Advertisement

The Method of Least Squares and Signal Analysis

  • Russell K. Hobbie
  • Bradley J. Roth

Abstract

This chapter deals with three common problems in experimental science. The first is fitting a discrete set of experimental data with a mathematical function. The function usually has some parameters that must be adjusted to give a “best” fit. The second is to detect a periodic change in some variable—a signal—which may be masked by random changes—noise—superimposed on the signal. The third is to determine whether sets of apparently unsystematic data are from a random process or a process governed by deterministic chaotic behavior.

Keywords

Power Spectrum Fourier Series Autocorrelation Function Sine Wave Periodic Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair, R. K., R. D. Astumian, and J. C. Weaver (1998). Detection of weak electric fields by sharks, rays and skates. Chaos. 8(3): 576–587.CrossRefADSGoogle Scholar
  2. Anderka, M., E. R. Declercq, and W. Smith (2000). A time to be born. Amer. J. Pub. Health 90(1): 124–126.CrossRefGoogle Scholar
  3. Astumian, R. D. (1997). Thermodynamics and kinetics of a Brownian motor. Science. 276: 917–922.CrossRefGoogle Scholar
  4. Astumian, R. D. and F. Moss (1998). Overview: The constructive role of noise in fluctuation driven transport and stochastic resonance. Chaos. 8(3): 533–538.MATHCrossRefADSGoogle Scholar
  5. Bevington, P. R., and D. K. Robinson (1992). Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. New York, McGraw-Hill.Google Scholar
  6. Blackman, R. B., and J. W. Tukey (1958). The Measurement of Power Spectra. AT&T. New York, Dover, pp. 32–33.Google Scholar
  7. Bracewell, R. N. (1990). Numerical transforms. Science 248: 697–704.CrossRefADSMathSciNetGoogle Scholar
  8. Cohen, A. (2000). Biomedical signals: Origin and dynamic characteristics; frequency-domain analysis. In J. D. Bronzino, ed. The Biomedical Engineering Handbook, 2nd. ed. Vol. 1. Boca Raton, FL, CRC, pp. 52-1–52-4.Google Scholar
  9. Cooley, J. W., and J. W. Tukey (1965). An algorithm for the machine calculation of complex Fourier series. Math. Comput. 119: 297–301.MathSciNetGoogle Scholar
  10. DeFelice, L. J. (1981). Introduction to Membrane Noise. New York, Plenum.Google Scholar
  11. Feynman, R. P., R. B. Leighton and M. Sands (1963). The Feynman Lectures on Physics, Vol. 1, Chapter 46. Reading, MA, Addison-Wesley.Google Scholar
  12. Gammiatoni, L., P. Hänggi, P. Jung and F. Marchesoni (1998). Stochastic resonance. Rev. Mod. Phys. 70(1): 223–287.CrossRefADSGoogle Scholar
  13. Gatland, I. R. (1993). A weight-watcher's guide to least-squares fitting. Comput. Phys. 7(3): 280–285.Google Scholar
  14. Gatland, I. R., and W. J. Thompson (1993). Parameter bias estimation for log-transformed data with arbitrary error characteristics. Am. J. Phys. 61(3): 269–272.CrossRefADSGoogle Scholar
  15. Gingl, Z., L. B. Kiss, and F. Moss (1995). Non–dynamical stochastic resonance: Theory and experiments with white and arbitrarily coloured noise. Europhys. Lett. 29(3): 191–196.CrossRefADSGoogle Scholar
  16. Glass, L. (2001). Synchronization and rhythmic processes in physiology. Nature. 410(825): 277–284.CrossRefADSGoogle Scholar
  17. Guyton, A. C. (1991). Textbook of Medical Physiology, 8th ed. Philadelphia, Saunders.Google Scholar
  18. Kaiser, I. H. and F. Halberg (1962). Circadian periodic aspects of birth. Ann. N. Y. Acad. Sci. 98: 1056–1068.CrossRefGoogle Scholar
  19. Kaplan, D., and L. Glass (1995). Understanding Nonlinear Dynamics. New York, Springer.MATHGoogle Scholar
  20. Lighthill, M. J. (1958). An Introduction to Fourier Analysis and Generalized Functions. Cambridge, England, Cambridge University Press.Google Scholar
  21. Lybanon, M. (1984). A better least-squares method when both variables have uncertainties. Am. J. Phys. 52: 22–26.CrossRefADSGoogle Scholar
  22. Mainardi, L. T., A. M. Bianchi, and S. Cerutti (2000). Digital biomedical signal acquisition and processing. In J. D. Bronzino, ed. The Biomedical Engineering Handbook, 2nd. ed. Vol. 1. Boca Raton, FL, CRC, pp. 53-1–53-25.Google Scholar
  23. Maughan, W. Z., C. R. Bishop, T. A. Pryor, and J. W. Athens (1973). The question of cycling of blood neutrophil concentrations and pitfalls in the analysis of sampled data. Blood. 41: 85–91.Google Scholar
  24. Milnor, W. R. (1972). Pulsatile blood flow. New Eng. J. Med. 287: 27–34.CrossRefGoogle Scholar
  25. Nedbal, L. and V. Březnia (2002). Complex metabolic oscillations in plants forced by harmonic irradiance. Biophys. J. 83: 2180–2189.CrossRefADSGoogle Scholar
  26. Nyquist, H. (1928). Thermal agitation of electric charge in conductors. Phys. Rev. 32: 110–113.CrossRefADSGoogle Scholar
  27. Orear, J. (1982). Least squares when both variables have uncertainties. Am. J. Phys. 50: 912–916.CrossRefADSGoogle Scholar
  28. Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Numerical Recipes in C: The Art of Scientific Computing, 2nd ed., reprinted with corrections, 1995. New York, Cambridge University Press.Google Scholar
  29. Visscher, P. B. (1996). The FFT: Fourier transforming one bit at a time. Comput. Phys. 10(5): 438–443.CrossRefADSGoogle Scholar
  30. Wiesenfeld, K. and F. Jaramillo (1998). Minireview of stochastic resonance. Chaos 8(3): 539–548.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Russell K. Hobbie
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Professor of Physics, Emeritus University of Minnesota
  2. 2.Associate Professor of Physics Oakland UniversityOakland

Personalised recommendations