Advertisement

The Exterior Potential and the Electrocardiogram

  • Russell K. Hobbie
  • Bradley J. Roth

Abstract

In Chapter 6 we assumed that the potential outside a nerve cell is zero. This is only approximately true. There is a small potential that can be measured and has clinical relevance. Before a muscle cell contracts, a wave of depolarization sweeps along the cell. This wave is quite similar to the wave along the axon. Measurement of these exterior signals gives us the electrocardiogram, the electromyogram, and the electroencephalogram.

Keywords

Conducting Medium Virtual Cathode Cardiac Electrophysiology Bidomain Model Pace Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramowitz, M. and I. A. Stegun. (1972). Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables. Washington, U.S. Government Printing Office.MATHGoogle Scholar
  2. Antzelevitch, C., S. Sicouri, A. Lukas, V. V. Nesterenko, D-W. Liu, and J. M. Di Diego (1995). Regional differences of electrophysiology in ventricular cells: physiological and clinical implications. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd ed. Philadelphia, Saunders, pp. 228–245.Google Scholar
  3. Barold, S. S. (1985). Modern Cardiac Pacing. Mount Kisco, NY, Futura.Google Scholar
  4. Campbell, D. L., R. L. Rasmusson, M. B. Comer, and H. C. Strauss (1995). The cardiac calcium-independent transient outward potassium current: kinetics, molecular properties, and role in ventricular repolarization. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd ed. Philadelphia, Saunders, pp. 83–96.Google Scholar
  5. Clark, J. and R. Plonsey (1968). The extracellular potential field of a single active nerve fiber in a volume conductor. Biophys. J. 8: 842–864.ADSCrossRefGoogle Scholar
  6. Davidenko, J. M. (1995). Spiral waves in the heart: Experimental demonstration of a theory. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd ed. Philadelphia, Saunders, pp. 478–488.Google Scholar
  7. Delmar, M., H. S. Duffy, P. L. Sorgen, S. M. Taffet and D. C. Spray (2004). Molecular organization and regulation of the cardiac gap junction channel connexin43. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 4th ed. Philadelphia, Saunders, pp. 66–76.Google Scholar
  8. Geddes, L. A., and J. D. Bourland (1985). The strength-duration curve. IEEE Trans. Biomed. Eng. 32: 458–459.CrossRefGoogle Scholar
  9. Gulrajani, R. M. (1998) Bioelectricity and Biomagnetism. New York, Wiley.Google Scholar
  10. Harris, J. W. and H. Stocker (1998). Handbook of Mathematics and Computational Science. New York, Springer.MATHGoogle Scholar
  11. Henriquez, C. S. (1993). Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21(1): 1–77.MathSciNetGoogle Scholar
  12. Jeffrey, K. (2001). Machines in Our Hearts. Baltimore, Johns Hopkins University Press.Google Scholar
  13. Knisley, S. B., B. C. Hill, and R. E. Ideker (1994). Virtual electrode effects in myocardial fibers. Biophys. J. 66: 719–728.ADSCrossRefGoogle Scholar
  14. Lapicque, L. (1909). Definition experimentale de l'excitabilite. Comptes Rendus Acad. Sci. 67(2): 280–283.Google Scholar
  15. Lindemans, F. W. and J. J. Denier van der Gon (1978). Current thresholds and liminal size in excitation of heart muscle. Cardiovasc. Res. 12: 477–485.CrossRefGoogle Scholar
  16. Malmivuo, J., and R. Plonsey (1995). Bioelectromagnetism. Oxford, Oxford University Press.Google Scholar
  17. Miller, C. E. and C. S. Henriquez. (1990). Finite element analysis of bioelectric phenomena. Crit. Rev. Biomed. Eng. 18(3): 207–233.Google Scholar
  18. Mitrani, R. D., L. S. Klein, D. P. Rardon, D. P. Zipes and W. M. Miles (1995). Current trends in the implantable cardioverter–defibrillator. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd ed. Philadelphia, Saunders, pp. 1393–1403.Google Scholar
  19. Moses, H. W., B. D. Miller, K. P. Moulton, and J. A. Schneider (2000). A Practical Guide to Cardiac Pacing. 5th ed. Philadelphia, Lippincott Williams and Wilkins.Google Scholar
  20. Neunlist, M. and L. Tung (1995). Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: Dependence on fiber orientation. Biophys. J. 68: 2310–2322.CrossRefADSGoogle Scholar
  21. Nunez, P. L. and R. Srinivasan (2005). Electric Fields of the Brain. 2nd. ed. Oxford, Oxford University Press.Google Scholar
  22. Oudit, G. Y., R. J. Ramirez and P. H. Backx (2004). Voltage-regulated potassium channels. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 4th ed. Philadelphia, Saunders, pp. 19–32.Google Scholar
  23. Plonsey, R. (1969). Bioelectric Phenomena. New York, McGraw-Hill.Google Scholar
  24. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Numerical Recipes in C: The Art of Scientific Computing, 2nd ed., reprinted with corrections, 1995. New York, Cambridge University Press.Google Scholar
  25. Rardon, D. P., W. M. Miles, and D. P. Zipes (2000). Atrioventricular block and dissociation. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 3rd ed. Philadelphia, Saunders, pp. 451–459.Google Scholar
  26. Rattay, F. (1987) Ways to approximate current-distance relations for electrically stimulated fibers. J. Theor. Biol. 125: 339–349.CrossRefGoogle Scholar
  27. Rosenbaum, D. S. and J. Jalife (2001). Optical Mapping of Cardiac Excitation and Arrhythmias. Armonk, NY, Futura.Google Scholar
  28. Roth, B. J. (1991). A comparison of two boundary conditions used with the bidomain model of cardiac tissue. Ann. Biomed. Eng. 19: 669–678.CrossRefGoogle Scholar
  29. Roth, B. J. (1994). Mechanisms for electrical stimulation of excitable tissue. Crit. Rev. Biomed. Eng. 22(3/4): 253–305.Google Scholar
  30. Roth, B. J. (1997). Electrical conductivity values used with the bidomain model of cardiac tissue. IEEE Trans. Biomed. Eng. 44: 326–328.CrossRefGoogle Scholar
  31. Roth, B. J. and J. P. Wikswo, Jr. (1994). Electrical stimulation of cardiac tissue: A bidomain model with active membrane properties. IEEE Trans. Biomed. Eng. 41(3): 232–240.CrossRefGoogle Scholar
  32. Rudy, Y. and J. E. Burnes (1999). Noninvasive electrocardiographic imaging. Ann. Noninvasive Electrocardiol. 4(3): 340–359.CrossRefGoogle Scholar
  33. Sepulveda, N. G., B. J. Roth and J. P. Wikswo, Jr. (1989). Current injection into a two-dimensional anisotropic bidomain. Biophys. J. 55: 987–999.CrossRefGoogle Scholar
  34. Stanley, P. C., T. C. Pilkington, and M. N. Morrow (1986). The effects of thoracic inhomogeneities on the relationship between epicardial and torso potentials. IEEE Trans. Biomed. Eng. 33(3): 273–284.CrossRefGoogle Scholar
  35. Tai, C., and D. Jiang (1994). Selective stimulation of smaller fibers in a compound nerve trunk with single cathode by rectangular current pulses. IEEE Trans. Biomed. Eng. 41: 286–291.CrossRefGoogle Scholar
  36. Trayanova, N., C. S. Henriquez, and R. Plonsey (1990). Limitations of approximate solutions for computing extracellular potential of single fibers and bundle equivalents. IEEE Trans. Biomed. Eng. 37(1): 22–35.CrossRefGoogle Scholar
  37. Ungar, I. J., J. T. Mortimer and J. D. Sweeney 1986). Generation of unidrectionally propagating action potentials using a monopolar electrode cuff. Ann. Biomed. Eng. 14: 437–450.CrossRefGoogle Scholar
  38. Voorhees, C. R., W. D. Voorhees III, L. A. Geddes, J. D. Bourland, and M. Hinds (1992). The chronaxie for myocardium and motor nerve in the dog with surface chest electrodes. IEEE Trans. Biomed. Eng. 39(6): 624–628.CrossRefGoogle Scholar
  39. Watanabe, A., and H. Grundfest (1961). Impulse propagation at the septal and commisural junctions of crayfish lateral giant axons. J. Gen. Physiol. 45: 267–308.CrossRefGoogle Scholar
  40. Wikswo, J. P., Jr. (1995). Tissue anisotropy, the cardiac bidomain, and the virtual cathode effect. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd ed. Philadelphia, Saunders, pp. 348–361.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Russell K. Hobbie
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Professor of Physics, Emeritus University of Minnesota
  2. 2.Associate Professor of Physics Oakland UniversityOakland

Personalised recommendations