Exponential Growth and Decay

  • Russell K. Hobbie
  • Bradley J. Roth


The exponential function is one of the most important and widely occurring functions in physics and biology. In biology, it may describe the growth of bacteria or animal populations, the decrease of the number of bacteria in response to a sterilization process, the growth of a tumor, or the absorption or excretion of a drug. (Exponential growth cannot continue forever because of limitations of nutrients, etc.) Knowledge of the exponential function makes it easier to understand birth and death rates, even when they are not constant. In physics, the exponential function describes the decay of radioactive nuclei, the emission of light by atoms, the absorption of light as it passes through matter, the change of voltage or current in some electrical circuits, the variation of temperature with time as a warm object cools, and the rate of some chemical reactions.


Decay Rate Acute Lymphocytic Leukemia Exponential Growth Exponential Function Saving Account 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banavar, J. R., A. Maritan, A. Rinaldo (1999). Size and form in efficient transportation networks. Nature. 399: 130–132.CrossRefADSGoogle Scholar
  2. Bartlett, A. (2004). The Essential Exponential! For the Future or Our Planet. Lincoln, NE, Center for Science, Mathematics & Computer Education.Google Scholar
  3. Berg, M. J., W. G. Berlinger, M. J. Goldberg, R. Spector and G. F. Johnson (1982). Acceleration of the body clearance of phenobarbital by oral activated charcoal. N. Engl. J. Med. 307: 642–644.CrossRefGoogle Scholar
  4. Clark, V. A. (1975). Survival distributions. Ann. Rev. Biophys. Bioeng. 4: 431–438.CrossRefGoogle Scholar
  5. Haldane, J. B. S. (1985). On Being the Right Size and Other Essays. Oxford, Oxford University Press.Google Scholar
  6. Hemmingsen, A. M. (1960). Energy metabolism as related to body size and respiratory surfaces, and its evolution. Reports of the Steno Memorial Hospital and Nordinsk Insulin Laboratorium 9: 6–110.Google Scholar
  7. Kempe, C. H., H. K. Silver, and D. O'Brien (1970). Current Pediatric Diagnosis and Treatment, 2nd ed. Los Altos, CA, Lange.Google Scholar
  8. Kozlowski, J. and M. Konarzewski (2004). Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? Funct. Ecol. 18: 283–289.CrossRefGoogle Scholar
  9. Maor, E. (1994). e, The Story of a Number. Princeton, N.J., Princeton University PressMATHGoogle Scholar
  10. McKee, P. A., W. P. Castelli, P. M. McNamara, and W. B. Kannel (1971). The natural history of congestive heart failure: The Framingham study. New Engl. J. Med. 285: 1441–1446.CrossRefGoogle Scholar
  11. McMahon, T. (1973). Size and shape in biology. Science 179: 1201–1204.CrossRefADSGoogle Scholar
  12. Murray, J. D. (2001). Mathematical Biology. New York, Springer-Verlag.Google Scholar
  13. Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge, Cambridge University Press.Google Scholar
  14. Reich, P. (2001). Body size, geometry, longevity and metabolism: do plant leaves behave like animal bodies? Trends in Ecology and Evolution 16(12): 674–680.CrossRefGoogle Scholar
  15. Riggs, D. S. (1970). The Mathematical Approach to Physiological Problems. Cambridge, MA, MIT Press.Google Scholar
  16. Savage, V. M., J. F. Gillooly, W. H. Woodruff, G. B. West, A. P. Allen, B. J. Enquist, and J. H. Brown (2004). The predominance of quarter-power scaling in biology. Func. Ecol. 18: 257–282.CrossRefGoogle Scholar
  17. Schmidt-Nielsen, K. (1984). Scaling: Why is Animal Size so Important? Cambridge, Cambridge University Press.Google Scholar
  18. West, G. B., J. H. Brown, and B. J. Enquist. (1999). The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science, 284: 1677–1679. (see also Mackenzie's accompanying editorial on page 1607 of the same issue of Science).CrossRefADSMathSciNetGoogle Scholar
  19. West, G. B. and J. H. Brown. (2004). Life's universal scaling laws. Physics Today, 57(9): 36–42.CrossRefGoogle Scholar
  20. White, C. R. and R. S. Seymour. (2003). Mammalian basal metabolic rate is proportional to body mass2/3. Proc. Nat. Acad. Sci. 100(7): 4046-4049.CrossRefADSGoogle Scholar
  21. Zumoff, B., H. Hart, and L. Hellman (1966). Considerations of mortality in certain chronic diseases. Ann. Intern. Med. 64: 595–601.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Russell K. Hobbie
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Professor of Physics, Emeritus University of Minnesota
  2. 2.Associate Professor of Physics Oakland UniversityOakland

Personalised recommendations