• Russell K. Hobbie
  • Bradley J. Roth


This chapter introduces some concepts from mechanics that are of biological or medical interest. We begin with a discussion of sizes important in biology. Then we turn to the forces on an object that is in equilibrium and calculate the forces experienced by various bones and muscles. In Sec. 1.8 we introduce the concept of mechanical work, which will recur throughout the book. The next two sections describe how materials deform when forces act on them. Sections 1.11 through 1.14 discuss the forces in stationary and moving fluids. These concepts are then applied to laminar viscous flow in a pipe, which is a model for the flow of blood and the flow of fluid through pores in cell membranes. The chapter ends with a discussion of the circulatory system.


Reynolds Number Shear Strain Achilles Tendon Great Trochanter Entry Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benedek, G. B., and F. M. H. Villars (2000). Physics with Illustrative Examples from Medicine and Biology. Vol. 1. Mechanics. New York, Springer-Verlag.MATHGoogle Scholar
  2. Caro, C. G., T. J. Pedley, R. C. Schroter, and W. A. Seed (1978). The Mechanics of the Circulation. Oxford, Oxford University Press.Google Scholar
  3. Cebeci, T., and P. Bradshaw (1977). Momentum Transfer in Boundary Layers. Washington, Hemisphere.MATHGoogle Scholar
  4. Denny, M. W. (1993). Air and Water: The Biology and Physics of Life's Media. Princeton, Princeton University Press.Google Scholar
  5. Elliott, D. M., D. A. Normoneva and L. A. Setton (2002). Direct measurement of the Poisson's ratio of human patella cartilage in tension. J. Biomech. Eng. 124: 223–228.CrossRefGoogle Scholar
  6. Fung, Y. C. (1993). Biomechanics: Mechanical Properties of Living Tissue. 2nd. ed. New York, Springer-Verlag.Google Scholar
  7. Goodsell, D. S. (1998). The Machinery of Life. New York, Springer-Verlag.Google Scholar
  8. Hademenos, G. J. (1995). The physics of cerebral aneurysms. Physics Today, Feb., 24-30.CrossRefGoogle Scholar
  9. Halliday, D., R. Resnick, and K. S. Krane (1992). Fundamentals of Physics, 4th ed., Vol. 1. New York, Wiley.Google Scholar
  10. Herrick, J. F. (1942). Poiseuille's observations on blood flow lead to a new law in hydrodynamics. Am. J. Phys. 10: 33–39.CrossRefADSGoogle Scholar
  11. Inman, V. T. (1947). Functional aspects of the abductor muscles of the hip. J. Bone Joint Surg. 29: 607–619.Google Scholar
  12. Köhler, T. and F. Vollrath (1995). Thread biomechanics in the two orb-weaving spiders, Araneus diadematus (Araneae, Araneidae) and Uloborus walckenaerius (Araneae, Uloboridae). J. Exp. Zool. 271: 1–17.CrossRefGoogle Scholar
  13. LaBarbera, M. (1990). Principles of design of fluid transport systems in zoology. Science. 249: 992–1000.CrossRefADSGoogle Scholar
  14. Lighthill, J. (1975). Mathematical Biofluiddynamics. Philadelphia, Society for Industrial and Applied Mathematics.MATHGoogle Scholar
  15. Macklem, P. T. (1975). Tests of lung mechanics. N. Engl. J. Med. 293: 339–342.CrossRefGoogle Scholar
  16. Mazumdar, J. N. (1992). Biofluid Mechanics. Singapore, World Scientific.MATHGoogle Scholar
  17. Milnor, William R. (1989). Hemodynamics, 2nd ed. Baltimore, Williams & Wilkins.Google Scholar
  18. Morrison, P., P. Morrison, and the office of C. & R. Eames (1994). Powers of Ten. New York, Scientific American Library.Google Scholar
  19. Patton, H., A. F. Fuchs, B. Hille, A. M. Scher and R. Steiner, eds. (1989). Textbook of Physiology. 21st ed. Philadelphia, Saunders.Google Scholar
  20. Purcell, E. M. (1977). Life at low Reynolds number. Am. J. Phys. 45: 3–11.CrossRefADSGoogle Scholar
  21. Synolakis, C. E., and H. S. Badeer (1989). On combining the Bernoulli and Poiseuille equation—A plea to authors of college physics texts. Am. J. Phys. 57(11): 1013–1019.CrossRefADSGoogle Scholar
  22. Trowbridge, E. A. (1982). The fluid mechanics of blood: equilibrium and sedimentation. Clin. Phys. Physiol. Meas. 3(4): 249–265.CrossRefGoogle Scholar
  23. Trowbridge, E. A. (1983). The physics of arteriole blood flow. I. General Theory. Clin. Phys. Physiol. Meas. 4(2): 151–175.CrossRefGoogle Scholar
  24. Trowbridge, E. A. and P. M. Meadowcroft (1983). The physics of arteriole blood flow. II. Comparison of theory with experiment. Clin. Phys. Physiol. Meas. 4(2): 177–196.CrossRefGoogle Scholar
  25. Vogel, S. V. (1992). Vital Circuits: On Pumps, Pipes, and the Workings of Circulatory Systems. Oxford, Oxford University Press.Google Scholar
  26. Vogel, S. V. (1994). Life in Moving Fluids. Princeton, Princeton University Press.Google Scholar
  27. Wick, G. L. and P. F. Tooby (1977). Centrifugal buoyancy forces. Amer. J. Physics 45: 1074–1076.CrossRefADSGoogle Scholar
  28. Williams, M., and H. R. Lissner (1962). Biomechanics of Human Motion. Philadelphia, Saunders.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Russell K. Hobbie
    • 1
  • Bradley J. Roth
    • 2
  1. 1.Professor of Physics, Emeritus University of Minnesota
  2. 2.Associate Professor of Physics Oakland UniversityOakland

Personalised recommendations