Interaction of Photons and Charged Particles with Matter

  • Russell K. Hobbie
  • Bradley J. Roth


An x-ray image records variations in the passage of x rays through the body because of scattering and absorption. A side effect of making the image is the absorption of some x-ray energy by the body. Radiation therapy depends on the absorption of large amounts of x-ray energy by a tumor. Diagnostic procedures in nuclear medicine (Chapter 17) introduce a small amount of radioactive substance in the body. Radiation from the radioactive nuclei is then detected. Some of the energy from the photons or charged particles emitted by the radioactive nucleus is absorbed in the body. To describe all of these effects requires that we understand the interaction of photons and charged particles with matter.


Pair Production Target Atom Coherent Scattering Compton Scatter Primary Photon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlen, S. P. (1980). Theoretical and experimental aspects of the energy loss of relativistic heavily ionizing particles. Rev. Mod. Phys. 52: 121–173.CrossRefADSGoogle Scholar
  2. Arqueros, F. and G. D. Montesinos (2003). A simple algorithm for the transport of gamma rays in a medium. Amer. J. Phys. 71(1): 38–45.CrossRefADSGoogle Scholar
  3. Attix, F. H. (1986). Introduction to Radiological Physics and Radiation Dosimetry. New York, Wiley.CrossRefGoogle Scholar
  4. Bambynek, W., B. Crasemann, R. W. Fink, H. U. Freund, H. Mark, C. D. Swift, R. E. Price, and P. Y. Rao (1972). X-ray fluorescence yields, Auger, and Coster–Kronig transition probabilities. Rev. Mod. Phys. 44: 716–717.CrossRefADSGoogle Scholar
  5. Boone, J. M. and A. E. Chavez (1996). Comparison of x-ray cross sections for diagnostic and therapeutic medical physics. Med. Phys. 23(12): 1997–2005.CrossRefGoogle Scholar
  6. Budd, T., and M. Marshall (1983). Microdosimetric properties of electron tracks measured in a low-pressure chamber. Radiat. Res. 93: 19–32.CrossRefGoogle Scholar
  7. Carlsson, G. A., C. A. Carlsson, K-F. Berggren and R. Ribberfors (1982). Calculation of scattering cross sections for increased accuracy in diagnostic radiology. 1. Energy broadening of Compton-scattered photons. Med. Phys. 9(6): 868–879.CrossRefGoogle Scholar
  8. Hobbie, R. K. (1992). MacDose: A Simulation for Understanding Radiological Physics. Comput. Phys. 6(4): 355–359. MacDose is available at the Web site of this book: . It runs on a Macintosh computer using OS-9 or earlier.CrossRefADSGoogle Scholar
  9. Hubbell, J. H. (1969). Photon Cross Section, Attenuation Coefficients, and Energy Absorption Coefficients from 10 keV to 100 GeV. NBS 29. Washington, D.C. U.S. Govt. Printing Office.Google Scholar
  10. Hubbell J. H. (1982). Photon mass attenuation and energy absorption coefficients from 1 keV to 20 MeV Int. J. Appl. Radiat. Inst. 33: 1269–1290.CrossRefGoogle Scholar
  11. Hubbell, J. H. and S. M. Seltzer (1996). Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional Substances of Dosimetric Interest. National Institute of Standards and Technology. Report No. NISTIR 5632 Web Version. Available at contents-xray.html .Google Scholar
  12. Hubbell, J. H., W. J. Veigele, E. A. Briggs R. T. Brown, D. T. Cromer and R. J. Howerton (1975). Atomic form factors, incoherent scattering functions and photon scattering cross sections. J. Phys. Chem. Ref. Data 4: 471–538. errata ibid. 6: 615–616 (1977).ADSCrossRefGoogle Scholar
  13. Hubbell, J. H., H. A. Gimm, and I. Øverbø (1980). Pair, triplet and total atomic cross sections (and mass attenuation coefficients) for 1 MeV–100 GeV photons in elements Z=1 to 100. J. Phys. Chem. Ref. Data 9: 1023–1147.ADSCrossRefGoogle Scholar
  14. Hubbell, J. H., P. N. Trehan, N. Singh, B. Chand, D. Mehta, M. L. Garg, R. R. Garg, S. Singh, and S. Puri (1994). A review, bibliography, and tabulation of K, L, and higher atomic shell x-ray fluorescence yields. J. Phys. Chem. Ref. Data 23(2): 339–364.ADSCrossRefGoogle Scholar
  15. ICRU Report 16 (1970). Linear Energy Transfer. Bethesda, MD, International Commission on Radiation Units and Measurements.Google Scholar
  16. ICRU Report 33 (1980). Radiation Quantities and Units. Bethesda, MD, International Commission on Radiation Units and Measurements.Google Scholar
  17. ICRU Report 37 (1984). Stopping Powers for Electrons and Positrons. Bethesda, MD, International Commission on Radiation Units and Measurements. Information also available at .Google Scholar
  18. ICRU Report 49 (1993). Stopping Powers and Ranges for Protons and Alpha Particles. Bethesda, MD, International Commission on Radiation Units and Measurements. Information also available at .Google Scholar
  19. Jackson, D. F., and D. J. Hawkes (1981). X-ray attenuation coefficients of elements and mixtures. Phys. Reports 70: 169–233.CrossRefADSGoogle Scholar
  20. Kissel, L. H., R. H. Pratt, and S. C. Roy (1980). Rayleigh scattering by neutral atoms, 100 eV to 10 MeV. Phys. Rev. A. 22: 1970–2004.CrossRefADSGoogle Scholar
  21. Powell, C. F., P. H. Fowler, and D. H. Perkins (1959). The Study of Elementary Particles by the Photographic Method. New York, Pergamon.Google Scholar
  22. Pratt, R. H. (1982). Theories of coherent scattering of x rays and γ rays by atoms, in Proceedings of the Second Annual Conference of International Society of Radiation Physicists, Penang, Malaysia. Google Scholar
  23. Rossi, B. (1957). Optics. Reading, MA, Addison-Wesley, Chap. 8.MATHGoogle Scholar
  24. Seltzer, S. M. (1993). Calculation of photon mass energy-transfer and mass energy-absorption coefficients. Radiat. Res. 136: 147–170.CrossRefGoogle Scholar
  25. Tung, C. J., J. C. Ashley, and R. H. Ritchie (1979). Range of low-energy electrons in solids. IEEE Trans. Nucl. Sci. NS-26: 4874–4878.CrossRefADSGoogle Scholar
  26. Ziegler, J. F., and J. M. Manoyan (1988). The stopping of ions in compounds. Nucl. Instrum. Methods in Phys. Res. B35: 215–228.CrossRefADSGoogle Scholar
  27. Ziegler, J. F., J. P. Biersack, and U. Littmark (1985). The Stopping and Range of Ions in Solids. New York, Pergamon.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Russell K. Hobbie
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Professor of Physics, Emeritus University of Minnesota
  2. 2.Associate Professor of Physics Oakland UniversityOakland

Personalised recommendations