Propagation Characteristics of Guided Waves Along a Dielectric Guide

In this chapter the general propagation characteristics of guided waves along a typical dielectric waveguide will be presented. Problems associated with pulse degradation, attenuation, excitation–launching–coupling of guided waves, design of dielectric waveguide systems in the presence of noise, as well as radiation losses caused by bends and corners will be discussed. The discussion, emphasizing the fundamental aspects of the surface wave propagation characteristics, is generally applicable to all guided waves on conventional surface wave structures.


Dielectric Waveguide Attenuation Constant Hybrid Wave Surface Waveguide Total Power Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. E. Collin, “Field Theory of Guided Waves,” McGraw-Hill , New York (1960)Google Scholar
  2. 2.
    S. A. Maier, “Plasmonics: Fundamentals and Applications,” Springer, Berlin Heidelberg New York (2007)Google Scholar
  3. 3.
    L. Brillouin, “Wave Propagation in Periodic Structures,” 2nd edn., Dover, New York (1953)MATHGoogle Scholar
  4. 4.
    T. Tamir, H. C. Wang, and A. A. Oliner, “Wave propagation in sinusoidally stratified dielectric media (TE Waves)”, IEEE Trans. Microw. Theory Tech. MTT-12, 323 (1964)Google Scholar
  5. 5.
    C. Yeh, K. F. Casey, and Z. A. Kaprielian, “Transverse magnetic wave propagation in sinusoidally stratified dielectric media,” IEEE Trans. Microw. Theory Tech. MTT-13, 297 (1965)Google Scholar
  6. 6.
    C. Elachi and C. Yeh, “Periodic structures in integrated optics,” J. Appl. Phys. 44, 3146 (1973)CrossRefGoogle Scholar
  7. 7.
    S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987)CrossRefGoogle Scholar
  8. 8.
    E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987)CrossRefGoogle Scholar
  9. 9.
    J. Joannopoulos, R. Meade, and J. Winn, “Photonic Crystals,” Princeton Press, New Jersey (1995)MATHGoogle Scholar
  10. 10.
    G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 119 (1950)CrossRefMathSciNetGoogle Scholar
  11. 11.
    O. N. Singh and A. Lakhtakia, eds., “Electromagnetic Fields in Unconventional Materials and Structures,” Wiley, New York (2000)Google Scholar
  12. 12.
    C. Yeh, “Propagation along moving dielectric waveguides,” J. Opt. Soc. Am. 58, 767 (1968)CrossRefGoogle Scholar
  13. 13.
    B. Lax and K. J. Button, “Microwave Ferrites and Ferrimagnetics,” McGraw-Hill, New York (1962)Google Scholar
  14. 14.
    F. E. Borgnis and C. H. Papas, “Handbuch der Physik,” Vol. 16, Springer, Berlin Heidelberg New york (1958)Google Scholar
  15. 15.
    D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252 (1971); D. Gloge, “Dispersion in weakly guiding fibers,” Appl. Opt. 10, 2442 (1971)Google Scholar
  16. 16.
    D. Gloge, “Optical waveguide transmission,” Proc. IEEE 58, 1513 (1970)CrossRefGoogle Scholar
  17. 17.
    S. Kawakami and J. Nishizawa, “An optical waveguide with optimum distribution of the refractive index with reference to waveform distortion,” IEEE Trans. Microw. Theory Tech. MTT-16, 814 (1968)Google Scholar
  18. 18.
    S. Ramo, J. R. Whinnery, and T. Van Duzer, “Fields and Waves in Communication Electronics,” Wiley, New York (1967)Google Scholar
  19. 19.
    A. Ishimaru, “Electromagnetic Wave Propagation, Radiation, and Scattering,” Prentice Hall, New York (1991); R. F. Harrington, “Time-Harmonic Electromagnetic Field,” McGraw-Hill, New York (1961); R. E. Collin, “Field Theory of Guided Waves,” McGraw-Hill, New York (1960)Google Scholar
  20. 20.
    C. Yeh, “Dynamic Fields,” Am. Inst. of Phys. Handbook, 3rd edn., D. E. Gray, ed., McGraw-Hill, New York (1972)Google Scholar
  21. 21.
    W. M. Elsasser, “Attenuation in a dielectric circular rod”, J. Appl. Phys. 20, 1193 (1949); C. H. Chandler, “An investigation of dielectric rod as waveguides,” J. Appl. Phys. 20, 1188 (1949)Google Scholar
  22. 22.
    C. Yeh, Private Communication, JPL (1992)Google Scholar
  23. 23.
    W. A. Imbriale, T. Y. Otoshi, and C. Yeh, “Power loss for multimode waveguides and its application to beam-waveguide systems,” IEEE Trans. Microw. Theory Tech. MTT-46, 523 (1998)Google Scholar
  24. 24.
    F. P. Kapron and D. B. Keck, “Pulse transmission through a dielectric optical waveguide,” Appl. Opt. 10, 1519 (1971)CrossRefGoogle Scholar
  25. 25.
    L. Smith and E. Snitzer, “Dispersion-minimization in dielectric waveguide,” Appl. Opt. 12, 1592 (1973)CrossRefGoogle Scholar
  26. 26.
    G. P. Agrawal, “Fibre-Optic Communication Systems,” Wiley, New York (2002)CrossRefGoogle Scholar
  27. 27.
    H. F. Taylor, “Transfer of information on naval vessels via fiber optics transmission lines,” NELC-TR-1763, Naval Electronics Laboratory Center, San Diego, CA (1971)Google Scholar
  28. 28.
    W. A. Gambling and H. Matsumura, “Pulse dispersion in a lenslike medium,” Opto-Electronics 5, 429 (1973)CrossRefGoogle Scholar
  29. 29.
    A. Hasegawa and Y. Kodama, “Solitons in Optical Communications,” Clarendon Press, Oxford (1995)MATHGoogle Scholar
  30. 30.
    C. F. Davidson and J. C. Simmonds, “Cylindrical cavity resonator,” Wireless Eng. 21, 420 (1944)Google Scholar
  31. 31.
    H. M. Barlow and A. L. Cullen, “Microwave Measurements,” Constable, London (1950)Google Scholar
  32. 32.
    S. A. Schelkunoff, “The impedance concept and its application to problems of reflection, refraction, shielding and power absorption,” Bell Syst. Tech. J. 17, 17 (1938)Google Scholar
  33. 33.
    C. Yeh, “A relation between αand Q,” Proc. IRE 50, 2145 (1962); F. I. Shimabukuro and C. Yeh, “Attenuation measurement of very low loss dielectric waveguides by the cavity resonator method applicable in the millimeter/submillimeter wavelength range,” IEEE Trans. Microw. Theory Tech. MTT-36, 1160 (1988)Google Scholar
  34. 34.
    N. S. Kapany, J. J. Burke, and T. Sawatari, “A technique for launching an arbitrary mode on an optical dielectric waveguide,” J. Opt. Soc. Am. 60, 1178 (1970)CrossRefGoogle Scholar
  35. 35.
    A. W. Snyder, C. Pask, and D. J. Mitchell, “Light acceptance property of an optical fiber,” J. Opt. Soc. Am. 63, 59 (1973); A. W. Snyder, “Asymptotic expression for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. MTT-17, 1130 (1969)Google Scholar
  36. 36.
    J. R. Stern, M. Peace, and R. B. Dyott, “Launching into optical-fibre waveguide,” Electron. Lett. 6, 160–162 (1970); D. Marcuse, “Excitation of the dominant mode of a round fiber by a Gaussian beam,” Bell Syst. Tech. J. 49, 1695 (1970)Google Scholar
  37. 37.
    A. W. Snyder and C. Pask, “Incoherent illumination of an optical fiber,” J. Opt. Soc. Am. 63, 806 (1973)CrossRefGoogle Scholar
  38. 38.
    D. Marcuse, “Integrated Optics,” IEEE Press, New York (1973)Google Scholar
  39. 39.
    C. Yeh, F. Shimabukuro, and P. H. Siegel,“Low-loss terahertz ribbon waveguides,” Appl. Opt. 44, 5937(2005)Google Scholar
  40. 40.
    A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. 62, 1267 (1972)CrossRefGoogle Scholar
  41. 41.
    W. Schlosser and H. G. Unger, “ Advances in Microwaves,” L. Young ed., Academic Press, New York (1966)Google Scholar
  42. 42.
    C. Yeh, F. Shimabukuro, P. Stanton, V, Jamnejad, W. Imbriale, and A. F. Manshadi, “Communication at millimetre-submillimtre wavelengths using ceramic ribbon,” Nature 404, 584 (2000)Google Scholar
  43. 43.
    D. Marcuse, “Coupled mode theory of round optical fibers,” Bell Syst. Tech. J. 52, 817 (1973)Google Scholar
  44. 44.
    E. G. Neumann and H. D. Rudolph, “Losses from corners in dielectric-rod or optical-fiber waveguides,” Appl. Phys. 8, 107 (1975); E. G. Neumann and H. D. Rudolph, “Radiation from bends in dielectric-rod transmission lines,” IEEE Trans. Microw. Theory Tech. MTT-23, 142 (1975)Google Scholar
  45. 45.
    C. Yeh and A. Johnston, “How does one induce leakage in an optical fiber link,” paper presented in AGARD Conference on Optical fibers, integrated optics, and their military applications, Jan 26– May 26, Preprint no: 219, Harford House, London (1977)Google Scholar
  46. 46.
    G. Keiser, “Optical fiber communications,” 2nd edn., McGraw-Hill, New York (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations