Advertisement

Inhibitors of Phospholipases A2 and Their Use for the Treatment of Neurological Disorders

Keywords

Spinal Cord Injury Antimalarial Drug Prion Disease Fatty Acid Amide Hydrolase Arachidonic Acid Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham I. M., Harkany T., Horvath K. M., and Luiten P. G. (2001). Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection? J.-Neuroendocrinol. 13:749–760.PubMedCrossRefGoogle Scholar
  2. Adibhatla R. M. and Hatcher J.-F. (2003). Citicoline decreases phospholipase A2 stimulation and hydroxyl radical generation in transient cerebral ischemia. J.-Neurosci. Res. 73:308–315.PubMedCrossRefGoogle Scholar
  3. Adibhatla R. M. and Hatcher J.-F. (2006). Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic. Biol. Med. 40:376–387.CrossRefGoogle Scholar
  4. Adibhatla R. M., Hatcher J.-F., and Dempsey R. J.-(2002). Citicoline: neuroprotective mechanisms in cerebral ischemia. J.-Neurochem. 80:12–23.PubMedCrossRefGoogle Scholar
  5. Adibhatla R. M., Hatcher J.-F., and Dempsey R. J.-(2003). Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid. Redox Signal. 5:647–654.PubMedCrossRefGoogle Scholar
  6. Adler D. H., Phillips J.-A. I., Cogan J.-D., Morrow I. D., Boutaud O., and Oates J.-A. (2006). First description: cytosolic phospholipase A2-alpha deficiency. J.-Invest. Med. 54:S257.Google Scholar
  7. Aguzzi A., Brandner S., Marino S., and Steinbach J.-P. (1996). Transgenic and knockout mice in the study of neurodegenerative diseases. J.-Mol. Med. 74:111–126.PubMedCrossRefGoogle Scholar
  8. Aisen P. S. and Davis K. L. (1994). Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am. J.-Psychiatry 151:1105–1113.PubMedGoogle Scholar
  9. Aitdafoun M., Mounier C., Heymans F., Binisti C., Bon C., and Godfroid J.-J. (1996). 4-Alkoxybenzamidines as new potent phospholipase A2 inhibitors. Biochem. Pharmacol. 51:737–742.PubMedCrossRefGoogle Scholar
  10. Ajmone-Cat M. A., Nicolini A., and Minghetti L. (2003). Prolonged exposure of microglia to lipopolysaccharide modifies the intracellular signaling pathways and selectively promotes prostaglandin E-2 synthesis. J.-Neurochem. 87:1193–1203.PubMedCrossRefGoogle Scholar
  11. Ala T., Romero S., Knight F., Feldt K., and Frey, W. H., II (1990). GM-1 treatment of Alzheimer’s disease. A pilot study of safety and efficacy. Arch. Neurol. 47:1126–1130.PubMedGoogle Scholar
  12. Alliangana D. M. (1996). Effects of beta-carotene, flavonoid quercitin and quinacrine on cell proliferation and lipid peroxidation breakdown products in BHK-21 cells. East Afr. Med. J.-73:752–757.PubMedGoogle Scholar
  13. Amandi-Burgermeister E., Tibes U., Kaiser B. M., Friebe W. G., and Scheuer W. V. (1997). Suppression of cytokine synthesis, integrin expression and chronic inflammation by inhibitors of cytosolic phospholipase A2. Eur. J.-Pharmacol. 326:237–250.PubMedCrossRefGoogle Scholar
  14. Anderle P., Farmer P., Berger A., and Roberts M. A. (2004). Nutrigenomic approach to understanding the mechanisms by which dietary long-chain fatty acids induce gene signals and control mechanisms involved in carcinogenesis. Nutrition 20:103–108.PubMedCrossRefGoogle Scholar
  15. Andersen M., Overgaard K., Meden P., and Boysen G. (1999). Effects of citicoline combined with thrombolytic therapy in a rat embolic stroke model. Stroke 30:1464–1470.PubMedGoogle Scholar
  16. Anderson D. K., Saunders R. D., Demediuk P., Dugan L. L., Braughler J.-M., Hall E. D., Means E. D., and Horrocks L. A. (1985). Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and selenium. Cent. Nerv. Syst. Trauma 2:257–267.PubMedGoogle Scholar
  17. Arai K., Ikegaya Y., Nakatani Y., Kudo I., Nishiyama N., and Matsuki N. (2001). Phospholipase A2 mediates ischemic injury in the hippocampus: a regional difference of neuronal vulnerability. Eur. J.-Neurosci. 13:2319–2323.PubMedCrossRefGoogle Scholar
  18. Ates M., Hamza M., Seidel K., Kotalla C. E., Ledent C., and Guhring H. (2003). Intrathecally applied flurbiprofen produces an endocannabinoid-dependent antinociception in the rat formalin test. Eur. J.-Neurosci. 17:597–604.PubMedCrossRefGoogle Scholar
  19. Balsinde J.-and Dennis E. A. (1997). Function and inhibition of intracellular calcium-independent phospholipase A2. J.-Biol. Chem. 272:16069–16072.PubMedCrossRefGoogle Scholar
  20. Bartoli F., Lin H.-K., Ghomashchi F., Gelb M. H., Jain M. K., and Apitz-Castro R. (1994). Tight binding inhibitors of 85-kDa phospholipase A2 but not 14-kDa phospholipase A2 inhibit release of free arachidonate in thrombin-stimulated human platelets. J.-Biol. Chem. 269:15625–15630.PubMedGoogle Scholar
  21. Basselin M., Chang L., Seemann R., Bell J.-M., and Rapoport S. I. (2003). Chronic lithium administration potentiates brain arachidonic acid signaling at rest and during cholinergic activation in awake rats. J.-Neurochem. 85:1553–1562.PubMedCrossRefGoogle Scholar
  22. Bate C., Reid S., and Williams A. (2004). Phospholipase A2 inhibitors or platelet-activating factor antagonists prevent prion replication. J.-Biol. Chem. 279:36405–36411.PubMedCrossRefGoogle Scholar
  23. Bikson M., Id Bihi R., Vreugdenhil M., Kohling R., Fox J.-E., and Jefferys J.-G. (2002). Quinine suppresses extracellular potassium transients and ictal epileptiform activity without decreasing neuronal excitability in-vitro. Neuroscience 115:251–261.PubMedCrossRefGoogle Scholar
  24. Black M. D., Carey F., Crossman A. R., Relton J.-K., and Rothwell N. J.-(1992). Lipocortin-1 inhibits NMDA receptor-mediated neuronal damage in the striatum of the rat. Brain Res. 585:135–140.PubMedCrossRefGoogle Scholar
  25. Block J.-A. (1998). Hydroxychloroquine and retinal safety. Lancet 351:771.PubMedCrossRefGoogle Scholar
  26. Bolton C., Elderfield A. J., and Flower R. J.-(1990). The detection of lipocortins 1, 2 and-5 in central nervous system tissues from Lewis rats with acute experimental allergic encephalomyelitis. J.-Neuroimmunol. 29:173–181.PubMedCrossRefGoogle Scholar
  27. Bonventre J.-V. and Sapirstein A. (2002). Group IV cytosolic phospholipase A2 (PLA2) function: insights from the knockout mouse. In: Honn K. V., Marnett L. J., Nigam S., Dennis E., and Serhan C. (eds.), Eicosanoids and other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury, 5. Kluwer Academic/Plenum Publ, New York, pp.-25–31.Google Scholar
  28. Bonventre J.-V., Huang Z. H., Taheri M. R., O’Leary E., Li E., Moskowitz M. A., and Sapirstein A. (1997). Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390:622–625.PubMedCrossRefGoogle Scholar
  29. Bozza P. T. and Weller P. F. (2001). Arachidonyl trifluoromethyl ketone induces lipid body formation in leukocytes. Prostaglandins Leukot. Essent. Fatty Acids 64:227–230.PubMedCrossRefGoogle Scholar
  30. Brown W. J., Chambers K., and Doody A. (2003). Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic 4:214–221.PubMedCrossRefGoogle Scholar
  31. Burgess J.-R. and Kuo C. F. (1996). Increased calcium-independent phospholipase A2 activity in vitamin E and selenium-deficient rat lung, liver, and spleen cytosol is time-dependent and reversible. J.-Nutr. Biochem. 7:366–374.CrossRefGoogle Scholar
  32. Burke J.-R., Witmer M. R., Zusi F. C., Gregor K. R., Davern L. B., Padmanabha R., Swann R. T., Smith D., Tredup J.-A., Micanovic R., Manly S. P., Villafranca J.-J., and Tramposch K. M. (1999). Competitive, reversible inhibition of cytosolic phospholipase A2 at the lipid–water interface by choline derivatives that partially partition into the phospholipid bilayer. J.-Biol. Chem. 274:18864–18871.PubMedCrossRefGoogle Scholar
  33. Burton C. A., Patel S., Mundt S., Hassing H., Zhang D., Hermanowski-Vosatka A., Wright S. D., Chao Y. S., Detmers P. A., and Sparrow C. P. (2002). Deficiency in sPLA2 does not affect HDL levels or atherosclerosis in mice. Biochem. Biophys. Res. Commun. 294:88–94.PubMedCrossRefGoogle Scholar
  34. Calder P. C. and Grimble R. F. (2002). Polyunsaturated fatty acids, inflammation and immunity. Eur. J.-Clin. Nutr. 56:S14-S19.PubMedCrossRefGoogle Scholar
  35. Calon F., Lim G. P., Yang F. S., Morihara T., Teter B., Ubeda O., Rostaing P., Triller A., Salem N. J., Ashe K. H., Frautschy S. A., and Cole G. M. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43:633–645.PubMedCrossRefGoogle Scholar
  36. Chan A. C., Pritchard E. T., Gerrard J.-M., Man R. Y., and Choy P. C. (1982). Biphasic modulation of platelet phospholipase A2 activity and platelet aggregation by mepacrine (quinacrine). Biochim. Biophys. Acta 713:170–172.PubMedGoogle Scholar
  37. Chang M. C. J.-and Jones C. R. (1998). Chronic lithium treatment decreases brain phospholipase A2 activity. Neurochem. Res. 23:887–892.PubMedCrossRefGoogle Scholar
  38. Chen Z. G., Lu Y. C., Zhu C., Zhang G. J., Ding X. H., and Jiang J.-Y. (2003). Effects of ganglioside GM1 on reduction of brain edema and amelioration of cerebral metabolism after traumatic brain injury. Chin. J.-Traumatol. 6:23–27.PubMedGoogle Scholar
  39. Church W. B., Inglis A. S., Tseng A., Duell R., Lei P. W., Bryant K. J., and Scott K. F. (2001). A novel approach to the design of inhibitors of human secreted phospholipase A2 based on native peptide inhibition. J.-Biol. Chem. 276:33156–33164.PubMedCrossRefGoogle Scholar
  40. Clark J.-D. and Tam S. (2004). Potential therapeutic uses of phospholipase A2 inhibitors. Expert Opin. Ther. Patents 14:937–950.CrossRefGoogle Scholar
  41. Connolly S., Bennion C., Botterell S., Croshaw P. J., Hallam C., Hardy K., Hartopp P., Jackson C. G., King S. J., Lawrence L., Mete A., Murray D., Robinson D. H., Smith G.-M., Stein L., Walters I., Wells E., and Withnall W. J.-(2002). Design and synthesis of-a novel and potent series of inhibitors of cytosolic phospholipase A2 based on a 1,3-disubstituted propan-2-one skeleton. J.-Med. Chem. 45:1348–1362.PubMedCrossRefGoogle Scholar
  42. Corbella B. and Vieta E. (2003). Molecular targets of lithium action. Acta Neuropsychiatry 15:316–340.CrossRefGoogle Scholar
  43. Crowe R. and Burnstock G. (1984). Quinacrine-positive neurones in some regions of the guinea-pig brain. Brain Res. Bull. 12:387–391.PubMedCrossRefGoogle Scholar
  44. Cummings B. S., McHowat J., and Schnellmann R. G. (2000). Phospholipase A2s in cell injury and death. J.-Pharmacol. Exp. Ther. 294:793–799.PubMedGoogle Scholar
  45. Cunningham T. J., Hodge L., Speicher D., Reim D., Tyler-Polsz C., Levitt P., Eagleson K., Kennedy S., and Wang Y. (1998). Identification of a survival-promoting peptide in medium conditioned by oxidatively stressed cell lines of nervous system origin. J.-Neurosci. 18:7047–7060.PubMedGoogle Scholar
  46. Cunningham T. J., Jing H., Wang Y., and Hodge L. (2000). Calreticulin binding and other biological activities of survival peptide Y-P30 including effects of systemic treatment of rats. Exp. Neurol. 163:457–468.PubMedCrossRefGoogle Scholar
  47. Cunningham T. J., Souayah N., Jameson B., Mitchell J., and Yao L. H. (2004). Systemic treatment of cerebral cortex lesions in rats with a new secreted phospholipase A2 inhibitor. J.-Neurotrauma 21:1683–1691.PubMedCrossRefGoogle Scholar
  48. Danesch U., Weber P. C., and Sellmayer A. (1994). Arachidonic acid increases c-fos and Egr-1 mRNA in 3T3 fibroblasts by formation of prostaglandin E2 and activation of protein kinase C. J.-Biol. Chem. 269:27258–27263.PubMedGoogle Scholar
  49. de Wilde M. C., Leenders I., Broersen L. M., Kuipers A. A. M., van der Beek E. M., and Kiliaan A. J.-(2003). The omega-3 fatty acid docosahexaenoic acid (DHA) inhibits the formation of beta amyloid in CHO7PA2 cells. 2003 Abstract Viewer/Itinerary Planner, Program No. 730.11.Google Scholar
  50. DeMar J.-C. J., Ma K. Z., Bell J.-M., Igarashi M., Greenstein D., and Rapoport S. I. (2006). One generation of n-3 polyunsaturated fatty acid deprivation increases depression and aggression test scores in rats. J.-Lipid Res. 47:172–180.PubMedCrossRefGoogle Scholar
  51. Dempsey R. J.-and Rao V. L. R. (2003). Cytidinediphosphocholine treatment to decrease traumatic brain injury-induced hippocampal neuronal death, cortical contusion volume, and neurological dysfunction in rats. J.-Neurosurg. 98:867–873.PubMedCrossRefGoogle Scholar
  52. Di Cerbo A., Nandi P. K., and Edelhoch H. (1984). Interaction of basic compounds with coated vesicles. Biochemistry 23:6036–6040.PubMedCrossRefGoogle Scholar
  53. Douglas C. E., Chan A. C., and Choy P. C. (1986). Vitamin E inhibits platelet phospholipase A2. Biochim. Biophys. Acta 876:639–645.PubMedGoogle Scholar
  54. Dubin N. H., Blake D. A., DiBlasi M. C., Parmley T. H., and King T. M. (1982). Pharmacokinetic studies on quinacrine following intrauterine administration to cynomolgus monkeys. Fert. Steril. 38:735–740.Google Scholar
  55. Elderfield A. J., Newcombe J., Bolton C., and Flower R. J.-(1992). Lipocortins (annexins) 1, 2, 4 and 5 are increased in the central nervous system in multiple sclerosis. J.-Neuroimmunol. 39:91–100.PubMedCrossRefGoogle Scholar
  56. Elderfield A. J., Bolton C., and Flower R. J.-(1993). Lipocortin 1 (annexin 1) immunoreactivity in the cervical spinal cord of Lewis rats with acute experimental allergic encephalomyelitis. J.-Neurol. Sci. 119:146–153.PubMedCrossRefGoogle Scholar
  57. Estevez A. Y. and Phillis J.-W. (1997). The phospholipase A2 inhibitor, quinacrine, reduces infarct size in rats after transient middle cerebral artery occlusion. Brain Res. 752:203–208.PubMedCrossRefGoogle Scholar
  58. Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.PubMedCrossRefGoogle Scholar
  59. Farooqui A. A. and Horrocks L. A. (2004). Beneficial effects of docosahexaenoic acid on health of the human brain. Agro Food Ind. Hi-Tech 15:52–53.Google Scholar
  60. Farooqui A. A., Haun S. E., and Horrocks L. A. (1994). Ischemia and hypoxia. In: Siegel G. J., Agranoff B. W., Albers R. W., and Molinoff P. B. (eds.), Basic Neurochemistry. Raven Press, New York, pp.-867–883.Google Scholar
  61. Farooqui A. A., Yang H. C., Rosenberger T. A., and Horrocks L. A. (1997). Phospholipase A2 and its role in brain tissue. J.-Neurochem. 69:889–901.PubMedCrossRefGoogle Scholar
  62. Farooqui A. A., Litsky M. L., Farooqui T., and Horrocks L. A. (1999). Inhibitors of intracellular phospholipase A2 activity: their neurochemical effects and therapeutical importance for neurological disorders. Brain Res. Bull. 49:139–153.PubMedCrossRefGoogle Scholar
  63. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003). Stimulation of lipases and phospholipases in Alzheimer disease. In: Szuhaj B. and van Nieuwenhuyzen W. (eds.), Nutrition and Biochemistry of Phospholipids. AOCS Press, Champaign, pp.-14–29.Google Scholar
  64. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004). Neuroprotection abilities of cytosolic phospholipase A2 inhibitors in kainic acid-induced neurodegeneration. Curr. Drug Targets Cardiovasc. Haematol. Disord. 4:85–96.PubMedCrossRefGoogle Scholar
  65. Farooqui A. A., Ong W. Y., Go M. L., and Horrocks L. A. (2005). Inhibition of brain phospholipase A2 by antimalarial drugs: implications for neuroprotection in neurological disorders. Med. Chem. Rev. Online 2:379–392.CrossRefGoogle Scholar
  66. Farrelly P. V., Kenna B. L., Laohachai K. L., Bahadi R., Salmona M., Forloni G., and Kourie J.-I. (2003). Quinacrine blocks PrP (106–126)-formed channels. J.-Neurosci. Res. 74:934–941.PubMedCrossRefGoogle Scholar
  67. Fernando S. R. and Pertwee R. G. (1997). Evidence that methyl arachidonyl fluorophosphate is an irreversible cannabinoid receptor antagonist. Br. J.-Pharmacol. 121:1716–1720.PubMedCrossRefGoogle Scholar
  68. Ferrari G., Batistatou A., and Greene L. A. (1993). Gangliosides rescue neuronal cells from death after trophic factor deprivation. J.-Neurosci. 13:1879–1887.PubMedGoogle Scholar
  69. Fighera M. R., Bonini J.-S., Frussa R., Dutra C. S., Hagen M. E. K., Rubin M. A., and Mello C. F. (2004). Monosialoganglioside increases catalase activity in cerebral cortex of rats. Free Radic. Res. 38:495–500.PubMedCrossRefGoogle Scholar
  70. Flicker C., Ferris S. H., Kalkstein D., and Serby M. (1994). A double-blind, placebo-controlled crossover study of ganglioside GM1 treatment for Alzheimer’s disease. Am. J.-Psychiatry 151:126–129.PubMedGoogle Scholar
  71. Follette P. (2003). New perspectives for prion therapeutics meeting. Prion disease treatment’s early promise unravels. Science 299:191–192.PubMedCrossRefGoogle Scholar
  72. Franco-Maside A., Caamaño J., Gómez M. J., and Cacabelos R. (1994). Brain mapping activity and mental performance after chronic treatment with CDP-choline in Alzheimer’s disease. Methods Find. Exp. Clin. Pharmacol. 16:597–607.PubMedGoogle Scholar
  73. Franson R. C. and Rosenthal M. D. (1989). Oligomers of prostaglandin B1 inhibit in-vitro phospholipase A2 activity. Biochim. Biophys. Acta 1006:272–277.PubMedGoogle Scholar
  74. Franson R. C. and Rosenthal M. D. (1997). PX-52, a novel inhibitor of 14 kDa secretory and 85 kDa cytosolic phospholipases A2. Adv. Exp. Med. Biol. 400:365–373.Google Scholar
  75. Fuentes L., Pérez R., Nieto M. L., Balsinde J., and Balboa M. A. (2003). Bromoenol lactone promotes cell death by a mechanism involving phosphatidate phosphohydrolase-1 rather than calcium-independent phospholipase A2. J.-Biol. Chem. 278:44683–44690.PubMedCrossRefGoogle Scholar
  76. Fujita S., Ikegaya Y., Nishiyama N., and Matsuki N. (2000). Ca2+-independent phospholipase A2 inhibitor impairs spatial memory of mice. Jpn. J.-Pharmacol. 83:277–278.PubMedCrossRefGoogle Scholar
  77. Fujita S., Ikegaya Y., Nishikawa M., Nishiyama N., and Matsuki N. (2001). Docosahexaenoic acid improves long-term potentiation attenuated by phospholipase A2 inhibitor in rat hippocampal slices. Br. J.-Pharmacol. 132:1417–1422.PubMedCrossRefGoogle Scholar
  78. Gamoh S., Hashimoto M., Sugioka K., Hossain M. S., Hata N., Misawa Y., and Masumura S. (1999). Chronic administration of docosahexaenoic acid improves reference memory-related learning ability in young rats. Neuroscience 93:237–241.PubMedCrossRefGoogle Scholar
  79. Geisler F. H., Dorsey F. C., and Coleman W. P. (1991). Recovery of motor function after spinal-cord injury – a randomized, placebo-controlled trial with GM-1 ganglioside. New Engl. J.-Med. 324:1829–1887.PubMedCrossRefGoogle Scholar
  80. Gerke V. and Moss S. E. (1997). Annexins and membrane dynamics. Biochim. Biophys. Acta Mol. Cell Res. 1357:129–154.CrossRefGoogle Scholar
  81. Ghelardoni S., Tomita Y. A., Bell J.-M., Rapoport S. I., and Bosetti F. (2004). Chronic carbamazepine selectively downregulates cytosolic phospholipase A2 expression and cyclooxygenase activity in rat brain. Biol. Psychiatry 56:248–254.PubMedCrossRefGoogle Scholar
  82. Ghomashchi F., Loo R., Balsinde J., Bartoli F., Apitz-Castro R., Clark J.-D., Dennis E. A., and Gelb M. H. (1999). Trifluoromethyl ketones and methyl fluorophosphonates as inhibitors of group IV and VI phospholipases A2: structure–function studies with vesicle, micelle, and membrane assays. Biochim. Biophys. Acta 1420:45–56.PubMedCrossRefGoogle Scholar
  83. Ghomashchi F., Stewart A., Hefner Y., Ramanadham S., Turk J., Leslie C. C., and Gelb M.-H. (2001). A pyrrolidine-based specific inhibitor of cytosolic phospholipase A blocks arachidonic acid release in a variety of mammalian cells. Biochim. Biophys. Acta Biomembr. 1513:160–166.CrossRefGoogle Scholar
  84. Giulian D. (1999). Microglia and the immune pathology of Alzheimer disease. Am. J.-Hum. Genet. 65:13–18.PubMedCrossRefGoogle Scholar
  85. Griessbach K., Klimt M., Elfringhoff A. S., and Lehr M. (2003). Structure–activity relationship studies of 1-substituted 3-dodecanoylindole-2-carboxylic acids as inhibitors of cytosolic phospholipase A2-mediated arachidonic acid release in intact platelets. Arch. Pharm. (Weinheim) 335:547–555.CrossRefGoogle Scholar
  86. Gronich J., Konieczkowski M., Gelb M. H., Nemenoff R. A., and Sedor J.-R. (1994). Interleukin 1α causes rapid activation of cytosolic phospholipase A2 by phosphorylation in rat mesangial cells. J.-Clin. Invest. 93:1224–1233.PubMedCrossRefGoogle Scholar
  87. Gross R. W. (1998). Activation of calcium-independent phospholipase A2 by depletion of internal calcium stores. Biochem. Soc. Trans. 26:345–349.PubMedGoogle Scholar
  88. Guentchev M., Voigtlander T., Haberler C., Groschup M. H., and Budka H. (2000). Evidence for oxidative stress in experimental prion disease. Neurobiol. Dis. 7:270–273.PubMedCrossRefGoogle Scholar
  89. Hall E. D., Yonkers P. A., Andrus P. K., Cox J.-W., and Anderson D. K. (1992). Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J.-Neurotrauma 9(Suppl. 2):S425–S442.PubMedGoogle Scholar
  90. Hannon G. J.-(2002). RNA interference. Nature 418:244–251.PubMedCrossRefGoogle Scholar
  91. Hansford K. A., Reid R. C., Clark C. I., Tyndall J.-D., Whitehouse M. W., Guthrie T., McGeary R. P., Schafer K., Martin J.-L., and Fairlie D. P. (2003). D-Tyrosine as a chiral precusor to potent inhibitors of human nonpancreatic secretory phospholipase A2 (IIa) with antiinflammatory activity. Chembiochem 4:181–185.PubMedCrossRefGoogle Scholar
  92. Harris J.-G., Flower R. J., and Perretti M. (1995). Alteration of neutrophil trafficking by a lipocortin 1 N-terminus peptide. Eur. J.-Pharmacol. 279:149–157.PubMedCrossRefGoogle Scholar
  93. Hashimoto M., Hossain S., Shimada T., Sugioka K., Yamasaki H., Fujii Y., Ishibashi Y., Oka J.-I., and Shido O. (2002). Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer’s disease model rats. J.-Neurochem. 81:1084–1091.PubMedCrossRefGoogle Scholar
  94. Hashimoto M., Hossain S., Agdul H., and Shido O. (2005a). Docosahexaenoic acid-induced amelioration on impairment of memory learning in amyloid β-infused rats relates to the decreases of amyloid β and cholesterol levels in detergent-insoluble membrane fractions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1738:91–98.CrossRefGoogle Scholar
  95. Hashimoto M., Tanabe Y., Fujii Y., Kikuta T., Shibata H., and Shido O. (2005b). Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid β-infused rats. J.-Nutr. 135:549–555.PubMedGoogle Scholar
  96. Hernandez N. E., MacDonald J.-S., Stier C. T., Belmonte A., Fernandez R., and Karpiak S. E. (1994). GM1 ganglioside treatment of spontaneously hypertensive stroke prone rats. Exp. Neurol. 126:95–100.PubMedCrossRefGoogle Scholar
  97. Hirata M., Kohse K. P., Chang C. H., Ikebe T., and Murad F. (1990). Mechanism of cyclic GMP inhibition of inositol phosphate formation in rat aorta segments and cultured bovine aortic smooth muscle cells. J.-Biol. Chem. 265:1268–1273.PubMedGoogle Scholar
  98. Holscher C. (1995). Quinacrine acts like an acetylcholine receptor antagonist rather than like a phospholipase A2 inhibitor in a passive avoidance task in the chick. Neurobiol. Learn. Mem. 63:206–208.PubMedCrossRefGoogle Scholar
  99. Hong S., Gronert K., Devchand P. R., Moussignac R. L., and Serhan C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells –– autacoids in anti-inflammation. J.-Biol. Chem. 278:14677–14687.PubMedCrossRefGoogle Scholar
  100. Horrobin D. F. (2003). Eicosapentaenoic acid derivatives in the management of schizophrenia. In: Peet M., Glen L., and Horrobin D. F. (eds.), Phospholipid Spectrum Disorders in Psychiatry and Neurology. Marius Press, Carnforth, Lancashire, pp.-371–376.Google Scholar
  101. Horrocks L. A. and Farooqui A. A. (2004). Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids 70:361–372.PubMedCrossRefGoogle Scholar
  102. Hossain M. S., Hashimoto M., Gamoh S., and Masumura S. (1999). Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J.-Neurochem. 72:1133–1138.PubMedCrossRefGoogle Scholar
  103. Hossain M. S., Hashimoto M., and Masumura S. (1998). Influence of docosahexaenoic acid on cerebral lipid peroxide level in aged rats with and without hypercholesterolemia. Neurosci. Lett. 244:157–160.PubMedCrossRefGoogle Scholar
  104. Ikeda Y., Mochizuki Y., Nakamura Y., Dohi K., Matsumoto H., Jimbo H., Hayashi M., Matsumoto K., Yoshikawa T., Murase H., and Sato K. (2000). Protective effect of a novel vitamin E derivative on experimental traumatic brain edema in rats –– preliminary study. In: Mendelow A. D., Baethmann A., Czernick Z., Hoff J.-T., Ito U., James H. E., Kuroiwa T., Marmarou A., Marshall L. F., and Reulen H. J.-(eds.), Brain Edema XI. Springer-Verlag Wien, Vienna, pp.-343–345.Google Scholar
  105. James M. J., Gibson R. A., and Cleland L. G. (2000). Dietary polyunsaturated fatty acids and inflammatory mediator production. Am. J.-Clin. Nutr. 71:343S–348S.PubMedGoogle Scholar
  106. Jenkins C. M., Han X. L., Mancuso D. J., and Gross R. W. (2002). Identification of calcium-independent phospholipase A2 (iPLA2)β, and not iPLA2γ, as the mediator of arginine vasopressin-induced arachidonic acid release in A-10 smooth muscle cells –– enantioselective mechanism-based discrimination of mammalian iPLA2s. J.-Biol. Chem. 277:32807–32814.PubMedCrossRefGoogle Scholar
  107. Jeong J.-Y. and Jue D. M. (1997). Chloroquine inhibits processing of tumor necrosis factor in lipopolysaccharide-stimulated RAW 264.7 macrophages. J.-Immunol. 158:4901–4907.PubMedGoogle Scholar
  108. Kaetzel M. A. and Dedman J.-R. (1995). Annexins: novel Ca2+-dependent regulators of membrane function. News Physiol. Sci. 10:171–176.Google Scholar
  109. Kamal A. M., Flower R. J., and Perretti M. (2005). An overview of the effects of annexin 1 on cells involved in the inflammatory process. Memorias do Instituto Oswaldo Cruz 100:39–47.PubMedGoogle Scholar
  110. Kambe T., Murakami M., and Kudo I. (1999). Polyunsaturated fatty acids potentiate interleukin-1-stimulated arachidonic acid release by cells overexpressing type IIA secretory phospholipase A2. FEBS Lett. 453:81–84.PubMedCrossRefGoogle Scholar
  111. Kim S. W., Ko J., Kim J.-H., Choi E. C., and Na D. S. (2001a). Differential effects of annexins I, II, III, and V on cytosolic phospholipase A2 activity: specific interaction model. FEBS Lett. 489:243–248.PubMedCrossRefGoogle Scholar
  112. Kim S. W., Rhee H. J., Ko J.-S., Kim Y. J., Kim H. G., Yang J.-M., Choi E. C., and Na D. S. (2001b). Inhibition of cytosolic phospholipase A2 by annexin I –– specific interaction model and mapping of the interaction site. J.-Biol. Chem. 276:15712–15719.PubMedCrossRefGoogle Scholar
  113. Kinsey G. R., Cummings B. S., Beckett C. S., Saavedra G., Zhang W. L., McHowat J., and Schnellmann R. G. (2005). Identification and distribution of endoplasmic reticulum iPLA2. Biochem. Biophys. Res. Commun. 327:287–293.PubMedCrossRefGoogle Scholar
  114. Klatte E. T., Scharre D. W., Nagaraja H. N., Davis R. A., and Beversdorf D. Q. (2003). Combination therapy of donepezil and vitamin E in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 17:113–116.PubMedCrossRefGoogle Scholar
  115. Kobayashi Y., Hirata K., Tanaka H., and Yamada T. (2003). [Quinacrine administration to a patient with Creutzfeldt-Jakob disease who received a cadaveric dura mater graft-an EEG evaluation]. Rinsho Shinkeigaku 43:403–408.PubMedGoogle Scholar
  116. Kokotos G., Six D. A., Loukas V., Smith T., Constantinou-Kokotou V., Hadjipavlou-Litina D., Kotsovolou S., Chiou A., Beltzner C. C., and Dennis E. A. (2004). Inhibition of group IVA cytosolic phospholipase A2 by novel 2-oxoamides in-vitro, in cells, and in-vivo. J.-Med. Chem. 47:3615–3628.PubMedCrossRefGoogle Scholar
  117. Korth C., May B. C., Cohen F. E., and Prusiner S. B. (2001). Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl Acad. Sci. USA 98:9836–9841.PubMedCrossRefGoogle Scholar
  118. Kramer B. C., Yabut J.-A., Cheong J., Jnobaptiste R., Robakis T., Olanow C. W., and Mytilineou C. (2004). Toxicity of glutathione depletion in mesencephalic cultures: a role for arachidonic acid and its lipoxygenase metabolites. Eur. J.-Neurosci. 19:280–286.PubMedCrossRefGoogle Scholar
  119. Kriem B., Sponne I., Fifre A., Malaplate-Armand C., Lozac’h-Pillot K., Koziel V., Yen-Potin F. T., Bihain B., Oster T., Olivier J.-L., and Pillot T. (2004). Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB J.-18:doi:10.1096/fj.04-1807fje.Google Scholar
  120. Kuroiwa N., Nakamura M., Tagaya M., and Takatsuki A. (2001). Arachidonyltrifluoromethyl ketone, a phospholipase A2 antagonist, induces dispersal of both Golgi stack- and trans Golgi network-resident proteins throughout the cytoplasm. Biochem. Biophys. Res. Commun. 281:582–588.PubMedCrossRefGoogle Scholar
  121. Laktionova P., Rykova E., Toni M., Spisni E., Griffoni C., Bryksin A., Volodko N., Vlassov V., and Tomasi V. (2004). Knock down of cytosolic phospholipase A2: an antisense oligonucleotide having a nuclear localization binds a C-terminal motif of glyceraldehyde-3-phosphate dehydrogenase. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1636:129–135.CrossRefGoogle Scholar
  122. Lehr M. (1996). 3-(3,5-dimethyl-4-octadecanoylpyrrol-2-yl)propionic acids as inhibitors of 85 kDa cytosolic phospholipase A2. Arch. Pharm. (Weinheim) 329:483–488.CrossRefGoogle Scholar
  123. Lehr M. (1997a). Structure–activity relationship studies on (4-acylpyrrol-2-yl)alkanoic acids as inhibitors of the cytosolic phospholipase A2: Variation of the alkanoic acid substituent, the acyl chain and the position of the pyrrole nitrogen. Eur. J.-Med. Chem. 32:805–814.CrossRefGoogle Scholar
  124. Lehr M. (1997b). Synthesis, biological evaluation, and structure–activity relationships of 3-acylindole-2-carboxylic acids as inhibitors of the cytosolic phospholipase A2. J.-Med. Chem. 40:2694–2705.PubMedCrossRefGoogle Scholar
  125. Lehr M. (2000). Cytosolic phospholipase A2 as a target for drug design. Drugs Future 25:823–832.CrossRefGoogle Scholar
  126. Lehr M., Klimt M., and Elfringhoff A. S. (2001). Novel 3-dodecanoylindole-2-carboxylic acid inhibitors of cytosolic phospholipase A2. Bioorg. Med. Chem. Lett. 11:2569–2572.PubMedCrossRefGoogle Scholar
  127. Liu N., Han S., Lu P. H., and Xu X. M. (2004). Upregulation of annexins I, II, and V after traumatic spinal cord injury in adult rats. J.-Neurosci. Res. 77:391–401.PubMedCrossRefGoogle Scholar
  128. Locati M., Lamorte G., Luini W., Introna M., Bernasconi S., Mantovani A., and Sozzani S. (1996). Inhibition of monocyte chemotaxis to C–C chemokines by antisense oligonucleotide for cytosolic phospholipase A2. J.-Biol. Chem. 271:6010–6016.PubMedCrossRefGoogle Scholar
  129. Lonergan P. E., Martin D. S. D., Horrobin D. F., and Lynch M. A. (2004). Neuroprotective actions of eicosapentaenoic acid on lipopolysaccharide-induced dysfunction in rat hippocampus. J.-Neurochem. 91:20–29.PubMedCrossRefGoogle Scholar
  130. Love R. (2001). Old drugs to treat new variant Creutzfeldt-Jakob disease. Lancet 358:563.PubMedCrossRefGoogle Scholar
  131. Lu X. R., Ong W. Y., Halliwell B., Horrocks L. A., and Farooqui A. A. (2001). Differential effects of calcium-dependent and calcium-independent phospholipase A2 inhibitors on kainate-induced neuronal injury in rat hippocampal slices. Free Radic. Biol. Med. 30:1263–1273.PubMedCrossRefGoogle Scholar
  132. Maejima S. and Katayama Y. (2001). Neurosurgical trauma in Japan. World J.-Surg. 25:1205–1209.PubMedCrossRefGoogle Scholar
  133. Mandal P. K. and Pettegrew J.-W. (2004). Alzheimer’s disease: NMR studies of asialo (GM1) and trisialo (GT1b) ganglioside interactions with A beta(1–40) peptide in a membrane mimic environment. Neurochem. Res. 29:447–453.PubMedCrossRefGoogle Scholar
  134. Maoz D., Lee H. J., Deutsch J., Rapoport S. I., and Bazinet R. P. (2005). Immediate no-flow ischemia decreases rat heart nonesterified fatty acid and increases acyl-CoA species concentrations. Lipids 40:1149–1154.PubMedCrossRefGoogle Scholar
  135. Marcheselli V. L., Hong S., Lukiw W. J., Tian X. H., Gronert K., Musto A., Hardy M., Gimenez J.-M., Chiang N., Serhan C. N., and Bazan N. G. (2003). Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J.-Biol. Chem. 278:43807–43817.PubMedCrossRefGoogle Scholar
  136. Masuda S., Murakami M., Takanezawa Y., Aoki J., Arai H., Ishikawa Y., Ishii T., Arioka M., and Kudo I. (2005). Neuronal expression and neuritogenic action of group X secreted phospholipase A2. J.-Biol. Chem. 280:23203–23214.PubMedCrossRefGoogle Scholar
  137. May B. C. H., Fafarman A. T., Hong S. B., Rogers M., Deady L. W., Prusiner S. B., and Cohen F. E. (2003). Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. Proc. Natl Acad. Sci. USA 100:3416–3421.PubMedCrossRefGoogle Scholar
  138. McKanna J.-A. and Zhang M. Z. (1997). Immunohistochemical localization of lipocortin 1 in rat brain is sensitive to pH, freezing, and dehydration. J.-Histochem. Cytochem. 45:527–538.PubMedGoogle Scholar
  139. Meyer M. C., Rastogi P., Beckett C. S., and McHowat J.-(2005). Phospholipase A2 inhibitors as potential anti-inflammatory agents. Curr. Pharm. Des. 11:1301–1312.PubMedCrossRefGoogle Scholar
  140. Miele L. (2003). New weapons against inflammation: dual inhibitors of phospholipase A2 and transglutaminase. J.-Clin. Invest. 111:19–21.PubMedGoogle Scholar
  141. Milhavet O., McMahon H. E., Rachidi W., Nishida N., Katamine S., Mange A., Arlotto M., Casanova D., Riondel J., Favier A., and Lehmann S. (2000). Prion infection impairs the cellular response to oxidative stress. Proc. Natl Acad. Sci. USA 97:13937–13942.PubMedCrossRefGoogle Scholar
  142. Mir C., Clotet J., Aledo R., Durany N., Argemi J., Lozano R., Cervos-Navarro J., and Casals N. (2003). CDP-choline prevents glutamate-mediated cell death in cerebellar granule neurons. J.-Mol. Neurosci. 20:53–59.PubMedCrossRefGoogle Scholar
  143. Misra U. K., Gawdi G., and Pizzo S. V. (1997). Chloroquine, quinine and quinidine inhibit calcium release from macrophage intracellular stores by blocking inositol 1,4,5-trisphosphate binding to its receptor. J.-Cell. Biochem. 64:225–232.PubMedCrossRefGoogle Scholar
  144. Moran J.-M., Buller R. M. L., McHowat J., Turk J., Wohltmann M., Gross R. W., and Corbett J.-A. (2005). Genetic and pharmacologic evidence that calcium-independent phospholipase A2β regulates virus-induced inducible nitric-oxide synthase expression by macrophages. J.-Biol. Chem. 280:28162–28168.PubMedCrossRefGoogle Scholar
  145. Moreno J.-J. (2000). Antiflammin peptides in the regulation of inflammatory response. In: Mukherjee A. B. and Chilton B. S. (eds.), Uteroglobin/Clara Cell Protein Family. New York Acad Sciences, New York, pp.-147–153.Google Scholar
  146. Moriyama T., Urade R., and Kito M. (1999). Purification and characterization of diacylglycerol lipase from human platelets. J.-Biochem. (Tokyo) 125:1077–1085.PubMedGoogle Scholar
  147. Mukherjee P. K., Marcheselli V. L., Serhan C. N., and Bazan N. G. (2004). Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc. Natl Acad. Sci. USA 101:8491–8496.PubMedCrossRefGoogle Scholar
  148. Murphy E. J.-and Horrocks L. A. (1993). CDPcholine, CDPethanolamine, lipid metabolism and disorders of the central nervous system. In: Massarelli R., Horrocks L., Kanfer J.-N., and Löffelholz K. (eds.), Phospholipids and Signal Transmission. Springer-Verlag GmbH, Heidelberg, pp.-353–372.Google Scholar
  149. Ng C. H. and Ong W. Y. (2001). Increased expression of γ-aminobutyric acid transporters GAT-1 and GAT-3 in the spinal trigeminal nucleus after facial carrageenan injections. Pain 92:29–40.PubMedCrossRefGoogle Scholar
  150. Nordvik I., Myhr K. M., Nyland H., and Bjerve K. S. (2000). Effect of dietary advice and n-3 supplementation in newly diagnosed MS patients. Acta Neurol. Scand. 102:143–149.PubMedCrossRefGoogle Scholar
  151. Nosal R., Jancinova V., and Danihelova E. (2000). Chloroquine: a multipotent inhibitor of human platelets in-vitro. Thromb. Res. 98:411–421.PubMedCrossRefGoogle Scholar
  152. Nozawa Y., Nakashima S., and Nagata K. (1991). Phospholipid-mediated signaling in receptor activation of human platelets. Biochim. Biophys. Acta Lipids Lipid Metab. 1082:219–238.CrossRefGoogle Scholar
  153. O’Donnell K. A. and Howlett A. C. (1991). Muscarinic receptor binding is inhibited by quinacrine. Neurosci. Lett. 127:46–48.PubMedCrossRefGoogle Scholar
  154. Ohto T., Uozumi N., Hirabayashi T., and Shimizu T. (2005). Identification of novel cytosolic phospholipase A2s, murine cPLA2δ, ε, and ζ, which form a gene cluster with cPLA. J.-Biol. Chem. 280:24576–24583.PubMedCrossRefGoogle Scholar
  155. Oinuma H., Takamura T., Hasegawa T., Nomoto K. I., Naitoh T., Daiku Y., Hamano S., Kakisawa H., and Minami N. (1991). Synthesis and biological evaluation of substituted benzenesulfonamides as novel potent membrane-bound phospholipase A2 inhibitors. J.-Med. Chem. 34:2260–2267.PubMedCrossRefGoogle Scholar
  156. Ong W. Y., Lu X. R., Horrocks L. A., Farooqui A. A., and Garey L. J.-(2003). Induction of astrocytic cytoplasmic phospholipase A2 and neuronal death after intracerebroventricular carrageenan injection, and neuroprotective effects of quinacrine. Exp. Neurol. 183:449–457.PubMedCrossRefGoogle Scholar
  157. Ono T., Yamada K., Chikazawa Y., Ueno M., Nakamoto S., Okuno T., and Seno K. (2002). Characterization of a novel inhibitor of cytosolic phospholipase A2α, pyrrophenone. Biochem. J.-363:727–735.PubMedCrossRefGoogle Scholar
  158. Ouyang Y. and Kaminski N. E. (1999). Phospholipase A2 inhibitors p-bromophenacyl bromide and arachidonyl trifluoromethyl ketone suppressed interleukin-2 (IL-2) expression in murine primary splenocytes. Arch. Toxicol. 73:1–6.PubMedCrossRefGoogle Scholar
  159. Park E., Velumian A. A., and Fehlings M. G. (2004). The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J.-Neurotrauma 21:754–774.PubMedCrossRefGoogle Scholar
  160. Park J., Kwon D., Choi C., Oh J.-W., and Benveniste E. N. (2003). Chloroquine induces activation of nuclear factor-κB and subsequent expression of pro-inflammatory cytokines by human astroglial cells. J.-Neurochem. 84:1266–1274.PubMedCrossRefGoogle Scholar
  161. Peet M. and Ryles S. (2001). Eicosapentaenoic acid –– a potential new treatment for schizophrenia? In: Mostofsky D. I., Yehuda S., and Salem N. (eds.), Fatty Acids: Physiological and Behavioral Functions. Humana Press Inc., Totowa, pp.-345–356.Google Scholar
  162. Pentland A. P., Morrison A. R., Jacobs S. C., Hruza L. L., Hebert J.-S., and Packer L. (1992). Tocopherol analogs suppress arachidonic acid metabolism via phospholipase inhibition. J.-Biol. Chem. 267:15578–15584.PubMedGoogle Scholar
  163. Pepinsky R. B., Tizard R., Mattaliano R. J., Sinclair L. K., Miller G. T., Browning J.-L., Chow E. P., Burne C., Huang K.-S., Pratt D., Wachter L., Hession C., Frey A. Z., and Wallner B. P. (1988). Five distinct calcium and phospholipid binding proteins share homology with lipocortin I. J.-Biol. Chem. 263:10799–10811.PubMedGoogle Scholar
  164. Perretti M., Ahluwalia A., Harris J.-G., Goulding N. J., and Flower R. J.-(1993). Lipocortin-1 fragments inhibit neutrophil accumulation and neutrophil-dependent edema in the mouse: a qualitative comparison with an anti-CD11b monoclonal antibody. J.-Immunol. 151:4306–4314.PubMedGoogle Scholar
  165. Phillis J.-W. and O’Regan M. H. (2004). A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res. Rev. 44:13–47.PubMedCrossRefGoogle Scholar
  166. Pickard R. T., Strifler B. A., Kramer R. M., and Sharp J.-D. (1999). Molecular cloning of two new human paralogs of 85-kDa cytosolic phospholipase A2. J.-Biol. Chem. 274:8823–8831.PubMedCrossRefGoogle Scholar
  167. Rao A. M., Hatcher J.-F., and Dempsey R. J.-(2001). Does CDP-choline modulate phospholipase activities after transient forebrain ischemia? Brain Res. 893:268–272.PubMedCrossRefGoogle Scholar
  168. Reid R. C. (2005). Inhibitors of secretory phospholipase A2 group IIA. Curr. Med. Chem. 12:3011–3026.PubMedCrossRefGoogle Scholar
  169. Relton J.-K., Strijbos P. J.-L. M., O’Shaughnessy C. T., Carey F., Forder R. A., Tilders F.-J.-H., and Rothwell N. J.-(1991). Lipocortin-1 is an endogenous inhibitor of ischemic damage in the rat brain. J.-Exp. Med. 174:305–310.PubMedCrossRefGoogle Scholar
  170. Reutelingsperger C. P. M. and van Heerde W. L. (1997). Annexin V, the regulator of phosphatidylserine-catalyzed inflammation and coagulation during apoptosis. Cell Mol. Life Sci. 53:527–532.PubMedCrossRefGoogle Scholar
  171. Riendeau D., Guay J., Weech P. K., Laliberté F., Yergey J., Li C., Desmarais S., Perrier H., Liu S., Nicoll-Griffith D., and Street I. P. (1994). Arachidonyl trifluoromethyl ketone, a potent inhibitor of 85-kDa phospholipase A2, blocks production of arachidonate and 12-hydroxyeicosatetraenoic acid by calcium ionophore-challenged platelets. J.-Biochem. 269:15619–15624.Google Scholar
  172. Rintala J., Seemann R., Chandrasekaran K., Rosenberger T. A., Chang L., Contreras M.-A., Rapoport S. I., and Chang M. C. J.-(1999). 85 kDa cytosolic phospholipase A2 is a target for chronic lithium in rat brain. NeuroReport 10:3887–3890.PubMedCrossRefGoogle Scholar
  173. Rogers J., Kirby L. C., Hempelman S. R., Berry D. L., McGeer P. L., Kaszniak A. W., Zalinski J., Cofield M., Mansukhani L., Willson P., et alet-al. (1993). Clinical trial of indomethacin in Alzheimer’s disease. Neurology 43:1609–1611.PubMedGoogle Scholar
  174. Rosenthal M. D. and Franson R. C. (1989). Oligomers of prostaglandin B1 inhibit arachidonic acid mobilization in human neutrophils and endothelial cells. Biochim. Biophys. Acta 1006:278–286.PubMedGoogle Scholar
  175. Roshak A. K., Capper E. A., Stevenson C., Eichman C., and Marshall L. A. (2000). Human calcium-independent phospholipase A2 mediates lymphocyte proliferation. J.-Biol. Chem. 275:35692–35698.PubMedCrossRefGoogle Scholar
  176. Roviezzo F., Getting S. J., Paul-Clark M. J., Yona S., Gavins F. N. E., Perretti M., Hannon R., Croxtall J.-D., Buckingham J.-C., and Flower R. J.-(2002). The annexin-1 knockout mouse: what it tells us about the inflammatory response. J.-Physiol. Pharmacol. 53:541–553.PubMedGoogle Scholar
  177. Salvati S., Natali F., Attorri L., Raggi C., Di Biase A., and Sanchez M. (2004). Stimulation of myelin proteolipid protein gene expression by eicosapentaenoic acid in C6 glioma cells. Neurochem. Int. 44:331–338.PubMedCrossRefGoogle Scholar
  178. Samadi P., Gregoire L., Rouillard C., Bedard P. J., Di Paolo T., and Levesque D. (2006). Docosahexaenoic acid reduces levodopa-induced dyskinesias in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine monkeys. Ann. Neurol. 59:282–288.PubMedCrossRefGoogle Scholar
  179. Sano M., Ernesto C., Thomas R. G., Klauber M. R., Schafer K., Grundman M., Woodbury P., Growdon J., Cotman D. W., Pfeiffer E., Schneider L. S., and Thal L. J.-(1997). A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. New Engl. J.-Med. 336:1216–1222.PubMedCrossRefGoogle Scholar
  180. Sapirstein A., Saito H., Texel S. J., Samad T. A., O’Leary E., and Bonventre J.-V. (2005). Cytosolic phospholipase A2α regulates induction of brain cyclooxygenase-2 in a mouse model of inflammation. Am. J.-Physiol. Regul. Integr. Comp. Physiol. 288:R1774–R1782.PubMedGoogle Scholar
  181. Savci V., Goktalay G., Cansev M., Cavun S., Yilmaz M. S., and Ulus I. H. (2003). Intravenously injected CDP-choline increases blood pressure and reverses hypotension in haemorrhagic shock: effect is mediated by central cholinergic activation. Eur. J.-Pharmacol. 468:129–139.PubMedCrossRefGoogle Scholar
  182. Schaeffer E. L., Bassi F. J., and Gattaz W. F. (2005). Inhibition of phospholipase A2 activity reduces membrane fluidity in rat hippocampus. J.-Neural Transm. 112:641–647.PubMedCrossRefGoogle Scholar
  183. Schevitz R. W., Bach N. J., Carlson D. G., Chirgadze N. Y., Clawson D. K., Dillard R. D., Draheim S. E., Hartley L. W., Jones N. D., Mihelich E. D., Olkowski J.-L., Snyder D. W., Sommers C., and Wery J.-P. (1995). Structure-based design of the first potent and selective inhibitor of human non-pancreatic secretory phospholipase A2. Nat. Struct. Biol. 2:458–465.PubMedCrossRefGoogle Scholar
  184. Schneider J.-S. (1992). MPTP-induced Parkinsonism: Acceleration of biochemical and behavioral recovery by GM1 ganglioside treatment. J.-Neurosci. Res. 31:112–119.PubMedCrossRefGoogle Scholar
  185. Scott K. F., Graham G. G., and Bryant K. J.-(2003). Secreted phospholipase A2 enzymes as therapeutic targets. Expert Opin. Ther. Targets 7:427–440.PubMedCrossRefGoogle Scholar
  186. Secades J.-J. and Frontera G. (1995). CDP-choline: pharmacological and clinical review. Methods Find. Exp. Clin. Pharmacol. 17(Suppl. B):1–54.PubMedGoogle Scholar
  187. Seno K., Okuno T., Nishi K., Murakami Y., Watanabe F., Matsuura T., Wada M., Fujii Y., Yamada M., Ogawa T., Okada T., Hashizume H., Kii M., Hara S., Hagishita S., Nakamoto S., Yamada K., Chikazawa Y., Ueno M., Teshirogi I., Ono T., and Ohtani M. (2000). Pyrrolidine inhibitors of human cytosolic phospholipase A2. J.-Med. Chem. 43:1041–1044.PubMedCrossRefGoogle Scholar
  188. Seno K., Okuno T., Nishi K., Murakami Y., Yamada K., Nakamoto S., and Ono T. (2001). Pyrrolidine inhibitors of human cytosolic phospholipase A2. Part 2: Synthesis of potent and crystallized 4-triphenylmethylthio derivative ‘pyrrophenone’. Bioorg. Med. Chem. Lett. 11:587–590.PubMedCrossRefGoogle Scholar
  189. Serhan C. N., Gotlinger K., Hong S., and Arita M. (2004). Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis. Prostaglandins Other Lipid Mediat. 73:155–172.PubMedCrossRefGoogle Scholar
  190. Shanker G. and Aschner M. (2003). Methylmercury-induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants. Mol. Brain Res. 110:85–91.PubMedCrossRefGoogle Scholar
  191. Shanker G., Hampson R. E., and Aschner M. (2004). Methylmercury stimulates arachidonic acid release and cytosolic phospholipase A2 expression in primary neuronal cultures. Neurotoxicology 25:399–406.PubMedCrossRefGoogle Scholar
  192. Shin E. J., Jhoo J.-H., Kim W. K., Jhoo W. K., Lee C., Jung B. D., and Kim H. C. (2004). Protection against kainate neurotoxicity by pyrrolidine dithiocarbamate. Clin. Exp. Pharmacol. Physiol 31:320–326.PubMedCrossRefGoogle Scholar
  193. Shinzawa K. and Tsujimoto Y. (2003). PLA2 activity is required for nuclear shrinkage in caspase-independent cell death. J.-Cell Biol. 163:1219–1230.PubMedCrossRefGoogle Scholar
  194. Smalheiser N. R., Dissanayake S., and Kapil A. (1996). Rapid regulation of neurite outgrowth and retraction by phospholipase A2-derived arachidonic acid and its metabolites. Brain Res. 721:39–48.PubMedCrossRefGoogle Scholar
  195. Snyder D. W., Bach N. J., Dillard R. D., Draheim S. E., Carlson D. G., Fox N., Roehm N.-W., Armstrong C. T., Chang C. H., Hartley L. W., Johnson L. M., Roman C. R., Smith A. C., Song M., and Fleisch J.-H. (1999). Pharmacology of LY315920/S-5920, [[3-(aminooxoacetyl)-2-ethyl-1-(phenylmethyl)-1H-indol-4-yl]oxy] acetate, a potent and selective secretory phospholipase A2 inhibitor: a new class of anti-inflammatory drugs, SPI. J.-Pharmacol. Exp. Ther. 288:1117–1124.PubMedGoogle Scholar
  196. Song H. W., Ramanadham S., Bao S. Z., Hsu F. F., and Turk J.-(2006). A bromoenol lactone suicide substrate inactivates group VIA phospholipase A2 by generating a diffusible bromomethyl keto acid that alkylates cysteine thiols. Biochemistry 45:1061–1073.PubMedCrossRefGoogle Scholar
  197. Springer D. M. (2001). An update on inhibitors of human 14 kDa Type II s-PLA2 in development. Curr. Pharm. Des. 7:181–198.PubMedCrossRefGoogle Scholar
  198. St-Gelais F., Ménard C., Congar P., Trudeau L. E., and Massicotte G. (2004). Postsynaptic injection of calcium-independent phospholipase A2 inhibitors selectively increases AMPA receptor-mediated synaptic transmission. Hippocampus 14:319–325.PubMedCrossRefGoogle Scholar
  199. Stahelin R. V., Hwang J.-H., Kim J.-H., Park Z. Y., Johnson K. R., Obeid L. M., and Cho W. H. (2005). The mechanism of membrane targeting of human sphingosine kinase 1. J.-Biol. Chem. 280:43030–43038.PubMedCrossRefGoogle Scholar
  200. Stewart L. R., White A. R., Jobling M. F., Needham B. E., Maher F., Thyer J., Beyreuther K., Masters C. L., Collins S. J., and Cappai R. (2001). Involvement of the 5-lipoxygenase pathway in the neurotoxicity of the prion peptide PrP106–126. J.-Neurosci. Res. 65:565–572.PubMedCrossRefGoogle Scholar
  201. Street I. P., Lin H. K., Laliberté F., Ghomashchi F., Wang Z., Perrier H., Tremblay N. M., Huang Z., Weech P. K., and Gelb M. H. (1993). Slow- and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochemistry 32:5935–5940.PubMedCrossRefGoogle Scholar
  202. Struhar D., Kivity S., and Topilsky M. (1992). Quinacrine inhibits oxygen radicals release from human alveolar macrophages. Int. J.-Immunopharmacol. 14:275–277.PubMedCrossRefGoogle Scholar
  203. Sung S., Yao Y., Uryu K., Yang H., Lee V. M., Trojanowski J.-Q., and Pratico D. (2004). Early vitamin E supplementation in young but not aged mice reduces Aβ levels and amyloid deposition in a transgenic model of Alzheimer’s disease. FASEB J.-18:323–325.PubMedGoogle Scholar
  204. Svennerholm L. (1994). Gangliosides –– a new therapeutic agent against stroke and Alzheimer’s disease. Life Sci. 55:2125–2134.PubMedCrossRefGoogle Scholar
  205. Svensson C. I., Lucas K. K., Hua X. Y., Powell H. C., Dennis E. A., and Yaksh T. L. (2005). Spinal phospholipase A2 in inflammatory hyperalgesia: role of the small, secretory phospholipase A2. Neuroscience 133:543–553.PubMedCrossRefGoogle Scholar
  206. Tagami M., Ikeda K., Yamagata K., Nara Y., Fujino H., Kubota A., Numano F., and Yamori Y. (1999). Vitamin E prevents apoptosis in hippocampal neurons caused by cerebral ischemia and reperfusion in stroke-prone spontaneously hypertensive rats. Lab. Invest. 79:609–615.PubMedGoogle Scholar
  207. Tanaka H., Takeya R., and Sumimoto H. (2000). A novel intracellular membrane-bound calcium-independent phospholipase A2. Biochem. Biophys. Res. Commun. 272:320–326.PubMedCrossRefGoogle Scholar
  208. Tanaka H., Minakami R., Kanaya H., and Sumimoto H. (2004). Catalytic residues of group VIB calcium-independent phospholipase A2 (iPLA2γ). Biochem. Biophys. Res. Commun. 320:1284–1290.PubMedCrossRefGoogle Scholar
  209. Tariq M., Khan H. A., Al Moutaery K., and Al Deeb S. (2001). Protective effect of quinacrine on striatal dopamine levels in 6-OHDA and MPTP models of Parkinsonism in rodents. Brain Res. Bull. 54:77–82.PubMedCrossRefGoogle Scholar
  210. Teather L. A. and Wurtman R. J.-(2005). Dietary CDP-choline supplementation prevents memory impairment caused by impoverished environmental conditions in rats. Learn. Memory 12:39–43.CrossRefGoogle Scholar
  211. Terano T., Fujishiro S., Ban T., Yamamoto K., Tanaka T., Noguchi Y., Tamura Y., Yazawa K., and Hirayama T. (1999). Docosahexaenoic acid supplementation improves the moderately severe dementia from thrombotic cerebrovascular diseases. Lipids 34(Suppl.):S345–S346.PubMedCrossRefGoogle Scholar
  212. Tietge U. J.-F., Maugeais C., Cain W., Grass D., Glick J.-M., de Beer F. C., and Rader D. J.-(2000). Overexpression of secretory phospholipase A2 causes rapid catabolism and altered tissue uptake of high density lipoprotein cholesteryl ester and apolipoprotein A-I. J.-Biol. Chem. 275:10077–10084.PubMedCrossRefGoogle Scholar
  213. Tietge U. J.-F., Maugeais C., Lund-Katz S., Grass D., deBeer F. C., and Rader D. J.-(2002). Human secretory phospholipase A2 mediates decreased plasma levels of HDL cholesterol and apoA-I in response to inflammation in human apoA-I transgenic mice. Arterioscler. Thromb. Vasc. Biol. 22:1213–1218.PubMedCrossRefGoogle Scholar
  214. Tramposch K. M., Steiner S. A., Stanley P. L., Nettleton D. O., Franson R. C., Lewin A. H., and Carroll F. I. (1992). Novel inhibitor of phospholipase A2 with topical anti-inflammatory activity. Biochem. Biophys. Res. Commun. 189:272–279.PubMedCrossRefGoogle Scholar
  215. Tramposch K. M., Chilton F. H., Stanley P. L., Franson R. C., Havens M. B., Nettleton D. O., Davern L. B., Darling I. M., and Bonney R. J.-(1994). Inhibitor of phospholipase A2 blocks eicosanoid and platelet activating factor biosynthesis and has topical anti-inflammatory activity. J.-Pharmacol. Exp. Ther. 271:852–859.PubMedGoogle Scholar
  216. Tran K., Wong J.-T., Lee E., Chan A. C., and Choy P. C. (1996). Vitamin E potentiates arachidonate release and phospholipase A2 activity in rat heart myoblastic cells. Biochem. J.-319:385–391.PubMedGoogle Scholar
  217. Trimble L. A., Street I. P., Perrier H., Tremblay N. M., Weech P. K., and Bernstein M. A. (1993). NMR structural studies of the tight complex between a trifluoromethyl ketone inhibitor and the 85-kDa human phospholipase A2. Biochemistry 32:12560–12565.PubMedCrossRefGoogle Scholar
  218. Tseng A., Inglis A. S., and Scott K. F. (1996). Native peptide inhibition. Specific inhibition of type II phospholipases A2 by synthetic peptides derived from the primary sequence. J.-Biol. Chem. 271:23992–23998.PubMedCrossRefGoogle Scholar
  219. Turnbull S., Tabner B. J., Brown D. R., and Allsop D. (2003). Quinacrine acts as an antioxidant and reduces the toxicity of the prion peptide PrP106–126. NeuroReport 14:1743–1745.PubMedCrossRefGoogle Scholar
  220. Van Gool W. A., Weinstein H. C., Scheltens P., Walstra G. J., and Scheltens P. K. (2001). Effect of hydroxychloroquine on progression of dementia in early Alzheimer’s disease: an 18-month randomised, double-blind, placebo-controlled study. Lancet 358:455–460.PubMedCrossRefGoogle Scholar
  221. Vanags D. M., Larsson P., Feltenmark S., Jakobsson P. J., Orrenius S., Claesson H. E., and Aguilar-Santelises M. (1997). Inhibitors of arachidonic acid metabolism reduce DNA and nuclear fragmentation induced by TNF plus cycloheximide in U937 cells. Cell Death Differ. 4:479–486.PubMedCrossRefGoogle Scholar
  222. Varghese, J., Rydel, R. E., Dappen, M. S., and Thorsett, E. D. (2003). Substituted pyrimidine compositions and methods of use. U.S. Patent 6,518,424. Elan Pharmaceuticals, Inc.Google Scholar
  223. Vogtherr M., Grimme S., Elshorst B., Jacobs D. M., Fiebig K., Griesinger C., and Zahn R. (2003). Antimalarial drug quinacrine binds to C-terminal helix of cellular prion protein. J.-Med. Chem. 46:3563–3564.PubMedCrossRefGoogle Scholar
  224. Wahler G. M., Rusch N. J., and Sperelakis N. (1990). 8-Bromo-cyclic GMP inhibits the calcium channel current in embryonic chick ventricular myocytes. Can. J.-Physiol. Pharmacol. 68:531–534.PubMedGoogle Scholar
  225. Walsh D. M. and Selkoe D. J.-(2004). Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193.PubMedCrossRefGoogle Scholar
  226. Walters E. T. (1994). Injury-related behavior and neuronal plasticity: an evolutionary perspective on sensitization, hyperalgesia, and analgesia. Int. Rev. Neurobiol. 36:325–427.PubMedCrossRefGoogle Scholar
  227. Wambebe C., Sokomba E., and Amabeoku G. (1990). Effect of quinine on electroshock and pentylenetetrazol-induced seizures in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 14:121–127.CrossRefGoogle Scholar
  228. Wang X. and Robinson P. J.-(1997). Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system. J.-Neurochem. 68:443–456.PubMedCrossRefGoogle Scholar
  229. Wang Y., Zhou X., Wang B. H., Chen L. D., Zhang J., and Cao J.-X. (2004). Cytosolic phospholipase A2 mediates MM-LDL-induced apoptosis in human umbilical vein endothelial cells. Prog. Biochem. Biophys. 31:350–355.Google Scholar
  230. Weber S. M., Chen J.-M., and Levitz S. M. (2002). Inhibition of mitogen-activated protein kinase signaling by chloroquine. J.-Immunol. 168:5303–5309.PubMedGoogle Scholar
  231. Weerasinghe G. R., Rapoport S. I., and Bosetti F. (2004). The effect of chronic lithium on arachidonic acid release and metabolism in rat brain does not involve secretory phospholipase A2 or lipoxygenase/cytochrome P450 pathways. Brain Res. Bull. 63:485–489.PubMedCrossRefGoogle Scholar
  232. Wolf M. J., Izumi Y., Zorumski C. F., and Gross R. W. (1995). Long-term potentiation requires activation of calcium-independent phospholipase A2. FEBS Lett. 377:358–362.PubMedCrossRefGoogle Scholar
  233. Won J.-S., Im Y. B., Khan M., Singh A. K., and Singh I. (2005). Involvement of phospholipase A2 and lipoxygenase in lipopolysaccharide-induced inducible nitric oxide synthase expression in glial cells. Glia 51:13–21.PubMedCrossRefGoogle Scholar
  234. Wurtman R. J., Sandage B. W., Jr., and Warach S. (1996). Advances in understanding cholinergic brain neurons: implications in the use of citicholine (CDP-choline) to treat stroke. In: Becker R. and Giacobini E. (eds.), Alzheimer Disease: from Molecular Biology to Therapy. Birkhauser, Boston, pp.-179–185.Google Scholar
  235. Yagi K., Shirai Y., Hirai M., Sakai N., and Saito N. (2004). Phospholipase A2 products retain a neuron specific γ isoform of PKC on the plasma membrane through the C1 domain – a molecular mechanism for sustained enzyme activity. Neurochem. Int. 45:39–47.PubMedCrossRefGoogle Scholar
  236. Yamashita A., Kamata R., Kawagishi N., Nakanishi H., Suzuki H., Sugiura T., and Waku-K. (2005). Roles of C-terminal processing, and involvement in transacylation reaction of human group IVC phospholipase A2 (cPLA2γ). J.-Biochem. 137:557–567.PubMedCrossRefGoogle Scholar
  237. Yang H.-C., Farooqui A. A., and Horrocks L. A. (1994a). Effects of glycosaminoglycans and glycosphingolipids on cytosolic phospholipases A2 from bovine brain. Biochem. J. 299:91–95.PubMedGoogle Scholar
  238. Yang H.-C., Farooqui A. A., and Horrocks L. A. (1994b). Effects of sialic acid and sialoglycoconjugates on cytosolic phospholipases A2 from bovine brain. Biochem. Biophys. Res. Commun. 199:1158–1166.PubMedCrossRefGoogle Scholar
  239. Yeo J.-F., Ong W. Y., Ling S. F., and Farooqui A. A. (2004). Intracerebroventricular injection of phospholipases A2 inhibitors modulates allodynia after facial carrageenan injection in mice. Pain 112:148–155.PubMedCrossRefGoogle Scholar
  240. Yoo M. H., Woo C. H., You H. J., Cho S. H., Kim B. C., Choi J.-E., Chun J.-S., Jhun B. H., Kim T. S., and Kim J.-H. (2001). Role of the cytosolic phospholipase A2-linked cascade in signaling by an oncogenic, constitutively active Ha-Ras isoform. J.-Biol. Chem. 276:24645–24653.PubMedCrossRefGoogle Scholar
  241. Yoshinaga N., Yasuda Y., Murayama T., and Nomura Y. (2000). Possible involvement of cytosolic phospholipase A2 in cell death induced by 1-methyl-4-phenylpyridinium ion, a dopaminergic neurotoxin, in GH3 cells. Brain Res. 855:244–251.PubMedCrossRefGoogle Scholar
  242. Young K. A., Hirst W. D., Solito E., and Wilkin G. P. (1999). De novo expression of lipocortin-1 in reactive microglia and astrocytes in kainic acid lesioned rat cerebellum. Glia 26:333–343.PubMedCrossRefGoogle Scholar
  243. Yue H. Y., Fujita T., and Kumamoto E. (2005). Phospholipase A2 activation by melittin enhances spontaneous glutamatergic excitatory transmission in rat substantia gelatinosa neurons. Neuroscience 135:485–495.PubMedCrossRefGoogle Scholar
  244. Yuen A. W. C., Sander J.-W., Fluegel D., Patsalos P. N., Bell G. S., Johnson T., and Koepp M. J.-(2005). Omega-3 fatty acid supplementation in patients with chronic epilepsy: A randomized trial. Epilepsy Behav. 7:253–258.PubMedCrossRefGoogle Scholar
  245. Zeiher B. G., Steingrub J., Laterre P. F., Dmitrienko A., Fukiishi Y., and Abraham E. (2005). LY315920NA/S-5920, a selective inhibitor of group IIA secretory phospholipase A2, fails to improve clinical outcome for patients with severe sepsis. Crit. Care Med. 33:1741–1748.PubMedCrossRefGoogle Scholar
  246. Zhang B., Tanaka J., Yang L., Yang L., Sakanaka M., Hata R., Maeda N., and Mitsuda N. (2004). Protective effect of vitamin E against focal brain ischemia and neuronal death through induction of target genes of hypoxia-inducible factor-1. Neuroscience 126:433–440.PubMedCrossRefGoogle Scholar
  247. Zhao Y., Joshi-Barve S., Barve S., and Chen L. H. (2004). Eicosapentaenoic acid prevents LPS-induced TNF-α expression by preventing NF-κB activation. J.-Am. Coll. Nutr. 23:71–78.PubMedGoogle Scholar
  248. Zouki C., Ouellet S., and Filep J.-G. (2000). The anti-inflammatory peptides, antiflammins, regulate the expression of adhesion molecules on human leukocytes and prevent neutrophil adhesion to endothelial cells. FASEB J.-14:572–580.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations