Advertisement

Medical Use of X Rays

  • Russell K. Hobbie
  • Bradley J. Roth
Chapter
  • 2.8k Downloads

Abstract

X rays are used to obtain diagnostic information and for cancer therapy. They are photons of electromagnetic radiation with higher energy than photons of visible light. Gamma rays are photons emitted by radioactive nuclei; except for their origin, they are identical to x-ray photons of the same energy. Section 16.1 describes the production of x rays.

Keywords

Radon Concentration Modulation Transfer Function Linear Energy Transfer Boron Neutron Capture Therapy Proton Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AAPM Report 87 (2005). Diode in Vivo Dosimetry for Patients Receiving External Beam Radiation Therapy. College Park, MD. American Association of Physicists in Medicine. Report of Task Group 62 of the Radiation Therapy Committee.Google Scholar
  2. Attix, F. H. (1986). Introduction to Radiological Physics and Radiation Dosimetry. New York, Wiley.CrossRefGoogle Scholar
  3. Ayotte, P., B. Lévesque, D. Gauvin, R. G. McGregor, R. Martel, S. Gingras, W. B. Walker, and E. G. Létourneau (1998). Indoor exposure to 222Rn: A public health perspective. Health Phys. 75(3): 297–302.vesque, B. tourneau, E. G.CrossRefGoogle Scholar
  4. Barth, R. F. (2003). A critical assessment of boron neutron capture therapy: an overview. J. Neuro-Oncol. 62: 1–5. The entire issue of the journal is devoted to a review of BNCT.CrossRefADSGoogle Scholar
  5. BEIR Report V (1990). Health Effects of Exposure to Low Levels of Ionizing Radiation. Washington, DC, National Academy Press. Committee on the Biological Effects of Ionizing Radiation.Google Scholar
  6. BEIR VI (1999). Committee on Health Risks of Exposure to Radon. Health Effects of Exposure to Radon. Washington, D.C., National Academy Press.Google Scholar
  7. BEIR Report VII (2005). Health Risks from Exposure to Low Levels of Ionizing Radiation. Washington, DC, National Academy Press. Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation.Google Scholar
  8. Birch, R., and M. Marshall (1979). Computation of bremsstrahlung x-ray spectra and comparison with spectra measured with a Ge(Li) detector. Phys. Med. Biol. 24: 505–517.CrossRefGoogle Scholar
  9. Boice, J. D., Jr. (1996). Risk estimates for radiation exposures. In W. R. Hendee and F. M. Edwards, eds. Health Effects of Exposure to Low-Level Ionizing Radiation. Bristol, Institute of Physics.Google Scholar
  10. Brenner, D. J. and C. D. Elliston (2004). Estimated radiation risks potentially associated with full-body CT screening. Radiology 232: 735–738.CrossRefGoogle Scholar
  11. Broad, W. J. (1980). Riddle of the Nobel debate. Science 207: 37–38.CrossRefADSGoogle Scholar
  12. Brooks, A. L. (2003). Developing a scientific basis for radiation risk estimates: Goal of the DOE low dose research program. Health Phys. 85(1): 85–93.CrossRefGoogle Scholar
  13. Brooks, R. A., and G. DiChiro (1976). Principles of computer-assisted tomography in radiographic and radioisotope imaging. Phys. Med. Biol. 21: 689–732; Statistical limitations in x-ray reconstructive tomography. Med. Phys. 3: 237–240.CrossRefGoogle Scholar
  14. Cho, Z.-H., J. P. Jones, and M. Singh (1993). Foundations of Medical Imaging. New York, Wiley-Interscience.Google Scholar
  15. Cohen, B. L. (1995). Test of the linear–no threshold theory of radiation carcinogenesis for inhaled radon decay products. Health Phys. 68(2): 157–174.CrossRefGoogle Scholar
  16. Cohen, B. L. (1998). Response to Lubin's proposed explanations of the discrepancy. Health Phys. 75(1): 18–22.CrossRefGoogle Scholar
  17. Cohen, B. L. (1999). Response to the Lubin rejoinder. Health Phys. 76(4): 437–439.Google Scholar
  18. Cohen, B. L. (2002). Cancer risk from low-level radiation.[see comment]. AJR. Amer. J. Roentgenology. 179(5):1137–43.Google Scholar
  19. Cohen, L. (1993). History and future of empirical and cell kinetic models for risk assessment in radiation oncology. In B. Paliwal, et al., eds. Prediction of Response in Radiation Therapy: Radiosensitivity and Repopulation. Woodbury, NY, AIP for the American Association of Physicists in Medicine.Google Scholar
  20. Cormack, A. M. (1980). Nobel award address: Early two-dimensional reconstruction and recent topics stemming from it. Med. Phys. 7(4): 277–282.CrossRefMathSciNetGoogle Scholar
  21. Dainty, J. C., and R. Shaw (1974). Image Science. New York, Academic.Google Scholar
  22. DeVita, V. T. (2003). Hodgkin's disease—Clinical trials and travails. New Engl. J. Med. 348 (24): 2375–2376.CrossRefGoogle Scholar
  23. DiChiro, G., and R. A. Brooks (1979). The 1979 Nobel prize in physiology or medicine. Science. 206: 1060–1062.CrossRefADSGoogle Scholar
  24. Doi, K., H. K. Genant, and K. Rossman (1976). Comparison of image quality obtained with optical and radiographic magnification techniques in fine-detail skeletal radiography: Effect of object thickness. Radiology. 118: 189–195.Google Scholar
  25. Douglas, J. G., W. J. Koh, M. Austin-Seymour and G. E. Laramore (2003). Treatment of salivary gland neoplasms with fast neutron radiotherapy. Arch. Otolaryngol.–Head & Neck Surg. 129(9): 944–948.CrossRefGoogle Scholar
  26. Duncan, W. (1994). An evaluation of the results of neutron therapy trials. Acta Oncolog. 33(3): 299–306. This issue of the journal is devoted to fast-neutron therapy.CrossRefGoogle Scholar
  27. Evans, R. D. (1955). The Atomic Nucleus. New York, McGraw-Hill.zbMATHGoogle Scholar
  28. Goodsitt, M., E. Christodoulou, P. Strouse, A. Chien, J. Platt and E. Kazerooni (2002). Radiation doses for corresponding CT and radiographi/cfluoroscopic exams. Med. Phys. 29(6): 1298. (Meeting abstract)Google Scholar
  29. Habrand, J. L., P. Schlienger, L. Schwartz, D. Pontvert, C. Lenir-Cohen-Solal, S. Helfre, C. Haie, A. Mazal, and J. M. Cosset. (1995). Clinical applications of proton therapy. Experiences and ongoing studies. Radiat. Environment. Biophys. 34(1): 41–44.CrossRefGoogle Scholar
  30. Hall, E. J. (2000). Radiobiology for the Radiologist. 5th ed. Philadelphia, Lippincott Williams & Wilkins.Google Scholar
  31. Hall, E. J. (2002). Helical CT and cancer risk: Introduction to session I. Pediatr. Radiol. 32: 225–227.CrossRefGoogle Scholar
  32. Hall, E. J. (2003). The bystander effect. Health Phys. 85(1): 31–35.CrossRefGoogle Scholar
  33. Hendee, W. R., and R. Ritenour (2002). Medical Imaging Physics, 4th. ed. New York, Wiley-Liss.CrossRefGoogle Scholar
  34. Higson, D. J. (2004). The bell tolls for LNT. Health Phys. 87(Supplement 2): S47–S50.CrossRefGoogle Scholar
  35. Holmes, T. W., T. R. Mackie, and P. Reckwerdt (1995). An iterative filtered backprojection inverse treatment planning algorithm for tomotherapy. Int. J. Radiation Oncolog. Biol. Phys. 32(4): 1215–1225.CrossRefGoogle Scholar
  36. Hubbell, J. H., and S. M. Seltzer (1996). Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional Substances of Dosimetric Interest. National Institute of Standards and Technology Report NISTIR 5632. physics.nist.gov/PhysRefData/XrayMassCoef/cover.htmlGoogle Scholar
  37. Hounsfield, G. N. (1980). Nobel award address: Computed medical imaging. Med. Phys. 7(4): 283–290.CrossRefGoogle Scholar
  38. Huda, W. (2002). Adult and pediatric dose in CT. Med. Phys. 29(6): 1363. Meeting abstract.MathSciNetGoogle Scholar
  39. Hunt, D. C., S. S. Kirby, and J. A. Rowlands (2002). X-ray imaging with amorphous selenium: X-ray to charge conversion gain and avalanche multiplication gain. Med. Phys. 29(11): 2464–2471.CrossRefGoogle Scholar
  40. ICRP (1991). 1990 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP. 21 no. 1–3.Google Scholar
  41. ICRU Report 31 (1979). Average Energy to Produce an Ion Pair. Bethesda, MD, International Commission on Radiation Units and Measurements.Google Scholar
  42. ICRU Report 33 (1980, Reprinted 1992). Radiation Quantities and Units. Bethesda, MD, International Commission on Radiation Units and Measurements.Google Scholar
  43. ICRU Report 37 (1984). Stopping Powers for Electrons and Positrons. Bethesda, MD, International Commission on Radiation Units and Measurements.Google Scholar
  44. ICRU Report 39 (1985). Determination of Dose Equivalents Resulting from External Radiation Sources. Bethesda, MD, International Commission on Radiation Units and Measurements.Google Scholar
  45. ICRU Report 41 (1986). Modulation Transfer Function of Screen-Film Systems. Bethesda, MD, International Commission on Radiation Units and Measurements.Google Scholar
  46. ICRU Report 54 (1996). Medical Imaging—The Assessment of Image Quality. Bethesda, MD, International Commission on Radiation Units and Measurements.Google Scholar
  47. Kalender, W. A. (2000). Computed Tomography: Fundamentals, System Technology, Image Quality and Applications. Munich, Publicis MCD.Google Scholar
  48. Kassis, A. I. (2004).The amazing world of Auger electrons. Int. J. Rad. Biol., 80(11-12): 789–803.CrossRefGoogle Scholar
  49. Kathren, R. L. (1996). Pathway to a paradigm: The linear nonthreshold dose-response model in historical context: The American Academy of Health Physics 1995 Radiology Centennial Hartman Oration. Health Phys. 70(5): 621–635.CrossRefGoogle Scholar
  50. Khan, F. M. (2003). The Physics of Radiation Therapy. 3rd ed. Philadelphia, Lippincott Williams & Wilkins.Google Scholar
  51. Kondo, S. (1993). Health Effects of Low-Level Radiation. Osaka, Japan, Kinki University Press. English translation: Madison, WI, Medical Physics.Google Scholar
  52. Lubin, J. H. (1998). On the discrepancy between epidemiologic studies in individuals of lung cancer and residential radon and Cohen's ecologic regression. Health. Phys. 75(1): 4–10.ADSCrossRefGoogle Scholar
  53. Lubin, J. H. (1998b). Rejoinder: Cohen's response to “On the discrepancy between epidemiologic studies in individuals of lung cancer and residential radon and Cohen's ecologic regression.” Health Phys. 85(1): 29–30.ADSCrossRefGoogle Scholar
  54. Lubin, J. H. (1999). Response to Cohen's comments on the Lubin rejoinder. Health Phys. 77(3): 330–332.ADSGoogle Scholar
  55. Lutz, G. (1999). Semiconductor Radiation Detectors. New York, Springer.Google Scholar
  56. Macovski, A. (1983). Medical Imaging Systems. Englewood Cliffs, NJ, Prentice-Hall.Google Scholar
  57. McCollough, C. H. and B. A. Schueler (2000). Educational Treatise: Calculation of effective dose. Med. Phys. 27(5): 828–837.CrossRefGoogle Scholar
  58. Metz, C. E., and K. Doi (1979). Transfer function analysis of radiographic imaging systems. Phys. Med. Biol. 24(6): 1079–1106.CrossRefGoogle Scholar
  59. Miralbell, R., A. Lomax, L. Cella, and U. Schneider (2002). Potential reduction of the incidence of radiation-induced second cancers by using proton beams in the treatment of pediatric tumors. Int. J. Radiation Oncology Biol. Phys. 54(3): 824–829.CrossRefGoogle Scholar
  60. Mossman, K. L. (2001). Deconstructing radiation hormesis. Health Phys. 80(3): 263–269.CrossRefGoogle Scholar
  61. Moulder, J. E., and J. D. Shadley (1996). Radiation interactions at the cellular and tissue levels. In W. R. Hendee and F. M. Edwards, eds. Health Effects of Exposure to Low-Level Ionizing Radiation. Bristol, Institute of Physics.Google Scholar
  62. Moyers, M. (2003). Proton therapy refresher course, Part II. Practical challenges and opportunities for proton therapy. Med. Phys. 30(6): 1445–1446.Google Scholar
  63. Nagel, H. D., M. Galanski, N. Hidajat, W. Maer and T. Schmidt (2000). Radiation Exposure in Computed Tomography: Fundamentals, Influencing Parameters, Dose Assessment, Optimisation, Scanner Data, Terminology. COCIR, European Coordination Committee of the Radiological and Electromedical Industries. Hamburg, CTB Publications (ctb-publications@gmx.de)Google Scholar
  64. NCRP Report 93 (1987) Ionizing Radiation Exposure of the Population of the United States. Bethesda, MD, National Council on Radiation Protection and Measurements.Google Scholar
  65. NCRP Report 94 (1987). Exposure of the Population in the United States and Canada from Natural Background Radiation. Bethesda, MD, National Council of Radiation Protection and Measurements.Google Scholar
  66. NCRP Report 100 (1989). Exposure of the U.S. Population from Diagnostic Medical Radiation. Bethesda, MD, National Council of Radiation Protection and Measurements.Google Scholar
  67. NCRP Report 136 (2001). Evaluation of the Linear-Nonthreshold Dose-Response Model for Ionizing Radiation. Bethesda, MD, National Council of Radiation Protection and Measurements.Google Scholar
  68. Orton, C. (1997). Fractionation: Radiobiological principles and clinical practice. Chap. 11 in F. M. Khan and R. A. Potish, eds. Treatment Planning in Radiation Oncology. Baltimore, MD, Williams and Wilkins.Google Scholar
  69. Platzman, R. L. (1961). Total ionization in gases by high-energy particles: An appraisal of our understanding. Intl. J. Appl. Rad. Isotopes 10: 116–127.CrossRefGoogle Scholar
  70. Rowlands, J. A. (2002). The physics of computed radiography. Phys. Med. Biol. 47: R123–R126.CrossRefADSGoogle Scholar
  71. Schlesinger, T. E. and R. B. James, eds. (1995). Semiconductors for Room Temperature Nuclear Applications. New York, Academic Press.Google Scholar
  72. Schulz, R. J. and A. R. Kagan (2002). On the role of intensity-modulated radiation therapy in radiation oncology. Med. Phys. 29(7): 1473–1482.CrossRefGoogle Scholar
  73. Seibert, J. A. (2003). Digital fluoroscopic imaging: Acquisition, processing and display. Med. Phys. 30(6): 1413.Google Scholar
  74. Shabashon, L. (1996). Radiation interactions: Physical and chemical effects. In W. R. Hendee and F. M. Edwards, eds. Health Effects of Exposure to Low-Level Ionizing Radiation. Bristol, Institute of Physics.Google Scholar
  75. Shani, G. (1991). Radiation Dosimetry: Instrumentation and Methods. Boca Raton, CRC.Google Scholar
  76. Shani, G. (2001). Radiation Dosimetry: Instrumentation and Methods. 2nd. ed. Boca Raton, CRC.Google Scholar
  77. Slater, J. D., C. J. Rossi, Jr., L. T. Yonemoto, D. A. Bush, B. R. Jabola, R. P. Levy, R. I. Grove, W. Preston, and J. M. Slater (2004). Proton therapy for prostate cancer: The initial Loma Linda University experience. Int. J. Radiat. Oncol. Biol. Phys. 59(2): 348–352.CrossRefGoogle Scholar
  78. Sobol, W. T. (2002). High frequency x-ray generator basics. Med. Phys. 29(2): 132–144.CrossRefGoogle Scholar
  79. Steel, G. G. (1996). From targets to genes: a brief history of radiosensitivity. Phys. Med. Biol. 41(2): 205–222.CrossRefGoogle Scholar
  80. Suess, C., A. Polacin, and W. A. Kalender (1995). Theory of xenon/computed tomography cerebral blood flow methodology. In M. Tomanaga, A. Tanaka, and H. Yonas, eds. Quantitative Cerebral Blood Flow Measurements Using Stable Xenon/CT: Clinical Applications. Armonk, NY, Futura.Google Scholar
  81. Suit, H., and M. Urie (1992). Proton beams in radiation therapy. J. Natl. Cancer Inst. 84(3): 155–164.CrossRefGoogle Scholar
  82. Upton, A. C. (2003). The state of the art in the 1990's: NCRP Report No. 136 on the scientific bases for linearity in the dose-response relationship for ionizing radiation. Health Phys. 85(1): 15–22.CrossRefGoogle Scholar
  83. van Eijk, C. W. E. (2002). Inorganic scintillators in medical imaging. Phys. Med. Biol. 47: R85–R106CrossRefGoogle Scholar
  84. Wagner, R. F. (1977). Toward a unified view of radiological imaging systems. Part II: Noisy images. Med. Phys. 4(4): 279–296.CrossRefGoogle Scholar
  85. Wagner, R. F. (1983). Low contrast sensitivity of radiologic, CT, nuclear medicine, and ultrasound medical imaging systems. IEEE Trans. Med. Imaging MI-12(3): 105–121.CrossRefGoogle Scholar
  86. Wagner, R. F., K. E. Weaver, E. W. Denny, and R. G. Bostrom (1974). Toward a unified view of radiological imaging systems. Part I: Noiseless images. Med. Phys. 1(1): 11–24.CrossRefGoogle Scholar
  87. Webb, S. (2001). Intensity-Modulated Radiation Therapy. Bristol and Philadelphia. Institute of Physics Publishing.Google Scholar
  88. Winsor, R. (2003). CCD digital detectors. Med. Phys. 30(6): 1433. Meeting abstract.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Russell K. Hobbie
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Professor of Physics, Emeritus University of Minnesota
  2. 2.Associate Professor of Physics Oakland UniversityOakland

Personalised recommendations