Inhomogeneous Dielectric Waveguides


Inhomogeneous Medium Stability Diagram Hill Equation Dielectric Waveguide Circular Waveguide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Yeh and Z. A. Kaprielian, “On inhomogeneously filled waveguides,” USCEC Report, Elec. Eng. Dept., University of Southern California, Los Angeles (1963), p. 84Google Scholar
  2. 2.
    C. Yeh, “Dyadic Green’s function for a radially inhomogeneous spherical medium,” Phys. Rev. 131, 2350 (1963)CrossRefMathSciNetGoogle Scholar
  3. 3.
    P. J. Wyatt, “Scattering of electromagnetic plane waves from inhomogeneous spherically symmetric objects,” Phys. Rev. 127, 1837 (1962); L. I. Schiff, “Scattering of waves and particles by inhomogeneous regions,” J. Opt. Soc. Am. 52, 140 (1962)Google Scholar
  4. 4.
    C. T. Tai, “The electromagnetic theory of the spherical luneberg lens,” Appl. Sci. Rec. Sec. B 7, 113 (1958)Google Scholar
  5. 5.
    A. K. Ghatak and M. S. Sodha, “The Inhomogeneous Optical Waveguide,” Plenum Press, New York (1977)Google Scholar
  6. 6.
    T. Tamir, “Guided-wave Optoelectronics,” Springer, Berlin Heidelberg New York (1988)Google Scholar
  7. 7.
    E. T. Whittaker and G. N. Watson, “A Course on Modern Analysis,” Cambridge University Press, Oxford (1927); H. Wayland, “Differential Equations Applied in Science and Engineering,” D. Van Nostrand, New York (1957)Google Scholar
  8. 8.
    R. E. Collin, “Field Theory of Guided Waves,” McGraw-Hill, New York (1960)Google Scholar
  9. 9.
    I. L. Pincherle, “Electromagnetic waves in metal tubes filled longitudinally with two dielectrics,” Phys. Rev. 66, 118 (1944)CrossRefGoogle Scholar
  10. 10.
    L. G. Chambers, “Propagation in waveguides filled longitudinally with two or more dielectrics,” Brit. J. Appl. Phys. 4, 39 (1953); L. G. Chambers, “An approximate method for the calculation of propagation constants for inhomogeneously filled waveguides,” Quant. J. Mech. Appl. Math. 7, 299 (1954)Google Scholar
  11. 11.
    R. M. Fano, L. J. Chu, and R. B. Adler, “Electromagnetic Fields, Energy, and Forces,” Wiley, New York (1960)MATHGoogle Scholar
  12. 12.
    R. B. Adler, “Waves in inhomogeneous cylindrical structures,” Proc. IRE 40, 339 (1952)CrossRefGoogle Scholar
  13. 13.
    C. Yeh, K. F. Casey, and Z. A. Kaprielian, “Transverse magnetic wave propagation in sinusoidally stratified dielectric media,” IEEE Trans. Microw. Theory Tech. MTT-13, 297 (1965)Google Scholar
  14. 14.
    T. Tamir, H.C. Wang, and A. A. Oliner, “Wave propagation in sinusoidally stratified dielectric media,” IEEE Trans. Microwave Theory Tech. MTT-12, 323 (1965)Google Scholar
  15. 15.
    N. W. McLachlan, “Theory and Application of Mathieu Functions,” University Press, Oxford, England (1951); J. Meixner and F. W. Schäfke, “Mathieusche funktionen spharoid funktionen,” Springer, Berlin Heidelberg New York, Germany (1954)Google Scholar
  16. 16.
    L. Brillouin, “Wave Propagation in Periodic Structures,” Dover, New York (1953)MATHGoogle Scholar
  17. 17.
    P. M. Morse and H. Feshbach, “Methods of Mathematical Physics,” McGraw-Hill, New York (1953)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations