Involvement of Phospholipids and Phospholipases A2


Spinal Cord Injury Neurodegenerative Disease Experimental Autoimmune Encephalomyelitis Alzheimer Disease Parkinson Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe K., Kogure K., Yamamoto H., Imazawa M., and Miyamoto K. (1987). Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex. J.-Neurochem. 48:503–509.PubMedGoogle Scholar
  2. Adibhatla R. M. and Hatcher J.-F. (2006). Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerebral ischemia. Free Radic. Biol. Med. 40:376–387.Google Scholar
  3. Adler D. H., Phillips J.-A. I., Cogan J.-D., Morrow I. D., Boutaud O., and Oates J.-A. (2006). First description: cytosolic phospholipase A2-alpha deficiency. J.-Invest. Med. 54:S257.Google Scholar
  4. Ahn M. J., Sherwood E. R., Prough D. S., Lin C. Y., and DeWitt D. S. (2004). The effects of traumatic brain injury on cerebral blood flow and brain tissue nitric oxide levels and cytokine expression. J.-Neurotrauma 21:1431–1442.PubMedGoogle Scholar
  5. Akaishi T., Nakazawa K., Sato K., Ohno Y., and Ito Y. (2004). 4-Hydroxynonenal modulates the long-term potentiation induced by L-type Ca2+ channel activation in the rat dentate gyrus in-vitro. Neurosci. Lett. 370:155–159.PubMedGoogle Scholar
  6. Alexandrov P. N., Cui J.-G., and Lukiw W. J.-(2006). Hypoxia-sensitive domain in the human cytosolic phospholipase A2 promoter. NeuroReport 17:303–307.PubMedGoogle Scholar
  7. Andersen J.-K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nature Rev. Neurosci. S18–S25.Google Scholar
  8. Anderson D. K. and Means E. D. (1985). Iron-induced lipid peroxidation in spinal cord: protection with mannitol and methylprednisolne. J.-Free Radic. Biol. Med. 1:59–64.PubMedGoogle Scholar
  9. Anderson D. K., Saunders R. D., Demediuk P., Dugan L. L., Braughler J.-M., Hall E. D., Means E. D., and Horrocks L. A. (1985). Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and selenium. Cent. Nerv. Syst. Trauma 2:257–267.PubMedGoogle Scholar
  10. Arlt S., Kontush A., Zerr I., Buhmann C., Jacobi C., Schröter A., Poser S., and Beisiegel U. (2002). Increased lipid peroxidation in cerebrospinal fluid and plasma from patients with Creutzfeldt-Jakob disease. Neurobiol. Dis. 10:150–156.PubMedGoogle Scholar
  11. Atsumi G., Tajima M., Hadano A., Nakatani Y., Murakami M., and Kudo I. (1998). Fas-induced arachidonic acid release is mediated by Ca2+-independent phospholipase A2 but not cytosolic phospholipase A2 which undergoes proteolytic inactivation. J.-Biol. Chem. 273:13870–13877.PubMedGoogle Scholar
  12. Atsumi G., Murakami M., Kojima K., Hadano A., Tajima M., and Kudo I. (2000). Distinct roles of two intracellular phospholipase A2s in fatty acid release in the cell death pathway. Proteolytic fragment of type IVA cytosolic phospholipase A inhibits stimulus-induced arachidonate release, whereas that of type VI Ca2+-independent phospholipase A2 augments spontaneous fatty acid release. J.-Biol. Chem. 275:18248–18258.PubMedGoogle Scholar
  13. Auger C. and Attwell D. (2000). Fast removal of synaptic glutamate by postsynaptic transporters. Neuron 28:547–558.PubMedGoogle Scholar
  14. Barrera G., Pizzimenti S., and Dianzani M. U. (2004). 4-Hydroxynonenal and regulation of cell cycle: effects on the pRb/E2F pathway. Free Radic. Biol. Med. 37:597–606.PubMedGoogle Scholar
  15. Bate C. and Williams A. (2004). Role of glycosylphosphatidylinositols in the activation of phospholipase A2 and the neurotoxicity of prions. J.-Gen. Virol. 85:3797–3804.PubMedGoogle Scholar
  16. Bate C., Reid S., and Williams A. (2004). Phospholipase A2 inhibitors or platelet-activating factor antagonists prevent prion replication. J.-Biol. Chem. 279:36405–36411.PubMedGoogle Scholar
  17. Bazan N. G. (1970). Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218:1–10.PubMedGoogle Scholar
  18. Bazan N. G. (1989). Arachidonic acid in the modulation of excitable membrane function and at the onset of brain damage. In: Annals of the New York Academy of Sciences, 559. New York Academy of Sciences, New York, pp.-1–16.Google Scholar
  19. Bazan N. G., Bazan H. E. P., Kennedy W. G., and Joel C. D. (1971). Regional distribution and rate of production of free fatty acids in rat brain. J.-Neurochem. 18:1387–1393.PubMedGoogle Scholar
  20. Bazan N. G., Birkle D. L., Tang W., and Reddy T. S. (1986). The accumulation of free arachidonic acid, diacylglycerol, prostaglandins, and lipoxygenase reaction products in the brain during experimental epilepsy. Adv. Neurol. 44:879–902.PubMedGoogle Scholar
  21. Bazan N. G., Colangelo V., and Lukiw W. J.-(2002). Prostaglandins and other lipid mediators in Alzheimer’s disease. Prostaglandins Other Lipid Mediat. 68–69:197–210.PubMedGoogle Scholar
  22. Beattie M. S., Farooqui A. A., and Bresnahan J.-C. (2000). Review of current evidence for apoptosis after spinal cord injury. J.-Neurotrauma 17:915–925.PubMedGoogle Scholar
  23. Beer R., Franz G., Srinivasan A., Hayes R. L., Pike B. R., Newcomb J.-K., Zhao X., Schmutzhard E., Poewe W., and Kampfl A. (2000). Temporal profile and cell subtype distribution of activated caspase-3 following experimental traumatic brain injury. J.-Neurochem. 75:1264–1273.PubMedGoogle Scholar
  24. Bernoud-Hubac N., Fay L. B., Armarnath V., Guichardant M., Bacot S., Davies S. S., Roberts L. J., II, and Lagarde M. (2004). Covalent binding of isoketals to ethanolamine phospholipids. Free Radic. Biol. Med. 37:1604–1611.PubMedGoogle Scholar
  25. Bonventre J.-V., Huang Z. H., Taheri M. R., O’Leary E., Li E., Moskowitz M. A., and Sapirstein A. (1997). Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390:622–625.PubMedGoogle Scholar
  26. Boonstra J.-and Post J.-A. (2004). Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337:1–13.PubMedGoogle Scholar
  27. Boonstra J.-and van Rossum G. S. A. T. (2003). The role of cytosolic phospholipase A2 in cell cycle progression. Prog. Cell Cycle Res. 5:181–190.PubMedGoogle Scholar
  28. Bosetti F. and Weerasinghe G. R. (2003). The expression of brain cyclooxygenase-2 is down-regulated in the cytosolic phospholipase A2 knockout mouse. J.-Neurochem. 87:1471–1477.PubMedCrossRefGoogle Scholar
  29. Boutaud O., Andreasson K. I., Zagol-Ikapitte I., and Oates J.-A. (2005). Cyclooxygenase-dependent lipid-modification of brain proteins. Brain Pathol. 15:139–142.PubMedCrossRefGoogle Scholar
  30. Bramlett H. M. and Dietrich W. D. (2004). Pathophysiology of cerebral ischemia and brain trauma: Similarities and differences. J.-Cereb. Blood Flow Metab. 24:133–150.PubMedGoogle Scholar
  31. Brown D. R. (2005). Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence. Folia Neuropathol. 43:229–243.PubMedGoogle Scholar
  32. Chabot C., Gagné J., Giguère C., Bernard J., Baudry M., and Massicotte G. (1998). Bidirectional modulation of AMPA receptor properties by exogenous phospholipase A2 in the hippocampus. Hippocampus 8:299–309.PubMedGoogle Scholar
  33. Choi D. W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:628–634.Google Scholar
  34. Clemens J.-A., Stephenson D. T., Smalstig E. B., Roberts E. F., Johnstone E. M., Sharp J.-D., Little S. P., and Kramer R. M. (1996). Reactive glia express cytosolic phospholipase A2 after transient global forebrain ischemia in the rat. Stroke 27:527–535.PubMedGoogle Scholar
  35. Cowan M. J., Yao X. L., Pawliczak R., Huang X. L., Logun C., Madara P., Alsaaty S., Wu T., and Shelhamer J.-H. (2004). The role of TFIID, the initiator element and a novel 5′ TFIID binding site in the transcriptional control of the TATA-less human cytosolic phospholipase A2-α promoter. Biochim. Biophys. Acta Gene Struct. Expression 1680:145–157.Google Scholar
  36. Corey E. J., Shih C., and Cashman J.-R. (1983). Docosahexaenoic acid is a strong inhibitor of prostaglandin but not leukotriene biosynthesis. Proc. Natl Acad. Sci. USA 80:3581–3584.PubMedGoogle Scholar
  37. Dalfo E., Portero-Otin M., Ayala V., Martinez A., Pamplona R., and Ferrer I. (2005). Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J.-Neuropathol. Exp. Neurol. 64:816–830.PubMedGoogle Scholar
  38. DeArmond S. J.-and Prusiner S. B. (2003). Perspectives on prion biology, prion disease pathogenesis, and pharmacologic approaches to treatment. Clin. Lab. Med. 23:1–41.PubMedGoogle Scholar
  39. DeMedio G. E., Goracci G., Horrocks L. A., Lazarewicz J., Mazzari S., Porcellati G., Strosznajder J., and Trovarelli G. (1980). The effect of transient ischemia on fatty acid and lipid metabolism in the gerbil brain. Ital. J.-Biochem. 29:412–432.Google Scholar
  40. Demediuk P., Anderson D. K., Horrocks L. A., and Means E. D. (1985a). Mechanical damage to murine neuronal-enriched cultures during harvesting: effects on free fatty acids, diglycerides, Na+K+-ATPase, and lipid peroxidation. In Vitro Cell Develop. Biol. 21:569–574.Google Scholar
  41. Demediuk P., Saunders R. D., Anderson D. K., Means E. D., and Horrocks L. A. (1985b). Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc. Natl Acad. Sci. USA 82:7071–7075.PubMedGoogle Scholar
  42. Demediuk P., Saunders R. D., Clendenon N. R., Means E. D., Anderson D. K., and Horrocks L. A. (1985c). Changes in lipid metabolism in traumatized spinal cord. Prog. Brain Res. 63:211–226.PubMedGoogle Scholar
  43. Demediuk P., Saunders R. D., Anderson D. K., Means E. D., and Horrocks L. A. (1987). Early membrane lipid changes in laminectomized and traumatized cat spinal cord. Neurochem. Pathol. 7:79–89.PubMedGoogle Scholar
  44. Demediuk P., Daly M. P., and Faden A. I. (1988). Free amino acid levels in laminectomized and traumatized rat spinal cord. Trans. Am. Soc. Neurochem. 19:176.Google Scholar
  45. Denecker G., Vercammen D., Declercq W., and Vandenabeele P. (2001). Apoptotic and necrotic cell death induced by death domain receptors. Cell Mol. Life Sci. 58:356–370.PubMedGoogle Scholar
  46. Dienel G. A. (1984). Regional accumulation of calcium in postischemic rat brain. J.-Neurochem. 43:913–925.PubMedGoogle Scholar
  47. Doh-ura K., Iwaki T., and Caughey B. (2000). Lysosomotropic agents and cysteine protease inhibitors inhibit scrapie-associated prion protein accumulation. J.-Virol. 74:4894–4897.PubMedGoogle Scholar
  48. Edgar A. D., Strosznajder J., and Horrocks L. A. (1982). Activation of ethanolamine phospholipase A2 in brain during ischemia. J.-Neurochem. 39:1111–1116.PubMedGoogle Scholar
  49. Eikelenboom P., Bate C., Van Gool W. A., Hoozemans J.-J., Rozemuller J.-M., Veerhuis R., and Williams A. (2002). Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40:232–239.PubMedGoogle Scholar
  50. Ellis E. F., Wright K. F., Wei E. P., and Kontos H. A. (1981). Cyclooxygenase products of arachidonic acid metabolism in cat cerebral cortex after experimental concussive brain injury. J.-Neurochem. 37:892–896.PubMedGoogle Scholar
  51. Fallbrook A., Turenne S. D., Mamalias N., Kish S. J., and Ross B. M. (1999). Phosphatidylcholine and phosphatidylethanolamine metabolites may regulate brain phospholipid catabolism via inhibition of lysophospholipase activity. Brain Res. 834:207–210.PubMedGoogle Scholar
  52. Farooqui A. A. and Horrocks L. A. (1991). Excitatory amino acid receptors, neural membrane phospholipid metabolism and neurological disorders. Brain Res. Rev. 16:171–191.PubMedGoogle Scholar
  53. Farooqui A. A. and Horrocks L. A. (1994). Excitotoxicity and neurological disorders: involvement of membrane phospholipids. Int. Rev. Neurobiol. 36:267–323.PubMedGoogle Scholar
  54. Farooqui A. A. and Horrocks L. A. (1998). Lipid peroxides in the free radical pathophysiology of brain diseases. Cell Mol. Neurobiol. 18:599–608.PubMedGoogle Scholar
  55. Farooqui A. A. and Horrocks L. A. (2006a). Glutamate and cytokine-mediated alterations of phospholipids in head injury and spinal cord trauma. In: Banik N. (ed.), Brain and Spinal Cord Trauma. Handbook of Neurochemistry, Vol. 18. Springer, New York (in press).Google Scholar
  56. Farooqui A. A. and Horrocks L. A. (2006b). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.PubMedGoogle Scholar
  57. Farooqui A. A., Liss L., and Horrocks L. A. (1988). Stimulation of lipolytic enzymes in Alzheimer’s disease. Ann. Neurol. 23:306–308.PubMedGoogle Scholar
  58. Farooqui A. A., Liss L., and Horrocks L. A. (1990). Elevated activities of lipases and lysophospholipases in Alzheimer’s disease. Dementia 1:208–214.Google Scholar
  59. Farooqui A. A., Anderson D. K., and Horrocks L. A. (1993). Effect of glutamate and its analogs on diacylglycerol and monoacylglycerol lipase activities of neuron-enriched cultures. Brain Res. 604:180–184.PubMedGoogle Scholar
  60. Farooqui A. A., Haun S. E., and Horrocks L. A. (1994). Ischemia and hypoxia. In: Siegel G. J., Agranoff B. W., Albers R. W., and Molinoff P. B. (eds.), Basic Neurochemistry. Raven Press, New York, pp.-867–883.Google Scholar
  61. Farooqui A. A., Rapoport S. I., and Horrocks L. A. (1997a). Membrane phospholipid alterations in Alzheimer disease: deficiency of ethanolamine plasmalogens. Neurochem. Res. 22:523–527.PubMedGoogle Scholar
  62. Farooqui A. A., Yang H.-C., and Horrocks L. A. (1997b). Involvement of phospholipase A2 in neurodegeneration. Neurochem. Int. 30:517–522.PubMedGoogle Scholar
  63. Farooqui A. A., Ong W. Y., Horrocks L. A., and Farooqui T. (2000). Brain cytosolic phospholipase A2: localization, role, and involvement in neurological diseases. Neuroscientist 6:169–180.Google Scholar
  64. Farooqui A. A., Ong W. Y., Lu X. R., Halliwell B., and Horrocks L. A. (2001). Neurochemical consequences of kainate-induced toxicity in brain: involvement of arachidonic acid release and prevention of toxicity by phospholipase A2 inhibitors. Brain Res. Rev. 38:61–78.PubMedGoogle Scholar
  65. Farooqui A. A., Ong W. Y., Lu X. R., and Horrocks L. A. (2002). Cytosolic phospholipase A2 inhibitors as therapeutic agents for neural cell injury. Curr. Med. Chem. –– Anti-Inflammatory Anti-Allergy Agents 1:193–204.Google Scholar
  66. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003a). Plasmalogens, docosahexaenoic acid, and neurological disorders. In: Roels F., Baes M., and de Bies S. (eds.), Peroxisomal Disorders and Regulation of Genes. Kluwer Academic/Plenum Publishers, London, pp.-335–354.Google Scholar
  67. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2003b). Stimulation of lipases and phospholipases in Alzheimer disease. In: Szuhaj B. and van Nieuwenhuyzen W. (eds.), Nutrition and Biochemistry of Phospholipids. AOCS Press, Champaign, pp.-14–29.Google Scholar
  68. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004a). Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 29:1961–1977.PubMedGoogle Scholar
  69. Farooqui A. A., Ong W. Y., and Horrocks L. A. (2004b). Neuroprotection abilities of cytosolic phospholipase A2 inhibitors in kainic acid-induced neurodegeneration. Curr. Drug Targets Cardiovasc. Haematol. Disord. 4:85–96.PubMedGoogle Scholar
  70. Fiskum G., Murphy A. N., and Beal M. F. (1999). Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J.-Cereb. Blood Flow Metab. 19:351–369.PubMedGoogle Scholar
  71. Follette P. (2003). New perspectives for prion therapeutics meeting. Prion disease treatment’s early promise unravels. Science 299:191–192.PubMedGoogle Scholar
  72. Gabriel C., Justicia C., Camins A., and Planas A. M. (1999). Activation of nuclear factor-κB in the rat brain after transient focal ischemia. Brain Res. Mol. Brain Res. 65:61–69.PubMedGoogle Scholar
  73. Gasparini L., Ongini E., and Wenk G. (2004). Non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer’s disease: old and new mechanisms of action. J.-Neurochem. 91:521–536.PubMedGoogle Scholar
  74. Gattaz W. F., Maras A., Cairns N. J., Levy R., and Förstl H. (1995). Decreased phospholipase A2 activity in Alzheimer brains. Biol. Psychiatry 37:13–17.PubMedGoogle Scholar
  75. Gattaz W. F., Forlenza O. V., Talib L. L., Barbosa N. R., and Bottino C. M. (2004). Platelet phospholipase A2 activity in Alzheimer’s disease and mild cognitive impairment. J.-Neural Transm. 111:591–601.PubMedGoogle Scholar
  76. Ginsberg L., Xuereb J.-H., and Gershfeld N. L. (1998). Membrane instability, plasmalogen content, and Alzheimer’s disease. J.-Neurochem. 70:2533–2538.PubMedCrossRefGoogle Scholar
  77. Gorman A. M., McGowan A., O’Neill C., and Cotter T. (1996). Oxidative stress and apoptosis in neurodegeneration. J.-Neurol. Sci. 139(Suppl.):45–52.PubMedGoogle Scholar
  78. Graeber M. B. and Moran L. B. (2002). Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol. 12:385–390.PubMedCrossRefGoogle Scholar
  79. Graham S. H. and Chen J.-(2001). Programmed cell death in cerebral ischemia. J.-Cereb. Blood Flow Metab. 21:99–109.PubMedGoogle Scholar
  80. Griffiths T., Evans M. C., and Meldrum B. S. (1983). Temporal lobe epilepsy, excitotoxins and the mechanism of selective neuronal loss. In: Fuxe K., Roberts P., and Schwarcz R. (eds.), Excitotoxins. Macmillan Publ. Co. Inc., New York, pp.-331–342.Google Scholar
  81. Grossman A., Zeiler B., and Sapirstein V. (2003). Prion protein interactions with nucleic acid: possible models for prion disease and prion function. Neurochem. Res. 28:955–963.PubMedGoogle Scholar
  82. Guan Z., Söderberg M., Sindelar P., Prusiner S. B., Kristensson K., and Dallner G. (1996). Lipid composition in scrapie-infected mouse brain: prion infection increases the levels of dolichyl phosphate and ubiquinone. J.-Neurochem. 66:277–285.PubMedCrossRefGoogle Scholar
  83. Guan Z. Z., Wang Y. A., Cairns N. J., Lantos P. L., Dallner G., and Sindelar P. J.-(1999). Decrease and structural modifications of phosphatidylethanolamine plasmalogen in the brain with Alzheimer disease. J.-Neuropathol. Exp. Neurol. 58:740–747.PubMedGoogle Scholar
  84. Hall E. D. (1996). Free radicals and lipid peroxidation in neurotrauma. In: Narayan R. K., Wilberger J.-E., and Povlishock J.-T. (eds.), Neurotrauma. McGraw Hill, New York, pp.-1405–1419.Google Scholar
  85. Han X. L., Holtzman D. M., and McKeel D. W., Jr. (2001). Plasmalogen deficiency in early Alzheimer’s disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J.-Neurochem. 77:1168–1180.PubMedGoogle Scholar
  86. Han W. K., Sapirstein A., Hung C. C., Alessandrini A., and Bonventre J.-V. (2003). Cross-talk between cytosolic phospholipase A2α (cPLA) and secretory phospholipase A2 (sPLA2) in hydrogen peroxide-induced arachidonic acid release in murine mesangial cells –– sPLA2 regulates cPLA activity that is responsible for arachidonic acid release. J.-Biol. Chem. 278:24153–24163.PubMedGoogle Scholar
  87. Hayes R. L., Jenkins L. W., and Lyeth B. G. (1992). Neurotransmitter-mediated mechanisms of traumatic brain injury: Acetylcholine and excitatory amino acids. J.-Neurotrauma 9:S173–S187.PubMedGoogle Scholar
  88. Hayes K. C., Hull T. C., Delaney G. A., Potter P. J., Sequeira K. A., Campbell K., and Popovich P. G. (2002). Elevated serum titers of proinflammatory cytokines and CNS autoantibodies in patients with chronic spinal cord injury. J.-Neurotrauma 19:753–761.PubMedGoogle Scholar
  89. Hernández M., Nieto M. L., and Sánchez Crespo M. (2000). Cytosolic phospholipase A2 and the distinct transcriptional programs of astrocytoma cells. Trends Neurosci. 23:259–264.PubMedGoogle Scholar
  90. Hirashima Y., Koshu K., Kamiyama K., Nishijima M., Endo S., and Takaku A. (1984). The activities of phospholipase A1, A2, lysophospholipase and acyl CoA: Lysophospholipid acyltransferase in ischemic dog brain. In: Go K. G. and Baethmann A. (eds.), Recent Progress in the Study and Therapy of Brain Edema. Plenum Pub.Corp., New York, pp.-213–221.Google Scholar
  91. Horrocks L. A., Demediuk P., Saunders R. D., Dugan L., Clendenon N. R., Means E. D., and Anderson D. K. (1985). The degradation of phospholipids, formation of metabolites of arachidonic acid, and demyelination following experimental spinal cord injury. Cent. Nerv. Syst. Trauma 2:115–120.PubMedGoogle Scholar
  92. Husted C. A., Matson G. B., Adams D. A., Goodin D. S., and Weiner M. W. (1994). In vivo detection of myelin phospholipids in multiple sclerosis with phosphorus magnetic resonance spectroscopic imaging. Ann. Neurol. 36:239–241.PubMedGoogle Scholar
  93. Huterer S. J., Tourtellotte W. W., and Wherrett J.-R. (1995). Alterations in the activity of phospholipases A2 in post-mortem white matter from patients with multiple sclerosis. Neurochem. Res. 20:1335–1343.PubMedGoogle Scholar
  94. Ichinose F., Ullrich R., Sapirstein A., Jones R. C., Bonventre J.-V., Serhan C. N., Bloch K. D., and Zapol W. M. (2002). Cytosolic phospholipase A2 in hypoxic pulmonary vasoconstriction. J.-Clin. Invest. 109:1493–1500.PubMedGoogle Scholar
  95. Ikeda M., Yoshida S., Busto R., Santiso M., and Ginsberg M. D. (1986). Polyphosphoinositides as a probable source of brain free fatty acids accumulated at the onset of ischemia. J.-Neurochem. 47:123–132.PubMedCrossRefGoogle Scholar
  96. Jeffrey M., Goodsir C. M., Bruce M. E., McBride P. A., Scott J.-R., and Halliday W. G. (1992). Infection specific prion protein (PrP) accumulates on neuronal plasmalemma in scrapie infected mice. Neurosci. Lett. 147:106–109.PubMedGoogle Scholar
  97. Jin J.-K., Kim N. H., Min D. S., Kim J.-I., Choi J.-K., Jeong B. H., Choi S. I., Choi E. K., Carp R. I., and Kim Y. S. (2005). Increased expression of phospholipase D1 in the brains of scrapie-infected mice. J.-Neurochem. 92:452–461.PubMedGoogle Scholar
  98. Juranek I. and Bezek S. (2005). Controversy of free radical hypothesis: Reactive oxygen species – cause or consequence of tissue injury? Gen. Physiol. Biophys. 24:263–278.PubMedGoogle Scholar
  99. Kajiwara K., Nagawawa H., Shimizu-Nishikawa S., Ookuri T., Kimura M., and Sugaya E. (1996). Molecular characterization of seizure-related genes isolated by differential screening. Biochem. Biophys. Res. Commun. 219:795–799.PubMedGoogle Scholar
  100. Kalyvas A. and David S. (2004). Cytosolic phospholipase A2 plays a key role in the pathogenesis of multiple sclerosis-like disease. Neuron 41:323–335.PubMedGoogle Scholar
  101. Kanfer J.-N., Sorrentino G., and Sitar D. S. (1998). Phospholipases as mediators of amyloid β-peptide neurotoxicity: an early event contributing to neurodegeneration characteristic of Alzheimer’s disease. Neurosci. Lett. 257:93–96.PubMedGoogle Scholar
  102. Kidd P. M. (2005). Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management. Altern. Med. Rev. 10:268–293.PubMedGoogle Scholar
  103. Kihara Y., Ishii S., Kita Y., Toda A., Shimada A., and Shimizu T. (2005). Dual phase regulation of experimental allergic encephalomyelitis by platelet-activating factor. J.-Exp. Med. 202:853–863.PubMedGoogle Scholar
  104. Kim D. K., Rordorf G., Nemenoff R. A., Koroshetz W. J., and Bonventre J.-V. (1995). Glutamate stably enhances the activity of two cytosolic forms of phospholipase A2 in brain cortical cultures. Biochem. J.-310:83–90.PubMedGoogle Scholar
  105. Klivenyi P., Beal M. F., Ferrante R. J., Andreassen O. A., Wermer M., Chin M. R., and Bonventre J.-V. (1998). Mice deficient in group IV cytosolic phospholipase A2 are resistant to MPTP neurotoxicity. J.-Neurochem. 71:2634–2637.PubMedCrossRefGoogle Scholar
  106. Klunk W. E., Xu C. J., McClure R. J., Panchalingam K., Stanley J.-A., and Pettegrew J.-W. (1997). Aggregation of β-amyloid peptide is promoted by membrane phospholipid metabolites elevated in Alzheimer’s disease brain. J.-Neurochem. 69:266–272.PubMedCrossRefGoogle Scholar
  107. Klussmann S. and Martin-Villalba A. (2005). Molecular targets in spinal cord injury. J.-Mol. Med. 83:657–671.PubMedGoogle Scholar
  108. Korth C., May B. C., Cohen F. E., and Prusiner S. B. (2001). Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proc. Natl Acad. Sci. USA 98:9836–9841.PubMedGoogle Scholar
  109. Kriem B., Sponne I., Fifre A., Malaplate-Armand C., Lozac’h-Pillot K., Koziel V., Yen-Potin F. T., Bihain B., Oster T., Olivier J.-L., and Pillot T. (2004). Cytosolic phospholipase A2 mediates neuronal apoptosis induced by soluble oligomers of the amyloid-beta peptide. FASEB J.-18:doi:10.1096/fj.04–1807fje.Google Scholar
  110. Kristensson K., Feuerstein B., Taraboulos A., Hyun W. C., Prusiner S. B., and DeArmond S. J.-(1993). Scrapie prions alter receptor-mediated calcium responses in cultured cells. Neurology 43:2335–2341.PubMedGoogle Scholar
  111. Kristiansen M., Messenger M. J., Klohn P. C., Brandner S., Wadsworth J.-D., Collinge J., and Tabrizi S. J.-(2005). Disease-related prion protein forms aggresomes in neuronal cells leading to caspase activation and apoptosis. J.-Biol. Chem. 280:38851–38861.PubMedGoogle Scholar
  112. LeBlanc A. C. (2005). The role of apoptotic pathways in Alzheimer’s disease neurodegeneration and cell death. Curr. Alzheimer Res. 2:389–402.Google Scholar
  113. Lee H. G., Casadesus G., Zhu X. W., Takeda A., Perry G., and Smith M. A. (2004). Challenging the amyloid cascade hypothesis –– Senile plaques and amyloid-beta as protective adaptations to Alzheimer disease. In: DeGrey A. D. N. (ed.), Strategies for Engineered Negligible Senescence: Why Genuine Control of Aging May Be Foreseeable. New York Acad Sciences, pp.-1–4.Google Scholar
  114. Lehtonen J.-Y. A., Holopainen J.-M., and Kinnunen P. K. J.-(1996). Activation of phospholipase A2 by amyloid β-peptides in-vitro. Biochemistry 35:9407–9414.PubMedGoogle Scholar
  115. Leker R. R. and Shohami E. (2002). Cerebral ischemia and trauma – different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res. Rev. 39:55–73.PubMedGoogle Scholar
  116. Lev N., Melamed E., and Offen D. (2003). Apoptosis and Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 27:245–250.PubMedGoogle Scholar
  117. Lin T. N., Wang Q., Simonyi A., Chen J.-J., Cheung W. M., He Y. Y., Xu J., Sun A. Y., Hsu C. Y., and Sun G. Y. (2004). Induction of secretory phospholipase A2 in reactive astrocytes in response to transient focal cerebral ischemia in the rat brain. J.-Neurochem. 90:637–645.PubMedGoogle Scholar
  118. Liu D. X., Li L. P., and Augustus L. (2001). Prostaglandin release by spinal cord injury mediates production of hydroxyl radical, malondialdehyde and cell death: a site of the neuroprotective action of methylprednisolone. J.-Neurochem. 77:1036–1047.PubMedGoogle Scholar
  119. Love R. (2001). Old drugs to treat new variant Creutzfeldt-Jakob disease. Lancet 358:563.PubMedGoogle Scholar
  120. Lukácová N., Halát G., Chavko M., and Marsˇala J.-(1996). Ischemia-reperfusion injury in the spinal cord of rabbits strongly enhances lipid peroxidation and modifies phospholipid profiles. Neurochem. Res. 21:869–873.PubMedGoogle Scholar
  121. Lukiw W. J., Cui J.-G., Marcheselli V. L., Bodker M., Botkjaer A., Gotlinger K., Serhan C. N., and Bazan N. G. (2005). A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J.-Clin. Invest. 115:2774–2783.PubMedGoogle Scholar
  122. Maeba R. and Ueta N. (2003). Ethanolamine plasmalogens prevent the oxidation of cholesterol by reducing the oxidizability of cholesterol in phospholipid bilayers. J.-Lipid Res. 44:164–171.PubMedGoogle Scholar
  123. Manguikian A. D. and Barbour S. E. (2004). Cell cycle dependence of group VIA calcium-independent phospholipase A2 activity. J.-Biol. Chem. 279:52881–52892.PubMedGoogle Scholar
  124. Marusic S., Leach M. W., Pelker J.-W., Azoitei M. L., Uozumi N., Cui J.-Q., Shen M. W. H., DeClercq C. M., Miyashiro J.-S., Carito B. A., Thakker P., Simmons D. L., Leonard J.-P., Shimizu T., and Clark J.-D. (2005). Cytosolic phospholipase A-deficient mice are resistant to experimental autoimmune encephalomyelitis. J.-Exp. Med. 202:841–851.PubMedGoogle Scholar
  125. Matute C., Domercq M., and Sánchez-Gómez M. V. (2006). Glutamate-mediated glial injury: Mechanisms and clinical importance. Glia 53:212–224.PubMedGoogle Scholar
  126. May B. C. H., Fafarman A. T., Hong S. B., Rogers M., Deady L. W., Prusiner S. B., and Cohen F. E. (2003). Potent inhibition of scrapie prion replication in cultured cells by bis-acridines. Proc. Natl Acad. Sci. USA 100:3416–3421.PubMedGoogle Scholar
  127. McGeer E. G. and McGeer P. L. (1998). The importance of inflammatory mechanisms in Alzheimer disease. Exp. Gerontol. 33:371–378.PubMedGoogle Scholar
  128. McIntosh T. K., Saatman K. E., Raghupathi R., Graham D. I., Smith D. H., Lee V. M., and Trojanowski J.-Q. (1998). The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol. Appl. Neurobiol. 24:251–267.PubMedGoogle Scholar
  129. McKracken E., Graham D. I., Nilsen M., Stewart J., Nicoll J.-A., and Horsburgh K. (2001). 4-Hydroxynonenal immunoreactivity is increased in human hippocampus after global ischemia. Brain Pathol. 11:414–421.PubMedCrossRefGoogle Scholar
  130. Minghetti L., Greco A., Cardone F., Puopolo M., Ladogana A., Almonti S., Cunningham C., Perry V. H., Pocchiari M., and Levi G. (2000). Increased brain synthesis of prostaglandin E2 and F2-isoprostane in human and experimental transmissible spongiform encephalopathies. J.-Neuropathol. Exp. Neurol. 59:866–871.PubMedGoogle Scholar
  131. Montine T. J.-and Morrow J.-D. (2005). Fatty acid oxidation in the pathogenesis of Alzheimer’s disease. Am. J.-Pathol. 166:1283–1289.PubMedGoogle Scholar
  132. Montine T. J., Sidell K. R., Crews B. C., Markesbery W. R., Marnett L. J., Roberts L. J., and Morrow J.-D. (1999). Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology 53:1495–1498.PubMedGoogle Scholar
  133. Moreira P. I., Oliveira C. R., Santos M. S., Nunomura A., Honda K., Zhu X. W., Smith M. A., and Perry G. (2005a). A second look into the oxidant mechanisms in Alzheimer’s disease. Curr. Neurovasc. Res. 2:179–184.PubMedGoogle Scholar
  134. Moreira P. L., Smith M. A., Zhu X. W., Honda K., Lee H. G., Aliev G., and Perry G. (2005b). Oxidative damage and Alzheimer’s disease: Are antioxidant therapies useful? Drug News Perspect. 18:13–19.PubMedGoogle Scholar
  135. Muller W. E. G., Ushijima H., Schroder H. C., Forrest J.-M. S., Schatton W. F. H., Rytik P. G., and Heffner-Lauc M. (1993). Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-induced toxicity in rat cortical cell cultures. Eur. J.-Pharmacol. 246:261–267.Google Scholar
  136. Munch G., Gasic-Milenkovic J., and Arendt T. (2003). Effect of advanced glycation endproducts on cell cycle and their relevance for Alzheimer’s disease. In: Horowski R., Mizuno Y., Olanow C. W., Poewe W. H., Riederer P., Stoessl J.-A., and Youdim M. B. H. (eds.), Advances in Research on Neurodegeneration. Springer-Verlag Wien, Vienna, pp.-63–71.Google Scholar
  137. Murakami M., Nakatani Y., Atsumi G., Inoue K., and Kudo I. (1997). Regulatory functions of phospholipase A2. Crit. Rev. Immunol. 17:225–283.PubMedGoogle Scholar
  138. Nagatsu T. and Sawada M. (2005). Inflammatory process in Parkinson’s disease: role for cytokines. Curr. Pharm. Des. 11:999–1016.PubMedGoogle Scholar
  139. Neu I. S., Metzger G., Zschocke J., Zelezny R., and Mayatepek E. (2002). Leukotrienes in patients with clinically active multiple sclerosis. Acta Neurol. Scand. 105:63–66.PubMedGoogle Scholar
  140. Newcombe J., Li H., and Cuzner M. L. (1994). Low density lipoprotein uptake by macrophages in multiple sclerosis plaques: implications for pathogenesis. Neuropathol. Appl. Neurobiol. 20:152–162.PubMedGoogle Scholar
  141. Nourooz-Zadeh J., Liu E. H. C., Yhlen B., Änggård E. E., and Halliwell B. (1999). F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer’s disease. J.-Neurochem. 72:734–740.PubMedGoogle Scholar
  142. Numazawa S., Ishikawa M., Yoshida A., Tanaka S., and Yoshida T. (2003). Atypical protein kinase C mediates activation of NF-E2-related factor 2 in response to oxidative stress. Am. J.-Physiol. Cell Physiol. 285:C334–C342.PubMedGoogle Scholar
  143. Nunomura A., Perry G., Aliev G., Hirai K., Takeda A., Balraj E. K., Jones P. K., Ghanbari H., Wataya T., Shimohama S., Chiba S., Atwood C. S., Petersen R. B., and Smith M. A. (2001). Oxidative damage is the earliest event in Alzheimer disease. J.-Neuropathol. Exp. Neurol. 60:759–767.PubMedGoogle Scholar
  144. Oka A., Belliveau M. J., Rosenberg P. A., and Volpe J.-J.(1993). Vulnerability of oligodendroglia to glutamate: pharmacology, mechanisms, and prevention. J.-Neurosci. 13:1441–1453.PubMedGoogle Scholar
  145. Olney J.-W., Fuller T., and de Gubareff T. (1979). Acute dendrotoxic changes in the hippocampus of kainate treated rats. Brain Res. 176:91–100.PubMedGoogle Scholar
  146. Ong W. Y., Lu X. R., Ong B. K. C., Horrocks L. A., Farooqui A. A., and Lim S. K. (2003). Quinacrine abolishes increases in cytoplasmic phospholipase A2 mRNA levels in the rat hippocampus after kainate-induced neuronal injury. Exp. Brain Res. 148:521–524.PubMedGoogle Scholar
  147. Owada Y., Tominaga T., Yoshimoto T., and Kondo H. (1994). Molecular cloning of rat cDNA for cytosolic phospholipase A2 and the increased gene expression in the dentate gyrus following transient forebrain ischemia. Mol. Brain Res. 25:364–368.PubMedGoogle Scholar
  148. Pamplona R., Dalfó E., Ayala V., Bellmunt M. J., Prat J., Ferrer I., and Portero-Otín M. (2005). Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J.-Biol. Chem. 280:21522–21530.PubMedGoogle Scholar
  149. Panter S. S., Yum S. W., and Faden A. I. (1990). Alteration in extracellular amino acids after traumatic spinal cord injury. Ann. Neurol. 27:96–99.PubMedGoogle Scholar
  150. Pasinetti G. M. and Aisen P. S. (1998). Cyclooxygenase-2 expression is increased in frontal cortex of Alzheimer’s disease brain. Neuroscience 87:319–324.PubMedGoogle Scholar
  151. Perovic S., Pergande G., Ushijima H., Kelve M., Forrest J., and Muller W. E. G. (1995). Flupirtine partially prevents neuronal injury induced by prion protein fragment and lead acetate. Neurodegeneration 4:369–374.PubMedGoogle Scholar
  152. Peterson C. and Goldman J.-E. (1986). Alterations in calcium content and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors. Proc. Natl Acad. Sci. USA 83:2758–2762.PubMedGoogle Scholar
  153. Peterson C., Gibson G. E., and Blass J.-P. (1985). Altered calcium uptake in cultured skin fibroblasts from patients with Alzheimer’s disease. New Engl. J.-Med. 312:1063–1069.PubMedCrossRefGoogle Scholar
  154. Pettegrew J.-W. (1989). Molecular insights into Alzheimer disease. Ann. NY Acad. Sci. 568:5–28.PubMedGoogle Scholar
  155. Pettegrew J.-W., Klunk W. E., Kanal E., Panchalingam K., and McClure R. J.-(1995). Changes in brain membrane phospholipid and high-energy phosphate metabolism precede dementia. Neurobiol. Aging 16:973–975.PubMedGoogle Scholar
  156. Pettegrew J.-W., Panchalingam K., Hamilton R. L., and McClure R. J.-(2001). Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem. Res. 26:771–782.PubMedGoogle Scholar
  157. Peyrin J.-M., Lasmezas C. I., Haik S., Tagliavini F., Salmona M., Williams A., Richie D., Deslys J.-P., and Dormont D. (1999). Microglial cells respond to amyloidogenic PrP peptide by the production of inflammatory cytokines. NeuroReport 10:723–729.PubMedGoogle Scholar
  158. Phillis J.-W. and O’Regan M. H. (2004). A potentially critical role of phospholipases in central nervous system ischemic, traumatic, and neurodegenerative disorders. Brain Res. Rev. 44:13–47.PubMedGoogle Scholar
  159. Phillis J.-W., Horrocks L. A., and Farooqui A. A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. (in press).Google Scholar
  160. Pinto F., Brenner T., Dan P., Krimsky M., and Yedgar S. (2003). Extracellular phospholipase A2 inhibitors suppress central nervous system inflammation. Glia 44:275–282.PubMedGoogle Scholar
  161. Prasad M. R., Lovell M. A., Yatin M., Dhillon H., and Markesbery W. R. (1998). Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem. Res. 23:81–88.PubMedGoogle Scholar
  162. Prusiner S. B. (2001). Shattuck lecture – neurodegenerative diseases and prions. New Engl. J.-Med. 344:1516–1526.PubMedGoogle Scholar
  163. Raghupathi R. (2004). Cell death mechanisms following traumatic brain. Brain Pathol. 14:215–222.PubMedCrossRefGoogle Scholar
  164. Ray P., Ray R., Broomfield C. A., and Berman J.-D. (1994). Inhibition of bioenergetics alters intracellular calcium, membrane composition, and fluidity in a neuronal cell line. Neurochem. Res. 19:57–63.PubMedGoogle Scholar
  165. Ray S. K., Hogan E. L., and Banik N. L. (2003). Calpain in the pathophysiology of spinal cord injury: neuroprotection with calpain inhibitors. Brain Res. Rev. 42:169–185.PubMedGoogle Scholar
  166. Refsgaard H. H. F., Tsai L., and Stadtman E. R. (2000). Modifications of proteins by polyunsaturated fatty acid peroxidation products. Proc. Natl Acad. Sci. USA 97:611–616.PubMedGoogle Scholar
  167. Rordorf G., Uemura Y., and Bonventre J.-V. (1991). Characterization of phospholipase A2 (PLA2) activity in gerbil brain: enhanced activities of cytosolic, mitochondrial, and microsomal forms after ischemia and reperfusion. J.-Neurosci. 11:1829–1836.PubMedGoogle Scholar
  168. Rosales-Corral S., Tan D. X., Reiter R. J., Valdivia-Velázquez M., Acosta-Martínez J.-P., and Ortiz G. G. (2004). Kinetics of the neuroinflammation-oxidative stress correlation in rat brain following the injection of fibrillar amyloid-β onto the hippocampus in-vivo. J.-Neuroimmunol. 150:20–28.PubMedGoogle Scholar
  169. Rosenberger T. A., Villacreses N. E., Contreras M. A., Bonventre J.-V., and Rapoport S. I. (2003). Brain lipid metabolism in the cPLA2 knockout mouse. J.-Lipid Res. 44:109–117.PubMedGoogle Scholar
  170. Ross B. M. and Kish S. J.-(1994). Characterization of lysophospholipid metabolizing enzymes in human brain. J.-Neurochem. 63:1839–1848.PubMedCrossRefGoogle Scholar
  171. Ross B. M., Moszczynska A., Erlich J., and Kish S. J.-(1998). Low activity of key phospholipid catabolic and anabolic enzymes in human substantia nigra: possible implications for Parkinson’s disease. Neuroscience 83:791–798.PubMedGoogle Scholar
  172. Ross B. M., Mamalias N., Moszczynska A., Rajput A. H., and Kish S. J.-(2001). Elevated activity of phospholipid biosynthetic enzymes in substantia nigra of patients with Parkinson’s disease. Neuroscience 102:899–904.PubMedGoogle Scholar
  173. Rossi G., Salmona M., Forloni G., Bugiani O., and Tagliavini F. (2003). Therapeutic approaches to prion diseases. Clin. Lab. Med. 23:187–208.PubMedGoogle Scholar
  174. Rothstein J.-D., Dykes-Hoberg M., Pardo C. A., Bristol L. A., Jin L., Kuncl R. W., Kanai Y., Hediger M. A., Wang Y., Schielke J.-P., and Welty D. F. (1996). Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16:675–686.PubMedGoogle Scholar
  175. Sandhya T. L., Ong W. Y., Horrocks L. A., and Farooqui A. A. (1998). A light and electron microscopic study of cytoplasmic phospholipase A2 and cyclooxygenase-2 in the hippocampus after kainate lesions. Brain Res. 788:223–231.PubMedGoogle Scholar
  176. Sanfeliu C., Hunt A., and Patel A. J.-(1990). Exposure to N-methyl-D-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurons and not in astrocytes. Brain Res. 526:241–248.PubMedGoogle Scholar
  177. Sapirstein A. and Bonventre J.-V. (2000). Phospholipases A2 in ischemic and toxic brain injury. Neurochem. Res. 25:745–753.PubMedGoogle Scholar
  178. Saresella M., Marventano I., Speciale L., Ruzzante S., Trabattoni D., Della B. S., Filippi M., Fasano F., Cavarretta R., Caputo D., Clerici M., and Ferrante P. (2005). Programmed cell death of myelin basic protein-specific T lymphocytes is reduced in patients with acute multiple sclerosis. J.-Neuroimmunol. 166:173–179.PubMedGoogle Scholar
  179. Saunders R. and Horrocks L. A. (1987). Eicosanoids, plasma membranes, and molecular mechanisms of spinal cord injury. Neurochem. Pathol. 7:1–22.PubMedGoogle Scholar
  180. Schapira A. H. V. (1996). Oxidative stress and mitochondrial dysfunction in neurodegeneration. Curr. Opin. Neurol. 9:260–264.PubMedGoogle Scholar
  181. Schneider A., Martin-Villalba A., Weih F., Vogel J., Wirth T., and Schwaninger M. (1999). NF-kappaB is activated and promotes cell death in focal cerebral ischemia. Nat. Med. 5:554–559.PubMedGoogle Scholar
  182. Schuhmann M. U., Mokhtarzadeh M., Stichtenoth D. O., Skardelly M., Klinge P. A., Gutzki F. M., Samii M., and Brinker T. (2003). Temporal profiles of cerebrospinal fluid leukotrienes, brain edema and inflammatory response following experimental brain injury. Neurol. Res. 25:481–491.PubMedGoogle Scholar
  183. Selley M. L., Close D. R., and Stern S. E. (2002). The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol. Aging 23:383–388.PubMedGoogle Scholar
  184. Shohami E., Shapira Y., Sidi A., and Cotev S. (1987). Head injury induces increased prostaglandin synthesis in rat brain. J.-Cereb. Blood Flow Metab. 7:58–63.PubMedGoogle Scholar
  185. Shohami E., Shapira Y., Yadid G., Reisfeld N., and Yedgar S. (1989). Brain phospholipase A2 is activated after experimental closed head injury in the rat. J.-Neurochem. 53:1541–1546.PubMedGoogle Scholar
  186. Siesjö B. K. (1978). Brain Energy Metabolism. John Wiley & Sons, New York.Google Scholar
  187. Siesjö B. K. (1988a). Historical overview: calcium, ischemia, and death of brain cells. Ann. NY Acad. Sci. 522:638–661.PubMedGoogle Scholar
  188. Siesjö B. K. (1988b). Mechanisms of ischemic brain damage. Crit. Care Med. 16:954–963.PubMedCrossRefGoogle Scholar
  189. Singer T. P., Castagnoli N., Jr., Ramsay R. R., and Trevor A. J.-(1987). Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J.-Neurochem. 49:1–8.PubMedGoogle Scholar
  190. Söderberg M., Edlund C., Kristensson K., and Dallner G. (1990). Lipid compositions of different regions of the human brain during aging. J.-Neurochem. 54:415–423.PubMedGoogle Scholar
  191. Söderberg M., Edlund C., Kristensson K., and Dallner G. (1991). Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease. Lipids 26:421–425.PubMedGoogle Scholar
  192. Springer J.-E., Azbill R. D., Mark R. J., Begley J.-G., Wäg G., and Mattson M. P. (1997). 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J.-Neurochem. 68:2469–2476.PubMedCrossRefGoogle Scholar
  193. Springer J.-E., Azbill R. D., and Knapp P. E. (1999). Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury. Nat. Med. 5:943–946.PubMedGoogle Scholar
  194. Stephenson D. T., Lemere C. A., Selkoe D. J., and Clemens J.-A. (1996). Cytosolic phospholipase A2 (cPLA2) immunoreactivity is elevated in Alzheimer’s disease brain. Neurobiol. Dis. 3:51–63.PubMedGoogle Scholar
  195. Stephenson D., Rash K., Smalstig B., Roberts E., Johnstone E., Sharp J., Panetta J., Little S., Kramer R., and Clemens J.-(1999). Cytosolic phospholipase A2 is induced in reactive glia following different forms of neurodegeneration. Glia 27:110–128.PubMedGoogle Scholar
  196. Stewart L. R., White A. R., Jobling M. F., Needham B. E., Maher F., Thyer J., Beyreuther K., Masters C. L., Collins S. J., and Cappai R. (2001). Involvement of the 5-lipoxygenase pathway in the neurotoxicity of the prion peptide PrP106–126. J.-Neurosci. Res. 65:565–572.PubMedGoogle Scholar
  197. Stokes C. E. and Hawthorne J.-N. (1987). Reduced phosphoinositide concentration in anterior temporal cortex of Alzheimer’s diseased brains. J.-Neurochem. 48:1018–1021.PubMedGoogle Scholar
  198. Stokes B. T. and Somerson S. K. (1987). Spinal cord extracellular microenvironment. Can the changes resulting from trauma be graded? Neurochem. Pathol. 7:47–55.PubMedGoogle Scholar
  199. Stokes B. T., Fox P., and Hollinden G. (1983). Extracellular calcium activity in the injured spinal cord. Exp. Neurol. 80:561–572.PubMedGoogle Scholar
  200. Sugaya K., Uz T., Kumar V., and Manev H. (2000). New anti-inflammatory treatment strategy in Alzheimer’s disease. Jpn J.-Pharmacol. 82:85–94.PubMedGoogle Scholar
  201. Sun G. Y. and Foudin L. L. (1984). On the status of lysolecithin in rat cerebral cortex during ischemia. J.-Neurochem. 43:1081–1086.PubMedGoogle Scholar
  202. Sun G. Y., Xu J.-F., Jensen M. D., and Simonyi A. (2004). Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J.-Lipid Res. 45:205–213.PubMedGoogle Scholar
  203. Sundström E. and Mo L. L. (2002). Mechanisms of glutamate release in the rat spinal cord slices during metabolic inhibition. J.-Neurotrauma 19:257–266.PubMedGoogle Scholar
  204. Syburra C. and Passi S. (1999). Oxidative stress in patients with multiple sclerosis. Ukr. Biokhim. Zh. 71:112–115.PubMedGoogle Scholar
  205. Tabuchi S., Uozumi N., Ishii S., Shimizu Y., Watanabe T., and Shimizu T. (2003). Mice deficient in cytosolic phospholipase A2 are less susceptible to cerebral ischemia/reperfusion injury. In: Kuroiwa T., Baethmann A., Czernicki Z., Hoff J.-T., Ito U., Katayama Y., Mararou A., Mendelow A. D., and Reulen H. J.-(eds.), Brain Edema XII. Springer-Verlag Wien, Vienna, pp.-169–172.Google Scholar
  206. Taylor W. A. (1988). Effects of impact injury of rat spinal cord on activities of some-enzymes of lipid hydrolysis. Dissertation. The Ohio State University, Columbus, OH.Google Scholar
  207. Teismann P., Vila M., Choi D. K., Tieu K., Wu D. C., Jackson-Lewis V., and Przedborski S. (2003). COX-2 and neurodegeneration in Parkinson’s disease. Ann. NY Acad. Sci. 991:272–277.PubMedCrossRefGoogle Scholar
  208. Trigueros S. D. A., Kalyvas A., and David S. (2003). Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration. Mol. Cell. Neurosci. 24:753–765.PubMedGoogle Scholar
  209. Tsutsui S., Schnermann J., Noorbakhsh F., Henry S., Yong V. W., Winston B. W., Warren K., and Power C. (2004). A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J.-Neurosci. 24:1521–1529.PubMedGoogle Scholar
  210. Uozumi N. and Shimizu T. (2002). Roles for cytosolic phospholipase A2α as revealed by gene-targeted mice. Prostaglandins Other Lipid Mediat. 68–69:59–69.PubMedGoogle Scholar
  211. van Rossum G. S. A. T., Vlug A. S., van den Bosch H., Verkleij A. J., and Boonstra J.-(2001). Cytosolic phospholipase A2 activity during the ongoing cell cycle. J.-Cell. Physiol. 188:321–328.PubMedGoogle Scholar
  212. van Rossum G. S. A. T., Bijvelt J.-J. M., van den Bosch H., Verkleij A. J., and Boonstra J.-(2002). Cytosolic phospholipase A2 and lipoxygenase are involved in cell cycle progression in neuroblastoma cells. Cell. Mol. Life Sci. 59:181–188.PubMedGoogle Scholar
  213. Viani P., Zini I., Cervato G., Biagini G., Agnati L. F., and Cestaro B. (1995). Effect of endothelin-1 induced ischemia on peroxidative damage and membrane properties in rat striatum synaptosomes. Neurochem. Res. 20:689–695.PubMedGoogle Scholar
  214. Visioli F., Rodriguez de Turco E. B., Kreisman N. R., and Bazan N. G. (1994). Membrane lipid degradation is related to interictal cortical activity in a series of seizures. Metab. Brain Dis. 9:161–170.PubMedGoogle Scholar
  215. Walton M., Sirimanne E., Williams C., Gluckman P. D., Keelan J., Mitchell M. D., and Dragunow M. (1997). Prostaglandin H synthase-2 and cytosolic phospholipase A2 in the hypoxic–ischemic brain: role in neuronal death or survival? Mol. Brain Res. 50:165–170.PubMedGoogle Scholar
  216. Wang Q., Yu S., Simonyi A., Sun G. Y., and Sun A. Y. (2005). Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol. Neurobiol. 31:3–16.PubMedGoogle Scholar
  217. Wei E. P., Lamb R. G., and Kontos H. A. (1982). Increased phospholipase C activity after experimental brain injury. J.-Neurosurg. 56:695–698.PubMedGoogle Scholar
  218. Wells K., Farooqui A. A., Liss L., and Horrocks L. A. (1995). Neural membrane phospholipids in Alzheimer disease. Neurochem. Res. 20:1329–1333.PubMedGoogle Scholar
  219. Wilson R. and Tocher D. R. (1991). Lipid and fatty acid composition is altered in plaque tissue from multiple sclerosis brain compared with normal brain white matter. Lipids 26:9–15.PubMedGoogle Scholar
  220. Wissing D., Mouritzen H., Egeblad M., Poirier G. G., and Jäättelä M. (1997). Involvement of caspase-dependent activation of cytosolic phospholipase A2 in tumor necrosis factor-induced apoptosis. Proc. Natl Acad. Sci. USA 94:5073–5077.PubMedGoogle Scholar
  221. Xu J., Hsu C. Y., Liu T. H., Hogan E. L., Perot P. L., Jr., and Tai H.-H. (1990). Leukotriene B4 release and polymorphonuclear cell infiltration in spinal cord injury. J.-Neurochem. 55:907–912.PubMedGoogle Scholar
  222. Xu J.-F., Yu S., Sun A. Y., and Sun G. Y. (2003). Oxidant-mediated AA release from astrocytes involves cPLA2 and iPLA2. Free Radic. Biol. Med. 34:1531–1543.PubMedGoogle Scholar
  223. Yegin A., Akbas S. H., Ozben T., and Korgun D. K. (2002). Secretory phospholipase A2 and phospholipids in neural membranes in an experimental epilepsy model. Acta Neurol. Scand. 106:258–262.PubMedGoogle Scholar
  224. Yoshinaga N., Yasuda Y., Murayama T., and Nomura Y. (2000). Possible involvement of cytosolic phospholipase A2 in cell death induced by 1-methyl-4-phenylpyridinium ion, a dopaminergic neurotoxin, in GH3 cells. Brain Res. 855:244–251.PubMedGoogle Scholar
  225. Zarkovic K. (2003). 4-Hydroxynonenal and neurodegenerative diseases. Mol. Aspects Med. 24:293–303.PubMedGoogle Scholar
  226. Zhang J.-P. and Sun G. Y. (1995). Free fatty acids, neutral glycerides, and phosphoglycerides in transient focal cerebral ischemia. J.-Neurochem. 64:1688–1695.PubMedCrossRefGoogle Scholar
  227. Zhang D. Q., Dhillon H. S., Mattson M. P., Yurek D. M., and Prasad R. M. (1999). Immunohistochemical detection of the lipid peroxidation product 4-hydroxynonenal after experimental brain injury in the rat. Neurosci. Lett. 272:57–61.PubMedGoogle Scholar
  228. Zhu X. W., Lee H. G., Casadesus G., Avila J., Drew K., Perry G., and Smith M. A. (2005). Oxidative imbalance in Alzheimer’s disease. Mol. Neurobiol. 31:205–217.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Personalised recommendations