Skip to main content

Electricity and Magnetism at the Cellular Level

  • Chapter
Intermediate Physics for Medicine and Biology
  • 3686 Accesses

Abstract

This chapter describes a number of topics related to charged membranes and the movement of ions through them. These range from the basics of how the presence of impermeant ions alters the concentration ratios of permeant ions, to the movement of ions under the combined influence of an electric field and diffusion, and to simple models for gating in ion channels in cell membranes. It also discusses mechanisms for the detection of weak electric and magnetic fields and the possible effects of weak low-frequency electric and magnetic fields on cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramowitz, M., and I. A. Stegun (1972). Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. Washington, U. S. Government Printing Office.

    MATH  Google Scholar 

  • Adair, R. (1991). Constraints on biological effects of weak extremely-low- frequency electromagnetic fields. Phys. Rev. A 43: 1039–1048.

    Article  ADS  Google Scholar 

  • Adair, R. (1992). Reply to Comment on Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys. Rev. A 46: 2185–2187.

    Article  ADS  Google Scholar 

  • Adair, R. (1993). Effects of ELF magnetic fields on biological magnetite. Bioelectromagnetics 14: 1–4.

    Article  Google Scholar 

  • Adair, R. (1994). Constraints of thermal noise on the effects of weak 60- Hz magnetic fields acting on biological magnetite. Proc. Nat. Acad. Sci. USA 91: 2925–2929.

    Article  ADS  Google Scholar 

  • Adair, R. K. (2000). Static and low-frequency magnetic field effects: Health risks and therapies. Rep. Prog. Phys. 63: 415–454.

    Article  ADS  Google Scholar 

  • Adair, R. K., R. D. Astumian and J. C. Weaver (1998). Detection of weak electric fields by sharks, rays and skates. Chaos 8: 576–587.

    Article  ADS  Google Scholar 

  • Astumian, R. D., J. C. Weaver, and R. K. Adair (1995). Rectification and signal averaging of weak electric fields by biological cells. Proc. Nat. Acad. Sci. USA 92: 3740–3743.

    Article  ADS  Google Scholar 

  • Barnes, F. S. (1995). Typical electric and magnetic field exposures at power-line frequencies and their coupling to biological systems. In M. Blank, ed. Electromagnetic Fields: Biological Interactions and Mechanisms. Washington, American Chemical Society, pp. 37–55.

    Chapter  Google Scholar 

  • Bastian, J. (1994). Electrosensory organisms. Physics Today 47(2): 30–37.

    Article  MathSciNet  Google Scholar 

  • Bockris, J. O'M., and A. K. N. Reddy (1970). Modern Electrochemistry. New York, Plenum, Vol. 1.

    Google Scholar 

  • Bren, S. P. A. (1995). 60 Hz EMF health effects—a scientific uncertainty. IEEE Eng. Med. Biol. 14: 370–374.

    Article  Google Scholar 

  • Carstensen, E. L. (1995). Magnetic fields and cancer. IEEE Eng. Med. Biol. 14: 362–369.

    Article  Google Scholar 

  • Chandler, W. K., A. L. Hodgkin, and H. Meves (1965). The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J. Physiol. 180: 821–836.

    Google Scholar 

  • Crouzy, S. C., and F. J. Sigworth (1993). Fluctuations in ion channel gating currents: Analysis of nonstationary shot noise. Biophys. J. 64: 68–76.

    Article  ADS  Google Scholar 

  • DeFelice, L. J. (1981). Introduction to Membrane Noise. New York, Plenum.

    Google Scholar 

  • Denk, W., and W. W. Webb (1989). Thermal-noise-limited transduction observed in mechanosensory receptors of the inner ear. Phys. Rev. Lett. 63(2): 207–210.

    Article  ADS  Google Scholar 

  • Doyle, D. A., J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon (1998). The structure of the potassium channel: Molecular basis of K+ conduction and selectivity. Science 280: 69–77.

    Article  ADS  Google Scholar 

  • Foster, K. R. (1996). Electromagnetic field effects and mechanisms: In search of an anchor. IEEE Eng. Med. Biol. 15(4): 50–56.

    Article  Google Scholar 

  • Foster, K. R., and H. P. Schwan (1996). Dielectric properties of tissues. In C. Polk and E. Postow, eds. Handbook of Biological Effects of Electromagnetic Fields. Boca Raton, CRC, pp. 25–102.

    Google Scholar 

  • Hafemeister, D. (1996). Resource Letter BELFEF-1: Biological effects of low-frequency electromagnetic fields. Am. J. Phys. 64: 974–981.

    Article  ADS  Google Scholar 

  • Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth (1981). Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391: 85–100.

    Article  Google Scholar 

  • Hille, B. (2001). Ion Channels of Excitable Membranes, 3rd ed. Sunderland, MA, Sinauer Associates.

    Google Scholar 

  • Honig, B. and A. Nicholls (1995). Classical electrostatics in biology and chemistry. Science 268: 1144–1149.

    Article  ADS  Google Scholar 

  • Jiang, Y., A. Le, J. Chen, V. Ruta, M. Cadene, B. T. Chait and R. MacKinnon (2003). X-ray structure of a voltage-dependent K+ channel. Nature 423: 33–41.

    Article  ADS  Google Scholar 

  • Kalmijn, Ad. J. (1988). Detection of weak electric fields. In J. Aetma, et al., eds. Sensory Biology of Aquatic Animals. New York, Springer, pp. 151–186.

    Google Scholar 

  • Keynes, R. D. (1994). The kinetics of voltage-gated ion channels. Quart. Rev. Biophys. 27(4): 339–434.

    Article  Google Scholar 

  • Kirschvink, J. L. (1992). Comment on Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys. Rev. A 46: 2178–2184.

    Article  ADS  Google Scholar 

  • Kirschvink, J. L., A. Kobayashi-Kirchvink and B. J. Woodford (1992a). Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA 889: 7683–7687.

    Article  ADS  Google Scholar 

  • Kobayashi, A. K., J. L. Kirschvink, and M. H. Nesson (1995). Ferromagnetism and EMFs. Nature 374: 123.

    Article  ADS  Google Scholar 

  • Lamb, H. (1932) Hydrodynamics. Cambridge, Cambridge University Press.

    MATH  Google Scholar 

  • Leuchtag, H. R., and C. J. Swihart (1977). Steady-state electrodiffusion. Scaling, exact solutions for ions of one charge, and the phase plane. Biophys. J. 17: 27–46.

    Article  ADS  Google Scholar 

  • Lewis, C. A. (1979). Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. 286: 417–445.

    Google Scholar 

  • Lu, J., and H. M. Fishman (1994). Interaction of apical and basal membrane ion channels underlies electroreception in ampullary epithelia of skates. Biophys. J. 67: 1525–1533.

    Article  ADS  Google Scholar 

  • Mauro, A. (1962). Space charge regions in fixed charge membranes and the associated property of capacitance. Biophys. J. 2: 179–198.

    Article  ADS  Google Scholar 

  • Moulder, J. E. (Web). Power Lines and Cancer Frequently Asked Questionswww.mcw.edu/gcrc/cop/powerlines-cancer-FAQ/toc.html

    Google Scholar 

  • Moulder, J. E., and K. R. Foster (1995). Biological effects of power- frequency fields as they relate to carcinogenesis. Proc. Soc. Expt. Biol. Med. 209: 309–323.

    Google Scholar 

  • Moulder, J. E., and K. R. Foster (1999). Is there a link between power-frequency electric fields and cancer? IEEE Engineering in Medicine and Biology 18(2): 109–116.

    Article  Google Scholar 

  • Moy, G., B. Corry, S. Kuyucak, and S-H. Chung (2000). Tests of continuum theories as models of ion channels. I. Poisson-Boltzmann theory versus Brownian dynamics. Biophys. J. 78: 2349–2362.

    Article  Google Scholar 

  • National Research Council (1997). Committee on the Possible Effects of Electromagnetic fields on Biologic Systems. Possible Health Effects of Exposure to Residential Electric and Magnetic Fields. Washington, DC. National Academy Press.

    Google Scholar 

  • Neher, E. and B. Sakmann (1976). Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature 260: 799–802.

    Article  ADS  Google Scholar 

  • Nichols, C. G., E. N. Makhina, W. L. Pearson, Q. Sha, A. N. Lopatin (1996) Inward rectification and implications for cardiac excitability. Circulation Research 78: 1–7.

    Google Scholar 

  • Pickard, W. F. (1988). A model for the acute electrosensitivity of cartilaginous fishes. IEEE Trans. Biomed. Eng. 35(4): 243–249.

    Article  Google Scholar 

  • Polk, C. (1994). Effects of extremely-low-frequency magnetic fields on biological magnetite. Bioelectromagnetics 15: 261–270.

    Article  Google Scholar 

  • Polk, C. (1995). Bioelectromagnetic dosimetry. In M. Blank, ed. Electromagnetic Fields: Biological Interactions and Mechanisms. Washington, American Chemical Society, pp. 57–78.

    Chapter  Google Scholar 

  • Polk, C. (1996). Introduction. In C. Polk and E. Postow, eds. Handbook of Biological Effects of Electromagnetic Fields. Boca Raton, CRC, pp. 1–23.

    Google Scholar 

  • Shapiro, E. M., A. Borthakur, A. Gougoutas, and R. Reddy (2002). 23Na MRI accurately measures fixed charge density in articular cartilage. Mag. Res. Med. 47: 284–291.

    Article  Google Scholar 

  • Sigworth, F. J. (1993). Voltage gating of ion channels. Quart. Rev. Biophys. 27(1): 1–40.

    Article  Google Scholar 

  • Tenforde, T. S. (1995). Spectrum and intensity of environmental electromagnetic fields from natural and man-made sources. In M. Blank, ed. Electromagnetic Fields: Biological Interactions and Mechanisms. Washington, American Chemical Society, pp. 13–35.

    Chapter  Google Scholar 

  • Tucker, R. D., and O. H. Schmitt (1978). Tests for human perception of 60 Hz moderate strength magnetic fields. IEEE Trans. Biomed. Eng. 25: 509–518.

    Article  Google Scholar 

  • Uehara, M., K. K. Sakane, H. S. Maciel and W. I. Urruchi (2000). Physics and biology: Bio-plasma physics. Amer. J. Phys. 68: 450–455.

    Article  ADS  Google Scholar 

  • Weaver, J. C. (2000). Electroporation of cells and tissues. IEEE Trans. Plasma Sci. 28: 24–33.

    Article  ADS  Google Scholar 

  • Weaver, J. C., and R. D. Astumian (1990). The response of living cells to very weak electric fields: The thermal noise limit. Science 247: 459–462.

    Article  ADS  Google Scholar 

  • Weaver, J. C., and R. D. Astumian (1995). Issues relating to causality of bioelectromagnetic fields. In M. Blank, ed. Electromagnetic Fields: Biological Interactions and Mechanisms. Washington, American Chemical Society, pp. 79–96.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hobbie, R.K., Roth, B.J. (2007). Electricity and Magnetism at the Cellular Level. In: Intermediate Physics for Medicine and Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49885-0_9

Download citation

Publish with us

Policies and ethics