Transport in an Infinite Medium

  • Russell K. Hobbie
  • Bradley J. Roth


Chapters 4 and 5 are devoted to one of the most fundamental problems in physiology: the transport of solvent (water) and uncharged solute particles. Chapter 4 develops some general ideas about the movement of solutes in a solution. Chapter 5 applies these ideas to movement of water and solute through a membrane.


Random Walk Free Path Continuity Equation Drag Force Sherwood Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod, D., and M. D. Wang (1994). Reduction-of-dimensionality kinetics at reaction-limited cell surface receptors. Biophys. J. 66(3, Pt. 1): 588–600.ADSCrossRefGoogle Scholar
  2. Barr, G. (1931). A Monograph of Viscometry. London, Oxford University Press.Google Scholar
  3. Basser, P. J., J. Mattiello, and D. LeBihan (1994). MR diffusion tensor spectroscopy and imaging. Biophys. J. 66: 259–267.CrossRefGoogle Scholar
  4. Bean, C. P. (1972). The physics of neutral membranes—neutral pores, in G. Eisenman, ed., Membranes—A Series of Advances. New York, Dekker, Vol. 1, pp. 1–55.Google Scholar
  5. Benedek, G. B. and F. M. H. Villars (2000). Physics with Illustrative Examples from Medicine and Biology. Vol. 2. Statistical Physics. 2nd. ed. New York, NY, Springer.Google Scholar
  6. Berg, H. C. (1975). Chemotaxis in bacteria. Ann. Rev. Biophys. Bioeng. 4: 119–136.CrossRefGoogle Scholar
  7. Berg, H. C. (1983). Random Walks in Biology. Princeton, NJ, Princeton University Press.Google Scholar
  8. Berg, H. C., and E. M. Purcell (1977). Physics of chemoreception. Biophys. J. 20: 193–219.ADSCrossRefGoogle Scholar
  9. Crank, J. (1975). The Mathematics of Diffusion. 2nd. ed. New York, Oxford University Press.Google Scholar
  10. Carslaw, H. S. and J. C. Jaeger (1959) Conduction of Heat in Solids. New York, Oxford University Press.Google Scholar
  11. Denny, M. W. (1993). Air and Water: The Biology and Physics of Life's Media. Princeton, Princeton University Press.Google Scholar
  12. Fatt, I. and M. T. Bieber (1968). The steady-state distribution of oxygen and carbon dioxide in the in vivo cornea. Exp. Eye Res. 7: 103–112.CrossRefGoogle Scholar
  13. Hildebrand, J. H., J. M. Prausnitz, and R. L. Scott (1970). Regular and Related Solutions: the Solubility of Gases, Liquids, and Solids. New York, Van Nostrand Reinhold.Google Scholar
  14. Levitt, D. (1975). General continuum analysis of transport through pores. I. Proof of Onsager's reciprocity postulate for uniform pore. Biophys. J. 15: 533–551.ADSCrossRefGoogle Scholar
  15. Meidner, H., and T. A. Mansfield (1968). Physiology of Stomata. New York, McGraw-Hill.Google Scholar
  16. Maddock, J. R., and L. Shapiro (1993). Polar location of the chemoreceptor complex in the Escherichia coli cell. Science 259: 1717–1723.CrossRefADSGoogle Scholar
  17. Paine, P. L., and P. Scherr (1975). Drag coefficients for the movement of rigid spheres through liquid-filled cylinders. Biophys. J. 15: 1087–1091.ADSCrossRefGoogle Scholar
  18. Parkinson, J. S., and D. F. Blair (1993). Does E. coli have a nose? Science 259: 1701–1702.CrossRefADSGoogle Scholar
  19. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Numerical Recipes in C: The Art of Scientific Computing, 2nd ed., reprinted with corrections, 1995. New York, Cambridge University Press.Google Scholar
  20. Pryde, J. A. (1966). The Liquid State. London, Hutchinson University Library.Google Scholar
  21. Purcell, E. M. (1977). Life at low Reynolds number. Am. J. Phys. 45: 3–11.CrossRefADSGoogle Scholar
  22. Reif, F. (1965). Fundamentals of Statistical and Thermal Physics. New York, McGraw-Hill.Google Scholar
  23. Schey, H. M. (1997). Div, Grad, Curl, and All That: An Informal Text on Vector Calculus, 3rd. ed. New York, Norton.Google Scholar
  24. Tang, Y-h. and J. G. Othmer (1994). A model of calcium dynamics in cardiac myocytes based on the kinetics of ryanodine-sensitive calcium channels. Biophys. J. 67: 2223–2235.ADSCrossRefGoogle Scholar
  25. Wagner, J., and J. Keizer (1994). Effects of rapid buffers on Ca++ diffusion and Ca++ oscillations. Biophys. J. 67: 447–456.CrossRefADSGoogle Scholar
  26. Wang, D., S-y. Gou, and D. Axelrod (1992). Reaction rate enhancement by surface diffusion of adsorbates. Biophys. Chem. 43(2): 117–137.CrossRefGoogle Scholar
  27. Weiss-Fogh, T. (1964). Diffusion in insect wing muscle, the most active tissue known. J. Exp. Biol. 41: 229–256.Google Scholar
  28. Zwanzig, R., and A. Szabo (1991). Time dependent rate of diffusion-influenced ligand binding to receptors on cell surfaces. Biophys. J. 60(3): 671-678.ADSCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Russell K. Hobbie
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Professor of Physics, Emeritus University of Minnesota
  2. 2.Associate Professor of Physics Oakland UniversityOakland

Personalised recommendations