Advertisement

Electricity and Magnetism at the Cellular Level

  • Russell K. Hobbie
  • Bradley J. Roth

Abstract

This chapter describes a number of topics related to charged membranes and the movement of ions through them. These range from the basics of how the presence of impermeant ions alters the concentration ratios of permeant ions, to the movement of ions under the combined influence of an electric field and diffusion, and to simple models for gating in ion channels in cell membranes. It also discusses mechanisms for the detection of weak electric and magnetic fields and the possible effects of weak low-frequency electric and magnetic fields on cells.

Keywords

Hair Cell Shot Noise Planck Equation Debye Length Boltzmann Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M., and I. A. Stegun (1972). Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. Washington, U. S. Government Printing Office.MATHGoogle Scholar
  2. Adair, R. (1991). Constraints on biological effects of weak extremely-low- frequency electromagnetic fields. Phys. Rev. A 43: 1039–1048.CrossRefADSGoogle Scholar
  3. Adair, R. (1992). Reply to Comment on Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys. Rev. A 46: 2185–2187.CrossRefADSGoogle Scholar
  4. Adair, R. (1993). Effects of ELF magnetic fields on biological magnetite. Bioelectromagnetics 14: 1–4.CrossRefGoogle Scholar
  5. Adair, R. (1994). Constraints of thermal noise on the effects of weak 60- Hz magnetic fields acting on biological magnetite. Proc. Nat. Acad. Sci. USA 91: 2925–2929.CrossRefADSGoogle Scholar
  6. Adair, R. K. (2000). Static and low-frequency magnetic field effects: Health risks and therapies. Rep. Prog. Phys. 63: 415–454.CrossRefADSGoogle Scholar
  7. Adair, R. K., R. D. Astumian and J. C. Weaver (1998). Detection of weak electric fields by sharks, rays and skates. Chaos 8: 576–587.CrossRefADSGoogle Scholar
  8. Astumian, R. D., J. C. Weaver, and R. K. Adair (1995). Rectification and signal averaging of weak electric fields by biological cells. Proc. Nat. Acad. Sci. USA 92: 3740–3743.CrossRefADSGoogle Scholar
  9. Barnes, F. S. (1995). Typical electric and magnetic field exposures at power-line frequencies and their coupling to biological systems. In M. Blank, ed. Electromagnetic Fields: Biological Interactions and Mechanisms. Washington, American Chemical Society, pp. 37–55.CrossRefGoogle Scholar
  10. Bastian, J. (1994). Electrosensory organisms. Physics Today 47(2): 30–37.MathSciNetCrossRefGoogle Scholar
  11. Bockris, J. O'M., and A. K. N. Reddy (1970). Modern Electrochemistry. New York, Plenum, Vol. 1.Google Scholar
  12. Bren, S. P. A. (1995). 60 Hz EMF health effects—a scientific uncertainty. IEEE Eng. Med. Biol. 14: 370–374.CrossRefGoogle Scholar
  13. Carstensen, E. L. (1995). Magnetic fields and cancer. IEEE Eng. Med. Biol. 14: 362–369.CrossRefGoogle Scholar
  14. Chandler, W. K., A. L. Hodgkin, and H. Meves (1965). The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J. Physiol. 180: 821–836.Google Scholar
  15. Crouzy, S. C., and F. J. Sigworth (1993). Fluctuations in ion channel gating currents: Analysis of nonstationary shot noise. Biophys. J. 64: 68–76.ADSCrossRefGoogle Scholar
  16. DeFelice, L. J. (1981). Introduction to Membrane Noise. New York, Plenum.Google Scholar
  17. Denk, W., and W. W. Webb (1989). Thermal-noise-limited transduction observed in mechanosensory receptors of the inner ear. Phys. Rev. Lett. 63(2): 207–210.CrossRefADSGoogle Scholar
  18. Doyle, D. A., J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon (1998). The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280: 69–77.CrossRefADSGoogle Scholar
  19. Foster, K. R. (1996). Electromagnetic field effects and mechanisms: In search of an anchor. IEEE Eng. Med. Biol. 15(4): 50–56.CrossRefGoogle Scholar
  20. Foster, K. R., and H. P. Schwan (1996). Dielectric properties of tissues. In C. Polk and E. Postow, eds. Handbook of Biological Effects of Electromagnetic Fields. Boca Raton, CRC, pp. 25–102.Google Scholar
  21. Hafemeister, D. (1996). Resource Letter BELFEF-1: Biological effects of low-frequency electromagnetic fields. Am. J. Phys. 64: 974–981.CrossRefADSGoogle Scholar
  22. Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391: 85–100.CrossRefGoogle Scholar
  23. Hille, B. (2001). Ion Channels of Excitable Membranes, 3rd ed. Sunderland, MA, Sinauer Associates.Google Scholar
  24. Honig, B. and A. Nicholls (1995). Classical electrostatics in biology and chemistry. Science 268: 1144–1149.CrossRefADSGoogle Scholar
  25. Jiang, Y., A. Le, J. Chen, V. Ruta, M. Cadene, B. T. Chait and R. MacKinnon (2003). X-ray structure of a voltage-dependent K+ channel. Nature 423: 33–41.CrossRefADSGoogle Scholar
  26. Kalmijn, Ad. J. (1988). Detection of weak electric fields. In J. Aetma, et al., eds. Sensory Biology of Aquatic Animals. New York, Springer, pp. 151–186.Google Scholar
  27. Keynes, R. D. (1994). The kinetics of voltage-gated ion channels. Quart. Rev. Biophys. 27(4): 339–434.CrossRefGoogle Scholar
  28. Kirschvink, J. L. (1992). Comment on Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys. Rev. A 46: 2178–2184.CrossRefADSGoogle Scholar
  29. Kirschvink, J. L., A. Kobayashi-Kirchvink and B. J. Woodford (1992a). Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA 889: 7683–7687.CrossRefADSGoogle Scholar
  30. Kobayashi, A. K., J. L. Kirschvink, and M. H. Nesson (1995). Ferromagnetism and EMFs. Nature 374: 123.CrossRefADSGoogle Scholar
  31. Lamb, H. (1932) Hydrodynamics. Cambridge, Cambridge University Press.MATHGoogle Scholar
  32. Leuchtag, H. R., and C. J. Swihart (1977). Steady-state electrodiffusion. Scaling, exact solutions for ions of one charge, and the phase plane. Biophys. J. 17: 27–46.ADSCrossRefGoogle Scholar
  33. Lewis, C. A. (1979). Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. 286: 417–445.Google Scholar
  34. Lu, J., and H. M. Fishman (1994). Interaction of apical and basal membrane ion channels underlies electroreception in ampullary epithelia of skates. Biophys. J. 67: 1525–1533.ADSCrossRefGoogle Scholar
  35. Mauro, A. (1962). Space charge regions in fixed charge membranes and the associated property of capacitance. Biophys. J. 2: 179–198.ADSCrossRefGoogle Scholar
  36. Moulder, J. E. (Web). Power Lines and Cancer Frequently Asked Questionswww.mcw.edu/gcrc/cop/powerlines-cancer-FAQ/toc.htmlGoogle Scholar
  37. Moulder, J. E., and K. R. Foster (1995). Biological effects of power- frequency fields as they relate to carcinogenesis. Proc. Soc. Expt. Biol. Med. 209: 309–323.Google Scholar
  38. Moulder, J. E., and K. R. Foster (1999). Is there a link between power-frequency electric fields and cancer? IEEE Engineering in Medicine and Biology 18(2): 109–116.CrossRefGoogle Scholar
  39. Moy, G., B. Corry, S. Kuyucak, and S-H. Chung (2000). Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. Biophys. J. 78: 2349–2362.CrossRefGoogle Scholar
  40. National Research Council (1997). Committee on the Possible Effects of Electromagnetic fields on Biologic Systems. Possible Health Effects of Exposure to Residential Electric and Magnetic Fields. Washington, DC. National Academy Press.Google Scholar
  41. Neher, E. and B. Sakmann (1976). Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature 260: 799–802.CrossRefADSGoogle Scholar
  42. Nichols, C. G., E. N. Makhina, W. L. Pearson, Q. Sha, A. N. Lopatin (1996) Inward rectification and implications for cardiac excitability. Circulation Research 78: 1–7.Google Scholar
  43. Pickard, W. F. (1988). A model for the acute electrosensitivity of cartilaginous fishes. IEEE Trans. Biomed. Eng. 35(4): 243–249.CrossRefGoogle Scholar
  44. Polk, C. (1994). Effects of extremely-low-frequency magnetic fields on biological magnetite. Bioelectromagnetics 15: 261–270.CrossRefGoogle Scholar
  45. Polk, C. (1995). Bioelectromagnetic dosimetry. In M. Blank, ed. Electromagnetic Fields: Biological Interactions and Mechanisms. Washington, American Chemical Society, pp. 57–78.CrossRefGoogle Scholar
  46. Polk, C. (1996). Introduction. In C. Polk and E. Postow, eds. Handbook of Biological Effects of Electromagnetic Fields. Boca Raton, CRC, pp. 1–23.Google Scholar
  47. Shapiro, E. M., A. Borthakur, A. Gougoutas, and R. Reddy (2002). 23Na MRI accurately measures fixed charge density in articular cartilage. Mag. Res. Med. 47: 284–291.CrossRefGoogle Scholar
  48. Sigworth, F. J. (1993). Voltage gating of ion channels. Quart. Rev. Biophys. 27(1): 1–40.CrossRefGoogle Scholar
  49. Tenforde, T. S. (1995). Spectrum and intensity of environmental electromagnetic fields from natural and man-made sources. In M. Blank, ed. Electromagnetic Fields: Biological Interactions and Mechanisms. Washington, American Chemical Society, pp. 13–35.CrossRefGoogle Scholar
  50. Tucker, R. D., and O. H. Schmitt (1978). Tests for human perception of 60 Hz moderate strength magnetic fields. IEEE Trans. Biomed. Eng. 25: 509–518.CrossRefGoogle Scholar
  51. Uehara, M., K. K. Sakane, H. S. Maciel and W. I. Urruchi (2000). Physics and biology: Bio-plasma physics. Amer. J. Phys. 68: 450–455.CrossRefADSGoogle Scholar
  52. Weaver, J. C. (2000). Electroporation of cells and tissues. IEEE Trans. Plasma Sci. 28: 24–33.CrossRefADSGoogle Scholar
  53. Weaver, J. C., and R. D. Astumian (1990). The response of living cells to very weak electric fields: The thermal noise limit. Science 247: 459–462.CrossRefADSGoogle Scholar
  54. Weaver, J. C., and R. D. Astumian (1995). Issues relating to causality of bioelectromagnetic fields. In M. Blank, ed. Electromagnetic Fields: Biological Interactions and Mechanisms. Washington, American Chemical Society, pp. 79–96.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Russell K. Hobbie
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Professor of Physics, Emeritus University of Minnesota
  2. 2.Associate Professor of Physics Oakland UniversityOakland

Personalised recommendations