Advertisement

Nuclear Physics and Nuclear Medicine

  • Russell K. Hobbie
  • Bradley J. Roth

Abstract

Each atom contains a nucleus about 100,000 times smaller than the atom. The nuclear charge determines the number of electrons in the neutral atom and hence its chemical properties. The nuclear mass determines the mass of the atom. For a given nuclear charge there can be a number of nuclei with different masses or isotopes. If an isotope is unstable, it transforms into another nucleus through radioactive decay.

Keywords

Positron Emission Tomography Auger Electron Internal Conversion Decay Scheme Radioactive Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arqueros, F. and G. D. Montesinos (2003). A simple algorithm for the transport of gamma rays in a medium. Amer. J. Phys. 71(1): 38–45.CrossRefADSGoogle Scholar
  2. BEIR IV (1988). Committee on the Biological Effects of Ionizing Radiations. Health Risks of Radon and Other Internally Deposited Alpha-Emitters. Washington, D.C., National Academy Press.Google Scholar
  3. BEIR VI (1999). Committee on Health Risks of Exposure to Radon. Health Effects of Exposure to Radon. Washington, D.C., National Academy Press.Google Scholar
  4. Berger, M. J. (1968). Energy Deposition in Water by Photons from Point Isotropic Sources. NM/MIRD Pamphlet 2. New York, Society of Nuclear Medicine.Google Scholar
  5. Buchsbaum, D., and B. W. Wessels (1993). Introduction: Radiolabeled antibody tumor dosimetry. Med. Phys. 20(2, Pt. 2): 499–501.CrossRefGoogle Scholar
  6. Cherry, S. R., J. A. Sorenson, and M. E. Phelps (2003). Physics in Nuclear Medicine, 3rd ed. Philadelphia, Saunders Imprint of Elsevier).Google Scholar
  7. Coffey, J. L., and E. E. Watson (1979). Calculating the dose from remaining body activity: A comparison of two methods. Med. Phys. 6(4): 307–308.CrossRefGoogle Scholar
  8. Coursey, B. M. and R. Nath (2000). Radionuclide therapy. Physics Today 53(4): 25–30.CrossRefGoogle Scholar
  9. Dillman, L. T., and F. C. Von der Lage (1974). Radionuclide Decay Schemes and Nuclear Parameters for Use in Radiation Dose Estimation. NM/MIRD Pamphlet 10. New York, Society of Nuclear Medicine.Google Scholar
  10. Eckerman K. F., R. J. Westfall, J. C. Ryman, and M. Cristy (1994). Availability of nuclear decay data in electronic form, including beta spectra not previously published. Health Phys. 67(4): 338–345.CrossRefGoogle Scholar
  11. Eisberg, R., and R. Resnick (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2nd ed. New York, Wiley.Google Scholar
  12. Evans, R. D. (1955). The Atomic Nucleus. New York, McGraw-Hill.MATHGoogle Scholar
  13. Fox, R. A. (2002). Intravascular brachytherapy of the coronary arteries. Phys. Med. Biol. 47: R1–R30.CrossRefADSGoogle Scholar
  14. Fritzberg, A. R., and B. W. Wessels (1995). Therapeutic radionuclides. In H. N. Wagner, Jr., Z. Szabo, and J. W. Buchanan, eds. Principles of Nuclear Medicine, 2nd ed. Philadelphia, Saunders, pp. 229–234.Google Scholar
  15. Howell, R. W. (1992). Radiation spectra for Auger-emitting radionuclides: Report No. 2 of the AAPM Nuclear Medicine Task Group No. 6. Med. Phys. 19(6): 1371–1383.CrossRefGoogle Scholar
  16. Humm, J. L., R. W. Howell, and D. V. Rao (1994). Dosimetry of Auger-electron-emitting radionuclides: Report No. 3 of the AAPM Nuclear Medicine Task Group No. 6. Med. Phys. 12(12): 1901–1915.CrossRefGoogle Scholar
  17. Hunt J.G., F. C. da Silva, and C. L. Mauricio (2004). The validation of organ dose calculations using voxel simulators and Monte Carlo methods applied to point and water immersion sources. Rad. Prot. Dosimetry 108(1): 85–89.CrossRefGoogle Scholar
  18. Kaluza, G. L. and A. E. Raizner (2004). Brachytherapy for restenosis after stenting for coronary artery disease: its role in the drug-eluting stent era. Current Opinion in Cardiol. 19: 601–607.CrossRefGoogle Scholar
  19. Kassis, A. I. (2004).The amazing world of Auger electrons. Int. J. Rad. Biol., 80(11–12): 789–803.CrossRefGoogle Scholar
  20. Larsson, S. A. (1980). Gamma camera emission tomography: Development and properties of a multi-sectional emission computed tomography system. Acta Radiol. (Suppl. 363).Google Scholar
  21. Links, J. M. and J. C. Engdahl. (1995) Planar imaging. Chap. 17 in H. N. Wagner, Jr., Z. Szabo, and J. W. Buchanan, eds. Principles of Nuclear Medicine, 2nd ed. Philadelphia, Saunders.Google Scholar
  22. Loevinger, R., T. F. Budinger, and E. E. Watson (1988). MIRD Primer for Absorbed Dose Calculations. New York, Society of Nuclear Medicine.Google Scholar
  23. Nag, S. ed. (1994). High Dose Rate Brachytherapy: A Textbook. Armonk, NY, Futura.Google Scholar
  24. Patterson, J. C. and M. L.Mosley (2005). How available is positron tomography in the United States? Mol. Imaging Biol. 7(3): 197–200.CrossRefGoogle Scholar
  25. Rehm, K., S. C. Strother, J. R. Anderson, K. A. Schaper, and D. A. Rottenberg (1994). Display of merged multimodality brain images using interleaved pixels with independent color scales. J. Nucl. Med. 35: 1815–1821.Google Scholar
  26. Sastry, K. S. R. (1992). Biological effects of the Auger emitter iodine-125: A review. Report No. 1 of the AAPM Nuclear Medicine Task Group No. 6. Med. Phys. 19(6): 1361–1370.CrossRefGoogle Scholar
  27. Snyder, W. S., M. R. Ford, and G. G. Warner (1976). Specific Absorbed Fractions for Radiation Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom. NM/MIRD Pamphlet 5, revised. New York, Society of Nuclear Medicine.Google Scholar
  28. Snyder, W. S., M. R. Ford, G. G. Warner, and H. L. Fisher (1969). Estimates of Absorbed Fractions for Monoenergetic Photon Sources Uniformly Distributed in Various Organs of a Heterogeneous Phantom. NM/MIRD Pamphlet 5. New York, Society of Nuclear Medicine.Google Scholar
  29. Snyder, W. S., M. R. Ford, G. G. Warner, and S. B. Watson (1975). S, Absorbed Dose per Unit Cumulated Activity for Selected Radionuclides and Organs. NM/MIRD Pamphlet 11. New York, Society of Nuclear Medicine.Google Scholar
  30. Stabin, M. G. and L. C. Q. P. da Luz (2002). Decay data for internal and external dose assessment. Health Phys. 83(4): 471–475.CrossRefGoogle Scholar
  31. Stabin, M. G., R. B. Sparks and E. Crowe (2005). OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med. 46(6): 1023–1027.ADSGoogle Scholar
  32. Strother, S. C., J. R. Anderson, Jr., K. A. Schaper, J. J. Sidtis, J. S. Liow, R. P. Woods, and D. A. Rottenberg (1995). Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping: I. Functional connectivity of the human motor system studied with 15O-water PET. J. Cerebral Blood Flow Metab. 15(5): 738–753.Google Scholar
  33. Watson, E. E., M. G. Stabin, and J. A. Siegel (1993). MIRD formulation. Med. Phys. 20(2, Pt. 2): 511–514.CrossRefGoogle Scholar
  34. Weber, D. A., K. F. Eckerman, L. T. Dillman, and J. C. Ryman (1989). MIRD: Radionuclide Data and Decay Schemes. New York, Society of Nuclear Medicine.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Russell K. Hobbie
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Professor of Physics, Emeritus University of Minnesota
  2. 2.Associate Professor of Physics Oakland UniversityOakland

Personalised recommendations