Impulses in Nerve and Muscle Cells

  • Russell K. Hobbie
  • Bradley J. Roth


A nerve cell conducts an electrochemical impulse because of changes that take place in the cell membrane. These changes allow movement of ions through the membrane, setting up currents that flow through the membrane and along the cell. Similar impulses travel along muscle cells before they contract. This chapter reviews the basic properties of electric fields and currents that are needed to understand the propagation of the nerveor muscle-cell impulse.


Potassium Current Membrane Thickness Membrane Capacitance Potassium Conductance Unmyelinated Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anumonwo, J. B., and J. Jalife (1995). Cellular and subcellular mechanisms of pacemaker activity initiation and synchronization in the heart. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd. ed. Philadelphia, Saunders.Google Scholar
  2. Covino, B. G. (1972). Local anesthesia. N. Engl. J. Med. 286: 975–983.CrossRefGoogle Scholar
  3. Davis, Jr., L., and R. Lorente de Nó (1947). Contributions to the mathematical theory of electrotonus. Stud. Rockefeller Inst. Med. Res. 131(Part 1): 442–496.Google Scholar
  4. Dennis, S. S., J. W. Clark, C. R. Murphy, and W. R. Giles (1994). A mathematical model of a rabbit sinoatrial node cell. Am. J. Physiol. 266: C832–852.Google Scholar
  5. DiFrancesco, D., M. Mangoni, and G. Maccaferri (1995). The pacemaker current in cardiac cells. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd ed. Philadelphia, Saunders.Google Scholar
  6. Geddes, L. A. (2000). Historical Perspectives 3: Recording of Action Potentials. In J. D. Bronzino, ed. The Biomedical Engineering Handbook, 2nd. ed., Vol. I. Boca Raton, CRC, pp. HP3-1–HP3-11.Google Scholar
  7. Guyton, A. C. and J. E. Hall (2000). Textbook of Medical Physiology, 10th ed. Philadelphia, Saunders.Google Scholar
  8. Halliday, D., R. Resnick, and K. S. Krane (1992). Physics, 4th ed., extended version. New York, Wiley.Google Scholar
  9. Hille, B. (2001). Ion Channels of Excitable Membranes, 3rd. ed. Sunderland, MA, Sinauer Associates.Google Scholar
  10. Hodgkin, A. L. (1964). The Conduction of the Nervous Impulse. Springfield, IL, Thomas.Google Scholar
  11. Hodgkin, A. L. and P. Horowitz (1959). The influence of potassium and chloride ions on the membrane potential of single muscle fibers. J. Physiol. 148: 127–160.Google Scholar
  12. Hodgkin, A. L., and A. F. Huxley (1939). Action potentials recorded from inside a nerve fiber. Nature 144: 710.ADSCrossRefGoogle Scholar
  13. Hodgkin, A. L., and A. F. Huxley (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117: 500–544.Google Scholar
  14. Hodgkin, A. L., and W. A. Rushton (1946). The electrical constants of a crustacean nerve fiber. Proc. R. Soc. B 133: 444–479.ADSCrossRefGoogle Scholar
  15. Jeffreys, H., and B. S. Jeffreys (1956). Methods of Mathematical Physics. London, Cambridge University Press, p. 602.zbMATHGoogle Scholar
  16. Kane, B. J., C. W. Storment, S. W. Crowder, D. L. Tanelian, and G. T. A. Kovacs (1995). Force-sensing microprobe for precise stimulation of mechanoreceptive tissues. IEEE Trans. Biomed. Eng. 42(8): 745–750.CrossRefGoogle Scholar
  17. Katz, B. (1966). Nerve, Muscle and Synapse. New York, McGraw-Hill.Google Scholar
  18. Laüger, P. (1991). Electrogenic Ion Pumps. Sunderland, MA, Sinauer.Google Scholar
  19. Luo, C. H., and Y. Rudy (1994). A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ. Res. 74(6): 1071–1096.Google Scholar
  20. Martin, A. R. (1966). Quantal nature of synaptic transmission. Physiol. Rev. 46: 51–66.Google Scholar
  21. Noble, D., D. DiFrancesco, and J. C. Denyer (1989). Ionic mechanisms in normal and abnormal cardiac pacemaker activity. In Jacklet, J. W., ed. Cellular and Neuronal Oscillators. New York, Dekker, pp. 59–85.Google Scholar
  22. Noble, D. (1995). Ionic mechanisms in cardiac electrical activity. In D. P. Zipes and J. Jalife, eds. Cardiac Electrophysiology: From Cell to Bedside, 2nd ed. Philadelphia, Saunders.Google Scholar
  23. Nolte, J. (2002). The Human Brain: An Introduction to Its Functional Anatomy. 5th. ed. St. Louis, Mosby.Google Scholar
  24. Patton, H. D., A. F. Fuchs, B. Hille, A. M. Scher, and R. F. Steiner (1989). Textbook of Physiology. Philadelphia, Saunders.Google Scholar
  25. Plonsey, R. (1969). Bioelectric Phenomena. New York, McGraw-Hill.Google Scholar
  26. Plonsey, R. and R. C. Barr (1988). Bioelectricity: A Quantitative Approach. New York, Plenum.Google Scholar
  27. Rushton, W. A. H. (1951), A theory of the effects of fibre size in medullated nerve. J. Physiol., 115: 101–122.Google Scholar
  28. Schey, H. M. (1997). Div, Grad, Curl and all That: An Informal Text on Vector Calculus, 3rd. ed. New York, Norton.Google Scholar
  29. Scott, A. C. (1975). The electrophysics of a nerve fiber. Rev. Mod. Phys. 47: 487–533.CrossRefADSGoogle Scholar
  30. Smythe, W. R., S. Silver, J. R. Whinnery, and J. D. Angelakos (1957). Formulas. In D. E. Gray, ed. American Institute of Physics Handbook, New York, McGraw-Hill, Chap. 5b.Google Scholar
  31. Wilders, R., H. J. Jongsma, and A. C. G. van Ginnekin (1991). Pacemaker activity of the rabbit sinoatrial node: A comparison of models. Biophys. J. 60: 1202–1216.CrossRefGoogle Scholar
  32. Wiley, J. D. and J. G. Webster (1982). Analysis and control of the current distribution under circular dispersive electrodes. IEEE Trans. Biomed. Eng. 29: 381–385.CrossRefGoogle Scholar
  33. Worthington, C. R. (1971). X-ray analysis of nerve myelin, in J. W. Adelman, Jr., ed., Biophysics and Physiology of Excitable Membranes, New York, Van Nostrand Reinhold, pp. 1–46.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Russell K. Hobbie
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Professor of Physics, Emeritus University of Minnesota
  2. 2.Associate Professor of Physics Oakland UniversityOakland

Personalised recommendations