Fundamental Electromagnetic Field Equations

All large-scale electromagnetic wave phenomena are governed by the Maxwell equations and the appropriate boundary conditions. In this chapter we shall discuss the fundamental equations and relations dealing with electromagnetic waves [1–3].


Maxwell Equation Surface Charge Density Dielectric Waveguide Simple Medium Scalar Wave Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Maxwell, “A Treatise on Electricity and Magnetism,” Dover, New York (1954)MATHGoogle Scholar
  2. 2.
    J. A. Stratton, “Electromagnetic Theory,” McGraw-Hill, New York (1941)MATHGoogle Scholar
  3. 3.
    A. Sommerfeld, “Electromagnetics,” Academic, New York (1949)Google Scholar
  4. 4.
    R. P. Feynman, R. B. Leighton, and M. Sands, “Feynman Lectures on Physics, The Definitive and Extended Edition, 2/E,” Addison-Wesley, Reading, MA (2006)Google Scholar
  5. 5.
    J. F. Nye, “Physical Properties of Crystals,” Oxford Science Publications, Oxford (1985)Google Scholar
  6. 6.
    B. Lax and K. J. Button, “Microwave Ferrites and Ferromagnetics,” McGraw-Hill, New York (1962)Google Scholar
  7. 7.
    L. Spitzer, “Physics of Fully Ionized Gases,” 2nd edn., Interscience Publications, Wiley, New York (1962)Google Scholar
  8. 8.
    V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Sov. Phys. Uspekhi 10, 509 (1968)CrossRefGoogle Scholar
  9. 9.
    J. B. Pendry, “Negative refraction makes a perfect lens” Phys. Rev. Lett. 85, 3966 (2000)CrossRefGoogle Scholar
  10. 10.
    P. W. Milonni, “Fast Light, Slow Light and Left-Handed Light,” Institute of Physics Publishing (IOP), London (2005)Google Scholar
  11. 11.
    A. R. von Hippel, “Dielectric Materials and Applications,” MIT Press, Cambridge, MA (1954)Google Scholar
  12. 12.
    H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tracts in Modern Physics, Vol. III, Springer Berlin Heidelberg New York (1988); P. Stoller, V. Jacobsen, and V. Sandoghdar, “Measurement of the complex dielectric constant of a single gold nanoparticle,” Opt. Lett. 31, 247402476 (2006)Google Scholar
  13. 13.
    W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon wavelength optics,” Nature 424, 824 (2003)CrossRefGoogle Scholar
  14. 14.
    M. N. Afsar and K. J. Button, “Millimeter-wave dielectric measurement of materials,” Proc. IEEE 73, 131 (1985); J. W. Lamb, “Miscellaneous data on materials for millimetre and submillimetre optics,” Int. J. Infrared MM Waves 17, 1997 (1996)Google Scholar
  15. 15.
    J. R. Birch, J. D. Dromey, and J Lisurf, “The optical constants of some common low-loss polymers between 4 and 40 cm−1,” Infrared Phys. 21, 225 (1981); M. N. Afsar, “Precision dielectric measurements of non-polar polymers in millimeter wavelength range,” IEEE Trans. Microw. Theory Tech. MTT-33, 1410 (1985)Google Scholar
  16. 16.
    J. R. Birch and T. J. Parker, “Infrared and Millimeter Waves,” Vol. 2, K. J. Button, ed., Academic, New York (1979); W. B. Bridges, M. B. Kline, and E. Schwarz, “Low loss flexible dielectric waveguides for millimeter wave transmission and its application to devices,” IEEE Trans. Microw. Theory Tech. MTT-30, 286 (1982)Google Scholar
  17. 17.
    N. Bloembergen, “Non-Linear Optics,” W. A. Benjamin, New York (1965)Google Scholar
  18. 18.
    I. Brodie and J. J. Murray, “The Physics of Micro/Nano Fabrication,” Plenum, New York (1992)Google Scholar
  19. 19.
    J. A. Schwarz, C. I. Contescu, and K. Putyera, eds., “Dekker Encyclopedia of Nanoscience and Nanotechnology,” Marcel Dekker, New York (2004)Google Scholar
  20. 20.
    C. Yeh, “Boundary conditions in electromagnetics,” Phys. Rev. E 48, 1426 (1993)CrossRefGoogle Scholar
  21. 21.
    M. A. Leontovich, “Investigation of Propagation of Radio Waves, Part II,” Printing House of the Academy of Sciences, Moscow (1948)Google Scholar
  22. 22.
    T. B. A. Senior, “Impedance boundary condition for imperfectly conducting surface,” Appl. Sci. Res. B 8, 418 (1960)CrossRefMathSciNetGoogle Scholar
  23. 23.
    C. J. Bouwkamp, “A note on singularities at sharp edges in electromagnetic theory,” Physica 12, 467 (1960)CrossRefMathSciNetGoogle Scholar
  24. 24.
    J. Meixner, “The edge condition in the theory of electromagnetic waves at perfectly conducting plane screens,” Ann. Physik 6, 2 (1949)MATHMathSciNetGoogle Scholar
  25. 25.
    J. A. Kong, “Electromagnetic Wave Theory,” Wiley, New York (1986)Google Scholar
  26. 26.
    C. Yeh, “Dynamic fields,” American Institute of Physics Handbook, 3rd edn., 5b-9 (1972)Google Scholar
  27. 27.
    J. Mathews and R. L. Walker, “Mathematical Methods of Physics,” 3rd edn., W. A. Benjamin, New York (1970)Google Scholar
  28. 28.
    G. N. Watson, “A treatise on the theory of Bessel functions,” Cambridge University Press (1944)Google Scholar
  29. 29.
    N. W. McLachlan, “Theory and Application of Mathieu Functions,” Oxford Press, Oxford, England (1947)MATHGoogle Scholar
  30. 30.
    E. T. Whittaker and G. N. Watson, “A Course of Modern Analysis,” Cambridge University Press (1927)Google Scholar
  31. 31.
    S. A. Schelkunoff, “Electromagnetic Waves,” Van Nostrand, New York (1943)Google Scholar
  32. 32.
    C. Yeh and G. Lindgren, “Computing the propagation characteristics of radially stratified fibers-An efficient method,” Appl. Opt. 16, 483 (1977)CrossRefGoogle Scholar
  33. 33.
    J. G. Dil and H. Blok, “Propagation of electromagnetic surface waves in a radially inhomogeneous optical waveguide,” Opto-Electron. 5, 415 (1973)CrossRefGoogle Scholar
  34. 34.
    C. Yeh, L. Casperson, and W. P. Brown, “Scalar-wave approach for single-mode inhomogeneous fiber problems,” Appl. Phys. Lett. 34, 460 (1979)CrossRefGoogle Scholar
  35. 35.
    L. Casperson, “Gaussian light beams in inhomogeneous media,” Appl. Opt. 12, 2434 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations