. L., Eskesen J.-G., Zuo C. S., Cohen B. M., and Renshaw P. F. (2004). Omega-3 fatty acid treatment and T-2 whole brain relaxation times in bipolar disorder. Am. J.-Psychiatry 161:1922–1924.PubMedGoogle Scholar
  64. Hogyes E., Nyakas C., Kiliaan A., Farkas T., Penke B., and Luiten P. G. (2003). Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience 119:999–1012.PubMedGoogle Scholar
  65. Horrobin D. F. (1998). The membrane phospholipid hypothesis as a biochemical basis for the neurodevelopmental concept of schizophrenia. Schizophr. Res. 30:193–208.PubMedGoogle Scholar
  66. Horrobin D. F. (2002). A new category of psychotropic drugs: neuroactive lipids as exemplified by ethyl eicosapentaenoate (E-E). In: Jucker E. (ed.), Progress in Drug Research, Vol 59. Birkhauser Verlag AG, Basel, pp.-171–199.Google Scholar
  67. Horrobin D. F. (2003). Omega-3 fatty acid for schizophrenia. Am. J.-Psychiatry 160:188–189.PubMedGoogle Scholar
  68. Horrobin D. F. and Bennett C. N. (1999). New gene targets related to schizophrenia and other psychiatric disorders: enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism. Prostaglandins Leukot. Essent. Fatty Acids 60:141–167.PubMedGoogle Scholar
  69. Horrobin D. F., Manku M. S., Hillman H., Iain A., and Glen M. (1991). Fatty acid levels in the brains of schizophrenics and normal controls. Biol. Psychiatry 30:795–805.PubMedGoogle Scholar
  70. Horrocks L. A. and Farooqui A. A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.PubMedGoogle Scholar
  71. Hudson C. J., Kennedy J.-L., Gotowiec A., Lin A., King N., Gojtan K., Macciardi F., Skorecki K., Meltzer H. Y., Warsh J.-J., and Horrobin D. F. (1996a). Genetic variant near cytosolic phospholipase A2 associated with schizophrenia. Schizophr. Res. 21:111–116.PubMedGoogle Scholar
  72. Hudson C. J., Lin A., and Horrobin D. F. (1996b). Phospholipases: in search of a genetic base of schizophrenia. Prostaglandins Leukot. Essent. Fatty Acids 55:119–122.PubMedGoogle Scholar
  73. Hudson C., Gotowiec A., Seeman M., Warsh J., and Ross B. M. (1999). Clinical subtyping reveals significant differences in calcium-dependent phospholipase A2 activity in schizophrenia. Biol. Psychiatry 46:401–405.PubMedGoogle Scholar
  74. Iribarren C., Markovitz J.-H., Jacobs D. R. J., Schreiner P. J., Daviglus M., and Hibbeln J.-R. (2004). Dietary intake of n-3, n-6 fatty acids and fish: relationship with hostility in young adults – the CARDIA study. Eur. J.-Clin. Nutr. 58:24–31.PubMedGoogle Scholar
  75. Jacka F. N., Pasco J.-A., Henry M. J., Kotowicz M. A., Dodd S., Nicholson G. C., and Berk M. (2005). Depression and bone mineral density in a community sample of perimenopausal women: Geelong Osteoporosis Study. Menopause 12:88–91.PubMedGoogle Scholar
  76. Jarskog L. F., Selinger E. S., Lieberman J.-A., and Gilmore J.-H. (2004). Apoptotic proteins in the temporal cortex in schizophrenia: high Bax/Bcl-2 ratio without caspase-3 activation. Am. J.-Psychiatry 161:109–115.PubMedGoogle Scholar
  77. Junqueira R., Cordeiro Q., Meira-Lima I., Gattaz W. F., and Vallada H. (2004). Allelic association analysis of phospholipase A2 genes with schizophrenia. Psychiatr. Genet. 14:157–160.PubMedGoogle Scholar
  78. Katila H., Appelberg B., and Rimon R. (1997). No differences in phospholipase-A2 activity between acute psychiatric patients and controls. Schizophr. Res. 26:103–105.PubMedGoogle Scholar
  79. Kato T., Takahashi S., Shioiri T., and Inubushi T. (1993). Alterations in brain phosphorous metabolism in bipolar disorder detected by in-vivo 31P and 7Li magnetic resonance spectroscopy. J.-Affect. Disord. 27:53–59.PubMedGoogle Scholar
  80. Kitajka K., Puskás L. G., Zvara A., Hackler L. J., Barceló-Coblijn G., Yeo Y. K., and Farkas T. (2002). The role of n-3 polyunsaturated fatty acids in brain: Modulation of rat brain gene expression by dietary n-3 fatty acids. Proc. Natl Acad. Sci. USA 99:2619–2624.PubMedGoogle Scholar
  81. Kodas E., Galineau L., Bodard S., Vancassel S., Guilloteau D., Besnard J.-C., and Chalon S. (2004). Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. J.-Neurochem. 89:695–702.PubMedGoogle Scholar
  82. Kolko M., DeCoster M. A., Rodriguez de Turco E. B., and Bazan N. G. (1996). Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures. J.-Biol. Chem. 271:32722–32728.PubMedGoogle Scholar
  83. Konradi C. (2005). Gene expression microarray studies in polygenic psychiatric disorders: applications and data analysis. Brain Res. Brain Res. Rev. 50:142–155.PubMedGoogle Scholar
  84. LaMantia A. S. (1999). Forebrain induction, retinoic acid, and vulnerability to schizophrenia: insights from molecular and genetic analysis in developing mice. Biol. Psychiatry 46:19–30.PubMedGoogle Scholar
  85. Laruelle M., Abi-Dargham A., Gil R., Kegeles L., and Innis R. (1999). Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol. Psychiatry 46:56–72.PubMedGoogle Scholar
  86. Lengqvist J., Mata de Urquiza A., Bergman A. C., Willson T. M., Sjövall J., Perlmann T., and Griffiths W. J.-(2004). Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor α ligand-binding domain. Mol. Cell. Proteomics 3:692–703.PubMedGoogle Scholar
  87. Liddle P. F. (1987). The symptoms of chronic schizophrenia. A re-examination of the positive–negative dichotomy. Br. J.-Psychiatry 151:145–151.PubMedGoogle Scholar
  88. MacDonell L. E., Skinner F. K., Ward P. E., Glen A. I., Glen A. C., Macdonald D. J., Boyle R. M., and Horrobin D. F. (2000). Increased levels of cytosolic phospholipase A2 in dyslexics. Prostaglandins Leukot. Essent. Fatty Acids 63:37–39.PubMedGoogle Scholar
  89. Maes M., Bosmans E., de Jongh R., Kenis G., Vandoolaeghe E., and Neels H. (1997). Increased serum IL-6 and IL-1 receptor antagonist concentrations in major depression and treatment resistant depression. Cytokine 9:853–858.PubMedGoogle Scholar
  90. Maggioni M., Picotti G. B., Bondiolotti G. P., Panerai A., Cenacchi T., Nobile P., and Brambilla F. (1990). Effects of phosphatidylserine therapy in geriatric patients with depressive disorders. Acta Psychiatr. Scand. 81:265–270.PubMedGoogle Scholar
  91. Marangell L. B., Martinez J.-M., Zboyan H. A., Kertz B., Kim H. F. S., and Puryear L. J.-(2003). A double-blind, placebo-controlled study of the omega-3 fatty acid docosahexaenoic acid in the treatment of major depression. Am. J.-Psychiatry 160:996–998.PubMedGoogle Scholar
  92. Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J.-M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J.-Biol. Chem. 278:43807–43817.PubMedGoogle Scholar
  93. Margolis R. L., Chuang D. M., and Post R. M. (1994). Programmed cell death: implications for neuropsychiatric disorders. Biol. Psychiatry 35:946–956.PubMedGoogle Scholar
  94. Martinez M. (2001). Restoring the DHA levels in the brains of Zellweger patients. J.-Mol. Neurosci. 16:309–316.PubMedGoogle Scholar
  95. Mattson M. P., Keller J.-N., and Begley J.-G. (1998). Evidence for synaptic apoptosis. Exp. Neurol. 153:35–48.PubMedGoogle Scholar
  96. McGinnis W. R. (2004). Oxidative stress in autism. Altern. Ther. Health Med. 10:22–36.PubMedGoogle Scholar
  97. Modica-Napolitano J.-S. and Renshaw P. F. (2004). Ethanolamine and phosphoethanolamine inhibit mitochondrial function in-vitro: implications for mitochondrial dysfunction hypothesis in depression and bipolar disorder. Biol. Psychiatry 55:273–277.PubMedGoogle Scholar
  98. Murck H., Song C., Horrobin D. F., and Uhr M. (2004). Ethyl-eicosapentaenoate and dexamethasone resistance in therapy-refractory depression. Int. J.-Neuropsychopharmacol. 7:341–349.PubMedGoogle Scholar
  99. Myers C. S., Contreras M. A., Chang M. C. J., Rapoport S. I., and Appel N. M. (2001). Haloperidol downregulates phospholipase A2 signaling in rat basal ganglia circuits. Brain Res. 896:96–101.PubMedGoogle Scholar
  100. NIMH Genetic Workshop (1999). Genetics and mental disorders. Biol. Psychiatry 45:559–602.Google Scholar
  101. Noaghiul S. and Hibbeln J.-R. (2003). Cross-national comparisons of seafood consumption and rates of bipolar disorders. Am. J.-Psychiatry 160:2222–2227.PubMedGoogle Scholar
  102. Ogden C. A., Rich M. E., Schork N. J., Paulus M. P., Geyer M. A., Lohr J.-B., Kuczenski R., and Niculescu A. B. (2004). Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol. Psychiatry 9:1007–1029.PubMedGoogle Scholar
  103. Oppenheim R. W. (1991). Cell death during development of the nervous system. Annu. Rev. Neurosci. 14:453–501.PubMedGoogle Scholar
  104. Pae C. U., Yu H. S., Kim J.-J., Lee C. U., Lee S. J., Lee K. U., Jun T. Y., Paik I. H., Serretti A., and Lee C. (2004a). BanI polymorphism of the cytosolic phospholipase A2 gene and mood disorders in the Korean population. Neuropsychobiology 49:185–188.PubMedGoogle Scholar
  105. Pae C. U., Yu H. S., Lee K. U., Kim J.-J., Lee C. U., Lee J.-S., Jun T. Y., Lee C., and Paik I. H. (2004b). BanI polymorphism of the cytosolic phospholipase A2 gene may confer susceptibility to the development of schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiat. 28:739–741.Google Scholar
  106. Papadimitriou G. N., Dikeos D. G., Souery D., Del Favero J., Massat I., Avramopoulos D., Blairy S., Cichon S., Ivezic S., Kaneva R., Karadima G., Lilli R., Milanova V., Nothen M., Oruc L., Rietschel M., Serretti A., Van Broeckhoven C., Stefanis C. N., and Mendlewicz J.-(2003). Genetic association between the phospholipase A2 gene and unipolar affective disorder: a multicentre case-control study. Psychiatr. Genet. 13:211–220.PubMedGoogle Scholar
  107. Peet M., Laugharne J.-D., Horrobin D. F., and Reynolds G. P. (1994). Arachidonic acid: a common link in the biology of schizophrenia? [letter]. Arch. Gen. Psychiatry 51:665–666.PubMedGoogle Scholar
  108. Peet M., Murphy B., Shay J., and Horrobin D. (1998a). Depletion of omega-3 fatty acid levels in red blood cell membranes of depressive patients. Biol. Psychiatry 43:315–319.PubMedGoogle Scholar
  109. Peet M., Ramchand C. N., Lee J., Telang S. D., Vankar G. K., Shah S., and Wei J.-(1998b). Association of the Ban I dimorphic site at the human cytosolic phospholipase A2 gene with schizophrenia. Psychiatr. Genet. 8:191–192.PubMedGoogle Scholar
  110. Peet M., Shah S., Selvam K., and Ramchand C. N. (2004). Polyunsaturated fatty acid levels in red cell membranes of unmedicated schizophrenic patients. World J.-Biol. Psychiatry 5:92–99.PubMedGoogle Scholar
  111. Pettegrew J.-W., Keshavan M. S., Panchalingam K., Strychor S., Kaplan D. B., Tretta M. G., and Allen M. (1991). Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics: a pilot study of the dorsal prefrontal cortex by in-vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch. Gen. Psychiatry 48:563–568.PubMedGoogle Scholar
  112. Phillis J.-W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. (in press).Google Scholar
  113. Puri B. K., Leavitt B. R., Hayden M. R., Ross C. A., Rosenblatt A., Greenamyre J.-T., Hersch S., Vaddadi K. S., Sword A., Horrobin D. F., Manku M., and Murck H. (2005). Ethyl-EPA in Huntington disease – a double-blind, randomized, placebo-controlled trial. Neurology 65:286–292.PubMedGoogle Scholar
  114. Puskás L. G., Kitajka K., Nyakas C., Barcelo-Coblijn G., and Farkas T. (2003). Short-term administration of omega 3 fatty acids from fish oil results in increased transthyretin transcription in old rat hippocampus. Proc. Natl Acad. Sci. USA 100:1580–1585.PubMedGoogle Scholar
  115. Qu Y., Chang L., Klaff J., Seeman R., Balbo A., and Rapoport S. I. (2003). Imaging of brain serotonergic neurotransmission involving phospholipase A2 activation and arachidonic acid release in unanesthetized rats. Brain Res. Protocols 12:16–25.Google Scholar
  116. Reddy R. D., Keshavan M. S., and Yao J.-K. (2004). Reduced red blood cell membrane essential polyunsaturated fatty acids in first episode schizophrenia at neuroleptic-naive baseline. Schizophr. Bull. 30:901–911.PubMedGoogle Scholar
  117. Reid M. S., Hsu K., Tolliver B. K., Crawford C. A., and Berger S. P. (1996). Evidence for the involvement of phospholipase A2 mechanisms in the development of stimulant sensitization. J.-Pharmacol. Exp. Ther. 276:1244–1256.PubMedGoogle Scholar
  118. Richardson A. J.-(2003a). Clinical trials of fatty acid supplementation in ADHD. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp.-529–541.Google Scholar
  119. Richardson A. J.-(2003b). Clinical trials of fatty acid supplementation in dyslexia and dyspraxia. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp.-491–500.Google Scholar
  120. Richardson A. J.-(2004a). Clinical trials of fatty acid treatment in ADHD, dyslexia, dyspraxia and the autistic spectrum. Prostaglandins Leukot. Essent. Fatty Acids 70:383–390.PubMedGoogle Scholar
  121. Richardson A. J.-(2004b). Long-chain polyunsaturated fatty acids in childhood developmental and psychiatric disorders. Lipids 39:1215–1222.PubMedGoogle Scholar
  122. Richardson A. J.-and Montgomery P. (2005). The Oxford-Durham study: A randomized, controlled trial of dietary supplementation with fatty acids in children with developmental coordination disorder. Pediatrics 115:1360–1366.PubMedGoogle Scholar
  123. Richardson A. J.-and Puri B. K. (2002). A randomized double-blind, placebo-controlled study of the effects of supplementation with highly unsaturated fatty acids on ADHD-related symptoms in children with specific learning difficulties. Prog. Neuropsychopharmacol. Biol. Psychiatry 26:233–239.PubMedGoogle Scholar
  124. Richardson A. J., Cox I. J., Sargentoni J., and Puri B. K. (1997). Abnormal cerebral phospholipid metabolism in dyslexia indicated by phosphorus-31 magnetic resonance spectroscopy. NMR Biomed. 10:309–314.PubMedGoogle Scholar
  125. Richardson A. J., Allen S. J., Hajnal J.-V., Cox I. J., Easton T., and Puri B. K. (2001). Associations between central and peripheral measures of phospholipid breakdown revealed by cerebral 31-phosphorus magnetic resonance spectroscopy and fatty acid composition of erythrocyte membranes. Prog. NeuroPsychopharmacol. Biol. Psychiatry 25:1513–1521.PubMedGoogle Scholar
  126. Richardson A. J., Cyhlarova E., and Puri B. K. (2003). Clinical and biochemical fatty acid abnormalities in dyslexia, dyspraxia and schizotypy: an overview. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp.-477–490.Google Scholar
  127. Rintala J., Seemann R., Chandrasekaran K., Rosenberger T. A., Chang L., Contreras M. A., Rapoport S. I., and Chang M. C. J.-(1999). 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. NeuroReport 10:3887–3890.PubMedGoogle Scholar
  128. Rioux L. and Arnold S. E. (2005). The expression of retinoic acid receptor alpha is increased in the granule cells of the dentate gyrus in schizophrenia. Psychiatry Res. 133:13–21.PubMedGoogle Scholar
  129. Ross B. M. (2003). Phospholipase A2-associated processes in the human brain and their role in neuropathology and psychopathology. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp.-163–182.Google Scholar
  130. Ross B. M. and Glen I. (2004). Prostaglandins and eicosanoids in the CNS. In: Curtis-Prior P. B. (ed.), The Eicosanoids. Wiley, London, pp.-434–441.Google Scholar
  131. Ross B. M. and Turenne S. D. (2002). Chronic cocaine administration reduces phospholipase A2 activity in rat brain striatum. Prostaglandins Leukot. Essent. Fatty Acids 66:479–483.PubMedGoogle Scholar
  132. Ross B. M., Hudson C., Erlich J., Warsh J.-J., and Kish S. J.-(1997). Increased phospholipid breakdown in schizophrenia –– evidence for the involvement of a calcium-independent phospholipase A2. Arch. Gen. Psychiatry 54:487–494.PubMedGoogle Scholar
  133. Ross B. M., Turenne S., Moszczynska A., Warsh J.-J., and Kish S. J.-(1999). Differential alteration of phospholipase A2 activities in brain of patients with schizophrenia. Brain Res. 821:407–413.PubMedGoogle Scholar
  134. Ross B. M., Brooks R. J., Lee M., Kalasinsky K. S., Vorce S. P., Seeman M., Fletcher P.-J., and Turenne S. D. (2002a). Cyclooxygenase inhibitor modulation of dopamine-related behaviours. Eur. J.-Pharmacol. 450:141–151.PubMedGoogle Scholar
  135. Ross B. M., Moszczynska A., Peretti F. J., Adams V., Schmunk G. A., Kalasinsky K. S., Ang L., Mamalias N., Turenne S. D., and Kish S. J.-(2002b). Decreased activity of brain phospholipid metabolic enzymes in human users of cocaine and methamphetamine. Drug Alcohol Depend. 67:73–79.PubMedGoogle Scholar
  136. Ross B. M., McKenzie I., Glen I., and Bennett C. P. W. (2003). Increased levels of ethane, a non-invasive marker of n-3 fatty acid oxidation, in breath of children with attention deficit hyperactivity disorder. Nutr. Neurosci. 6:277–281.PubMedGoogle Scholar
  137. Rybakowski J.-K., Borkowska A., Czerski P. M., Dmitrzak-Weglarz M., and Hauser J.-(2003). The study of cytosolic phospholipase A2 gene polymorphism in schizophrenia using eye movement disturbances as an endophenotypic marker. Neuropsychobiology 47:115–119.PubMedGoogle Scholar
  138. Samad T. A., Krezel W., Chambon P., and Borrelli E. (1997). Regulation of dopaminergic pathways by retinoids: activation of the D2 receptor promoter by members of the retinoic acid receptor-retinoid X receptor family. Proc. Natl Acad. Sci. USA 94:14349–14354.PubMedGoogle Scholar
  139. Sarmiento I. A., Stoll A. L., and Cohen B. M. (2003). The role of essential lipids in the management of bipolar disorder. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp.-457–462.Google Scholar
  140. Sastry P. S. and Rao K. S. (2000). Apoptosis and the nervous system. J.-Neurochem. 74:1–20.PubMedGoogle Scholar
  141. Schmitt A., Maras A., Braus D. F., Petroianu G., Jatzko A., and Gattaz W. F. (2001). Antipsychotics and phospholipid metabolism in schizophrenia. Fortschr. Neurol. Psychiatry 69:503–509.Google Scholar
  142. Serhan C. N. (2005). Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr. Opin. Clin. Nutr. Metab. Care 8:115–121.PubMedCrossRefGoogle Scholar
  143. Severus W. E., Littman A. B., and Stoll A. L. (2001). Omega-3 fatty acids, homocysteine, and the increased risk of cardiovascular mortality in major depressive disorder. Harvard Rev. Psychiatry 9:280–293.Google Scholar
  144. Smesny S. (2004). Prostaglandin-mediated signaling in schizophrenia. In: Smythies J.-(ed.), Disorders of Synaptic Plasticity and Schizophrenia. Academic Press Inc., San Diego, pp.-255–271.Google Scholar
  145. Spencer T. J., Biederman J., Madras B. K., Faraone S. V., Dougherty D. D., Bonab A. A., and Fischman A. J.-(2005). In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: a focus on the dopamine transporter. Biol. Psychiatry 57:1293–1300.PubMedGoogle Scholar
  146. Stanley J.-A., Williamson P. C., Drost D. J., Carr T. J., Rylett R. J., Morrison-Stewart S., and Thompson R. T. (1994). Membrane phospholipid metabolism and schizophrenia: an in-vivo 31P-MR spectroscopy study. Schizophr. Res. 13:209–215.PubMedGoogle Scholar
  147. Stevens L. J., Zentall S. S., Deck J.-L., Abate M. L., Watkins B. A., Lipp S. R., and Burgess J.-R. (1995). Essential fatty acid metabolism in boys with attention-deficit hyperactivity disorder. Am. J.-Clin. Nutr. 62:761–768.PubMedGoogle Scholar
  148. Stevens L. J., Zentall S. S., Abate M. L., Kuczek T., and Burgess J.-R. (1996). Omega-3 fatty acids in boys with behavior, learning, and health problems. Physiol. Behav. 59:915–920.PubMedGoogle Scholar
  149. Stevens L., Zhang W., Peck L., Kuczek T., Grevstad N., Mahon A., Zentall S. S., Arnold L. E., and Burgess J.-R. (2003). EFA supplementation in children with inattention, hyperactivity, and other disruptive behaviors. Lipids 38:1007–1021.PubMedGoogle Scholar
  150. Stoll A. L., Severus W. E., Freeman M. P., Rueter S., Zboyan H. A., Diamond E., Cress K.-K., and Marangell L. B. (1999). Omega 3 fatty acids in bipolar disorder: a preliminary double-blind, placebo-controlled trial. Arch. Gen. Psychiatry 56:407–412.PubMedGoogle Scholar
  151. Stordy B. J.-(1995). Benefit of docosahexaenoic acid supplements to dark adaptation in dyslexics. Lancet 346:385.PubMedGoogle Scholar
  152. Tanskanen A., Hibbeln J.-R., Hintikka J., Haatainen K., Honkalampi K., and Viinamaki H. (2001a). Fish consumption, depression, and suicidality in a general population. Arch. Gen. Psychiatry 58:512–513.PubMedGoogle Scholar
  153. Tanskanen A., Hibbeln J.-R., Tuomilehto J., Uutela A., Haukkala A., Viinamaki H., Lehtonen J., and Vartiainen E. (2001b). Fish consumption and depressive symptoms in the general population in Finland. Psychiatr. Services 52:529–531.Google Scholar
  154. Taylor K. E. and Richardson A. J.-(2000). Visual function, fatty acids and dyslexia. Prostaglandins Leukot. Essent. Fatty Acids 63:89–93.PubMedGoogle Scholar
  155. Taylor K. E., Higgins C. J., Calvin C. M., Hall J.-A., Easton T., McDaid A. M., and Richardson A. J.-(2000). Dyslexia in adults is associated with clinical signs of fatty acid deficiency. Prostaglandins Leukot. Essent. Fatty Acids 63:75–78.PubMedGoogle Scholar
  156. Timonen M., Horrobin D., Jokelainen J., Laitinen J., Herva A., and Rasanen P. (2004). Fish consumption and depression: the Northern Finland 1966 birth cohort study. J.-Affect. Disord. 82:447–452.PubMedGoogle Scholar
  157. Tuglu C., Kara S. H., Caliyurt O., Vardar E., and Abay E. (2003). Increased serum tumor necrosis factor-alpha levels and treatment response in major depressive disorder. Psychopharmacology (Berl.) 170:429–433.PubMedGoogle Scholar
  158. Vaddadi K. S., Gilleard C. J., Soosai E., Polonowita A. K., Gibson R. A., and Burrows G.-D. (1996). Schizophrenia, tardive dyskinesia and essential fatty acids. Schizophr. Res. 20:287–294.PubMedGoogle Scholar
  159. Vancassel S., Durand G., Barthelemy C., Lejeune B., Martineau J., Guilloteau D., Andres C., and Chalon S. (2001). Plasma fatty acid levels in autistic children. Prostaglandins Leukot. Essent. Fatty Acids 65:1–7.Google Scholar
  160. van West D. and Maes M. (2003). Fatty acid composition in major depression. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp.-423–429.Google Scholar
  161. Wan C., Yang Y., Feng G., Gu N., Liu H., Zhu S., He L., and Wang L. (2005). Polymorphisms of myelin-associated glycoprotein gene are associated with schizophrenia in the Chinese Han population. Neurosci. Lett. 388:126–131.PubMedGoogle Scholar
  162. Ward P. E. (2000). Potential diagnostic aids for abnormal fatty acid metabolism in a range of neurodevelopmental disorders. Prostaglandins Leukot. Essent. Fatty Acids 63:65–68.PubMedGoogle Scholar
  163. Weerasinghe G. R., Rapoport S. I., and Bosetti F. (2004). The effect of chronic lithium on arachidonic acid release and metabolism in rat brain does not involve secretory phospholipase A2 or lipoxygenase/cytochrome P450 pathways. Brain Res. Bull. 63:485–489.PubMedGoogle Scholar
  164. Yacubian J., de Castro C. C., Ometto M., Barbosa E., de Camargo C. P., Tavares H. J., Cerri G. G., and Gattaz W. F. (2002). P-31-spectroscopy of frontal lobe in schizophrenia: alterations in phospholipid and high-energy phosphate metabolism. Schizophr. Res. 58:117–122.PubMedGoogle Scholar
  165. Yamamoto N., Saitoh M., Moriuchi A., Nomura M., and Okuyama H. (1987). Effect of dietary alpha-linolenic/linoleate balance on brain lipid compositions and learning ability of rats. J.-Lipid Res. 28:144–151.PubMedGoogle Scholar
  166. Yao J.-K. and Van Kammen D. P. (2004). Membrane phospholipids and cytokine interaction in schizophrenia. In: Smythies J.-(ed.), Disorders of Synaptic Plasticity and Schizophrenia. Academic Press Inc., San Diego, pp.-297–326.Google Scholar
  167. Yao J.-K., Van Kammen D. P., and Welker J.-A. (1994). Red blood cell membrane dynamics in schizophrenia. II. Fatty acid composition. Schizophr. Res. 13:217–226.PubMedGoogle Scholar
  168. Yao J.-K., Leonard S., and Reddy R. D. (2000). Membrane phospholipid abnormalities in postmortem brains from schizophrenic patients. Schizophr. Res. 42:7–17.PubMedGoogle Scholar
  169. Yao J.-K., Magan S., Sonel A. F., Gurklis J.-A., Sanders R., and Reddy R. D. (2004). Effects of omega-3 fatty acid on platelet serotonin responsivity in patients with schizophrenia. Prostaglandins Leukot. Essent. Fatty Acids 71:171–176.PubMedGoogle Scholar
  170. Yildiz A., Sachs G. S., Dorer D. J., and Renshaw P. F. (2001). 31P Nuclear magnetic resonance spectroscopy findings in bipolar illness: a meta-analysis. Psychiatry Res. 106:181–191.PubMedGoogle Scholar
  171. Young G. S., Maharaj N. J., and Conquer J.-A. (2004). Blood phospholipid fatty acid analysis of adults with and without Attention Deficit/Hyperactivity Disorder. Lipids 39:117–123.PubMedGoogle Scholar
  172. Young G. S., Conquer J.-A., and Thomas R. (2005). Effect of randomized supplementation with high dose olive, flax or fish oil on serum phospholipid fatty acid levels in adults with attention deficit hyperactivity disorder. Reprod. Nutr. Dev. 45:549–558.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations