• Russell K. Hobbie
  • Bradley J. Roth


The field of biomagnetism has exploded in recent decades. Magnetic signals have been detected from the heart, brain, skeletal muscles, and isolated nerve and muscle preparations. Measurements of the magnetic susceptibility of the lung show the effect of dust inhalation. Susceptibility measurements of the heart can determine blood volume, while the susceptibility of the liver can measure iron stores in the body. Bacteria and some animals contain aggregates of magnetic particles, often attached to neural tissue. Bacteria use these magnetic particles to determine which way is down. Magnetism is used for orientation by birds and other animals.


Virtual Cathode Capacitor Plate Magnetic Compass Current Dipole Magnetotactic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Able, K. P., and M. A. Able (1995). Interactions in the flexible orientation system of a migratory bird. Nature 375: 230–223.CrossRefADSGoogle Scholar
  2. Barach, J. P. (1987). The effect of ohmic return current on biomagnetic fields. J. Theor. Biol. 125: 187–191.CrossRefGoogle Scholar
  3. Barach, J. P., B. J. Roth, and J. P. Wikswo (1985). Magnetic measurements of action currents in a single nerve axon: A core conductor model. IEEE Trans. Biomed. Eng. 32: 136–140.CrossRefGoogle Scholar
  4. Barker, A. T., R. Jalinous, and I. L. Freeston (1985). Non-invasive magnetic stimulation of the human cortex. Lancet 1(8437): 1106–1107.CrossRefGoogle Scholar
  5. Brittenham, G. M., D. E. Farrell, J. W. Harris, E. S. Feldman, E. H. Danish, W. A. Muir, J. H. Tripp, J. N. Brennan, and E. M. Bellon (1983). Diagnostic assessment of human iron stores by measurement of hepatic magnetic susceptibility. Nuovo Cimento 2D: 567–581.CrossRefADSGoogle Scholar
  6. Clarke, J. (1994). SQUIDS. Sci. Am. Aug. 1994: 46–53.Google Scholar
  7. Cochran, W. W., H. Mouritsen, and M. Wikelski (2004). Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science. 304: 405–408.CrossRefADSGoogle Scholar
  8. Cohen, D., I. Nemoto, L. Kaufman, and S. Arai (1984). Ferrimagnetic particles in the lung part II: The relaxation process. IEEE Trans. Biomed. Eng. 31: 274–285.CrossRefGoogle Scholar
  9. de Araujo, F. F., M. A. Pires, R. B. Frankel, and C. E. M. Bicudo (1986). Magnetite and magnetotaxis in algae. Biophys. J. 50: 375–378.CrossRefGoogle Scholar
  10. Eisberg, R., and R. Resnick (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2nd ed. New York, Wiley.Google Scholar
  11. Esselle, K. P., and M. A. Stuchly (1995). Cylindrical tissue model for magnetic field stimulation of neurons: Effects of coil geometry. IEEE Trans. Biomed. Eng. 42(9): 934–941.CrossRefGoogle Scholar
  12. Frankel, R. B. (1984). Magnetic guidance of organisms. Ann. Rev. Biophys. Bioeng. 13: 85–103.CrossRefGoogle Scholar
  13. Frankel, R. B., R. P. Blakemore, and R. S. Wolfe (1979). Magnetite in freshwater magnetotactic bacteria. Science 203: 1355–1356.CrossRefADSGoogle Scholar
  14. Frankel, R. B., and D. A. Bazylinski (1994). Magnetotaxis and magnetic particles in bacteria. Hyperfine Interactions 90: 135–142.CrossRefADSGoogle Scholar
  15. Gielen, F. L. H., R. N. Friedman, and J. P. Wikswo, Jr. (1991). In vivo magnetic and electric recordings from nerve bundles and single motor units in mammalian skeletal muscle. Correlations with muscle force. J. Gen. Physiol. 98(5): 1043–1061.CrossRefGoogle Scholar
  16. Gielen, F. L. H., B. J. Roth and J. P. Wikswo, Jr. (1986). Capabilities of a toroid-amplifier system for magnetic measurements of current in biological tissue. IEEE Trans. Biomed. Eng. 33: 910–921.CrossRefGoogle Scholar
  17. Gould, J. L. (1995). Constant compass calibration. Nature 375:184.CrossRefADSGoogle Scholar
  18. Gould, J. L., J. L. Kirschvink, and K. S. Deffeyes (1978). Bees have magnetic remanence. Science 201: 1026–1028.CrossRefADSGoogle Scholar
  19. Grimes, D. I. F., R. F. Lennard, and S. J. Swithenby (1985). Macroscopic ion currents within the human leg. Phys. Med. Biol. 30: 1101–1112.CrossRefGoogle Scholar
  20. Hallett, M. and L. G. Cohen (1989). Magnetism: A new method for stimulation of nerve and brain. JAMA 262: 538–541.CrossRefGoogle Scholar
  21. Hämäläinen, M., R. Harri, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa (1993). Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2): 413–497.CrossRefADSGoogle Scholar
  22. Heller, L. and D. B. van Hulsteyn (1992). Brain stimulation using magnetic sources: Theoretical aspects. Biophys. J. 63: 129–138.ADSCrossRefGoogle Scholar
  23. Hosaka, H., D. Cohen, B. N. Cuffin, and B. M. Horacek (1976). The effect of torso boundaries on the magnetocardiogram. J. Electrocardiogr. 9: 418–425.CrossRefGoogle Scholar
  24. Ilmoniemi, R. J., J. Ruohonen and J. Karhu (1999). Transcranial magnetic stimulation—A new tool for functional imaging of the brain. Crit. Rev. Biomed. Eng. 27(3–5): 241-284.Google Scholar
  25. Mielczarek, E. V. and S. B. McGrayne. (2000). Iron, Nature's Universal Element: Why People Need Iron and Animals Make Magnets. New Brunswick, Rutgers U. Press.Google Scholar
  26. Moskowitz, B. M. (1995). Biomineralization of magnetic minerals. Rev. Geophys. Suppl. 33(Part 1 Suppl. S): 123–128.CrossRefADSGoogle Scholar
  27. Nielsen, P., R. Fischer, R. Englehardt, P. Tondury, E. E. Gabbe, and G. E. Janka (1995). Liver iron stores in patients with secondary haemosiderosis under iron chelation therapy with deferoxamine or deferiprone. Brit. J. Hematology 91: 827–833.CrossRefGoogle Scholar
  28. Page, C. H. (1977). Electromotive force, potential difference, and voltage. Am. J. Phys. 45: 978–980.CrossRefADSGoogle Scholar
  29. Petrie, R. J., P. van Leeuwen, B. Brandts, G. Turnbull, S. J. O. Veldhuyzen van Zanten, and G. Stroink (1996). Single and multichannel measurements of gastrointestinal activity in the fasted and fed states. In C. Aine, E. Flynn, Y. Okada, G. Stroink, S. Swithenby, and C. Woods, eds. Biomag.96: Advances in Biomagnetism Research. Berlin, Springer-Verlag.Google Scholar
  30. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. reprinted with corrections, 1995. New York, Cambridge University Press.Google Scholar
  31. Purcell, E. M. (1985). Electricity and Magnetism, 2nd ed. Berkeley Physics Course. New York, McGraw-Hill, Vol. 2.Google Scholar
  32. Purcell, C. J., G. Stroink, and B. M. Horacek (1988). Effect of torso boundaries on electrical potential and magnetic field of a dipole. IEEE Trans. Biomed. Eng. 35(9): 671–678.CrossRefGoogle Scholar
  33. Richards, W. O., C. L. Garrard, S. H. Allos, L. A. Bradshaw, D. J. Staton, and J. P. Wikswo, Jr. (1995a). Noninvasive diagnosis of mesenteric ischemia using a squid magnetometer. Ann. Surg. 221(6): 696–704.CrossRefGoogle Scholar
  34. Richards, W. O., D. Staton, J. Golzarian, R. N. Friedman, and J. P. Wikswo, Jr. (1995b). Non-invasive SQUID magnetometer measurement of human gastric and small bowel electrical activity. In C. Baumgertner et al., eds. Biomagnetism: Fundamental Research and Clinical Applications. Elsevier, IOS.Google Scholar
  35. Romer, R. H. (1982). What do voltmeters measure?: Faraday's law in a multiply connected region. Am. J. Phys. 50: 1089–1093.CrossRefADSGoogle Scholar
  36. Roth, B. J., J. K. Woosley and J. P. Wikswo, Jr. (1985). An experimental and theoretical analysis of the magnetic field of a single axon. In H. Weinberg, G. Stroink and T. Katila, Eds. Biomagnetism: Applications and Theory. New York, Pergamon, pp. 78–82.Google Scholar
  37. Roth, B. J., A. Pascual-Leone, L. G. Cohen, and M. Hallett (1992). The heating of metal electrodes during rapid-rate magnetic stimulation: a possible safety hazard. Electroenceph. Clin. Neurophysiol. 85: 116–123.CrossRefGoogle Scholar
  38. Roth, B. J. and S. Sato (1992). Accurate and efficient formulas for averaging the magnetic field over a circular coil. In M. Hoke, S. N. Erne, T. C. Okada and G. L. Romani, eds. Biomagnetism: Clinical Aspects. Amsterdam, Elsevier.Google Scholar
  39. Roth, B. J. (1994). Mechanisms for electrical stimulation of excitable tissue. Crit. Rev. Biomed. Eng. 22(3/4): 253–305.Google Scholar
  40. Roth, B. J., and J. P. Wikswo, Jr. (1985). The magnetic field of a single axon: A comparison of theory and experiment. Biophys. J. 48: 93–109.ADSCrossRefGoogle Scholar
  41. Sarvas, J. (1987). Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys. Med. Biol. 32: 11–22.CrossRefGoogle Scholar
  42. Shadowitz, A. (1975). The Electromagnetic Field. New York, McGraw-Hill.Google Scholar
  43. Stahlhofen, W., and W. Moller (1993). Behaviour of magnetic micro-particles in the human lung. Rad. Env. Biophys. 32(3): 221–238.CrossRefGoogle Scholar
  44. Staton, D. J., R. N. Friedman, and J. P. Wikswo, Jr. (1993). High resolution SQUID imaging of octupolar currents in anisotropic cardiac tissue. IEEE Trans. Appl. Superconduct. 3(1): 1934–1936.CrossRefGoogle Scholar
  45. Stroink, G. (1985). Magnetic measurements to determine dust loads and clearance rates in industrial workers and miners. Med. Biol. Eng. Computing 23: 44–49.Google Scholar
  46. Stroink, G. (1993). Cardiomagnetic imaging. In B. L. Zaret, L. Kaufman, A. S. Berson, and R. A. Dunn, eds. Frontiers in Cardiovascular Imaging. New York, Raven, pp. 161–177.Google Scholar
  47. Stroink, G., M. J. R. Lamothe, and M. J. Gardner (1996). Magnetocardiographic and electrocardiographic mapping studies. In H. Weinstock, ed. SQUID Sensors: Fundamentals, Fabrication and Applications. NATO ASI Series, Dordrecht, The Netherlands, Kluwer.Google Scholar
  48. Stroink, G., B. Blackford, B. Brown, and B. M. Horacek (1981). Aluminum shielded room for biomagnetic measurements. Rev. Sci. Instrum. 52(3): 463–468.CrossRefADSGoogle Scholar
  49. Swinney, K. R., and J. P. Wikswo, Jr. (1980). A calculation of the magnetic field of a nerve action potential. Biophys. J. 32: 719–732.ADSCrossRefGoogle Scholar
  50. Taccardi, B. and B. B. Punske (2004). Body surface potential mapping. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 4th ed., Philadelphia, Saunders, pp. 1803–811.Google Scholar
  51. Tan, G. A., F. Brauer, G. Stroink, and C. J. Purcell (1992). The effect of measurement conditions on MCG inverse solutions. IEEE Trans. Biomed. Eng. 39(9): 921–927.CrossRefGoogle Scholar
  52. Thomas, I. M., M. Freake, S. J. Swithenby, and J. P. Wikswo, Jr. (1993). A distributed quasi-static ionic current in the 3–4 day old chick embryo. Phys. Med. Biol. 38: 1311–1328.CrossRefGoogle Scholar
  53. Trontelj, Z., R. Zorec, V. Jabinsek, and S. N. Erne (1994). Magnetic detection of a single action potential in Chara corallina internodal cells. Biophys. J. 66: 1694–1696.CrossRefGoogle Scholar
  54. Walcott, C., J. L. Gould, and J. L. Kirschvink (1979). Pigeons have magnets. Science 205: 1027–1029.CrossRefADSGoogle Scholar
  55. Walker, M. M., J. L. Kirschvink, S.-B. R. Chang, and A. E. Dizon (1984). A candidate magnetic sense organ in the yellowfin tuna. Science 224: 751–753.CrossRefADSGoogle Scholar
  56. Wikswo, J. P., Jr. (1980). Noninvasive magnetic detection of cardiac mechanical activity: Theory. Med. Phys. 7: 297–306.CrossRefGoogle Scholar
  57. Wikswo, J. P., Jr. (1995a). SQUID magnetometers for biomagnetism and nondestructive testing: Important questions and initial answers. IEEE Trans. Appl. Superconduct. 5(2): 74–120.CrossRefGoogle Scholar
  58. Wikswo, J. P., Jr. (1995b). Tissue anisotropy, the cardiac bidomain, and the virtual cathode effect. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd ed., Philadelphia, Saunders, pp. 348–361.Google Scholar
  59. Wikswo, J. P., Jr., A. Gevins, and S. J. Williamson (1993). The future of the EEG and MEG. Electroencephalogr. Clin. Neurophysiol. 87: 1–9.CrossRefGoogle Scholar
  60. Woosley, J. K., B. J. Roth, and J. P. Wikswo, Jr. (1985). The magnetic field of a single axon; A volume conductor model. Math. Biosci. 76: 1–36.MATHCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Russell K. Hobbie
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Professor of Physics, Emeritus University of Minnesota
  2. 2.Associate Professor of Physics Oakland UniversityOakland

Personalised recommendations