Skip to main content
  • 2991 Accesses

Although the principal emphasis of this book is on the analytical solutions to canonical dielectric waveguide problems, the capability of numerical approaches to yield useful data for problems that had no analytical solutions must be recognized. The steady increase of computing power since 1960 has provided the impetus in increasing the use of numerical means to solve electromagnetic problems. In 1966, Yee [1] demonstrated the use of the finite difference numerical method (FD) to solve boundary value problems involving the Maxwell equations in isotropic media. Goell [2] in 1969 presented his circular-harmonic computer analysis to treat dielectric shapes that are close to a circle. The radially inhomogeneous circular dielectric waveguide problem was solved in 1973 by Dil and Blok [3] using the numerical integration technique, and in 1977 by Yeh and Lindgren [4] using the matrix multiplication technique. The finite element method (FEM) was first used by Yeh et al. [5] in 1975 to solve an arbitrarily shaped inhomogeneous optical fiber or integrated optical waveguide. An improved version was given by Yeh et al. [6] in 1979. Meanwhile, a forward marching, split-step fast Fourier transform technique, also called the beam propagation method (BPM1), was used successfully to treat the problem of wave propagation in a fiber with radially inhomogeneous index variation by Yeh et al. [7] in 1977. A few months later, Feit and Fleck [8] popularized this BPM approach. Subsequently, Yeh et al. [9–11], also showed how this BPM may be used to solve the single mode or multi-mode inhomogeneous fiber coupler problems, the fiber branches, tapers, or horns problem and fibers with longitudinal index variations. The BPM provides good results provided that any longitudinal reflections due to longitudinal variations may be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14, 302 (1966)

    Article  MATH  Google Scholar 

  2. J. E. Goell, “A circular-harmonic computer analysis of rectangular dielectric waveguides,” Bell Syst. Tech. J. 48, 2133 (1969)

    Google Scholar 

  3. J. G. Dil and H. Blok, “Propagation of electromagnetic surface waves in a radially inhomogeneous optical waveguides,” Opto-Electronics 5, 415 (1973)

    Article  Google Scholar 

  4. C. Yeh and G. Lindgren, “Computing the propagation characteristics of radially stratified fibers – An efficient method,” Appl. Opt. 16, 483 (1977)

    Article  Google Scholar 

  5. C. Yeh, S. B. Dong, and W. Oliver, “Arbitrarily shaped inhomogeneous optical fiber or integrated optical waveguides,” J. Appl. Phys. 46, 2125 (1975)

    Article  Google Scholar 

  6. C. Yeh, K. Ha, S. B. Dong, and W. P. Brown, “Single-mode optical waveguides,” Appl. Opt. 18, 1490 (1979)

    Article  Google Scholar 

  7. C. Yeh, L. Casperson, and B. Szejn, “Propagation of truncated gaussian beams in multimode or single-mode fiber guides,” J. Opt. Soc. Am. 68, 989 (1978)

    Article  Google Scholar 

  8. M. D. Feit and J. A. Fleck Jr., “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990 (1978)

    Article  Google Scholar 

  9. C. Yeh, W. P. Brown, and B. Szejn, “Multi-mode or single-mode fiber couplers,” Appl. Opt. 18, 489 (1979)

    Article  Google Scholar 

  10. C. Yeh, “Physics of Fiber Optics: Advances in Ceramics,” Vol.2, B. Bendow and S. S. Mitra, eds., The American Ceramic Society, Ohio (1981)

    Google Scholar 

  11. C. Yeh and F. Manshadi, “On weakly guiding single-mode optical waveguides,” J. Lightwave Tech. 3, 199 (1985)

    Article  Google Scholar 

  12. Quick-Wave-3D FDTD Software, QWED Sp. z o.o., Warszawa, Poland; Commercial programs for FDTD, FEM, BPM

    Google Scholar 

  13. R. F. Harrington, “Field Computation by Moment Methods,” Series on Electromagnetic Wave Theory, IEEE Press, New York (1968)

    Google Scholar 

  14. Wolfram Mathematica Documentation Center, “The Numerical Method of Lines,” Academic Press (2007); W. E. Schiesser, “The Numerical Method of Lines,” Academic Press, New York (1992)

    Google Scholar 

  15. G. E. Mariki and C. Yeh, “Dynamic 3-D TLM analysis of microstrip-lines on anisotropic substrates,” IEEE Trans. Microw. Theory Tech. MTT-33, 789 (1985)

    Google Scholar 

  16. P. Barber and C. Yeh, “Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies,” Appl. Opt. 14, 2864 (1975)

    Google Scholar 

  17. L. P. Eyges, P. Gianino, and P. Wintersteiner, “Modes of dielectric waveguides of arbitrary cross sectional shapes,” J. Opt. Soc. Am. 69, 1226 (1979)

    Article  Google Scholar 

  18. G. Mur, “Absorbing boundary conditions for finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromagn. Compat. 23, 1073 (1981)

    Google Scholar 

  19. S. Ahmed and P. Daly, “Finite-element methods for inhomogeneous waveguides,” Proc. IEEE 116, 1661 (1969)

    Google Scholar 

  20. S. B. Dong, J. A. Wolf Jr., and F. E. Peterson, “On a direct-iterative eigensolution technique,” Int. J. Num. Meth. Eng. 4, 155 (1972)

    Google Scholar 

  21. J. R. Carson, S. P. Mead, and S. A. Schelkunoff, “Hyperfrequency waveguides – Mathematical theory,” Bell Syst. Tech. J. 15, 310 (1936)

    Google Scholar 

  22. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491 (1961)

    Article  MathSciNet  Google Scholar 

  23. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071 (1969)

    Google Scholar 

  24. F. Blum, D. Shaw, and W. C. Holton, “Optical stripline for integrated optical circuits in epitaxial GaAs,” Appl. Phys. Lett. 25, 116 (1974); M. Ohtaka, M. Matsuhara, and N, Kumagai, “Analysis of the guided mode in slab-coupled waveguides using a variational method,” IEEE J. Quantum Electron. QE-12, 378 (1976)

    Google Scholar 

  25. R. H. Hardin and F. D. Tappert, “Applications of split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equation,” SIAM Rev. Chronicle 15, 423 (1973)

    Google Scholar 

  26. C. Yeh, L. Casperson, and W. P. Brown, “Scalar-wave approach for single-mode inhomogeneous fiber problems,” Appl. Phys. Lett. 34, 460 (1979)

    Article  Google Scholar 

  27. J. A. Arnard, “Transverse coupling in fiber optics, Part IV. crosstalk,” Bell. Syst. Tech. J. 54, 1431 (1975); J. S.Cook, “Tapered velocity couplers,” Bell. Syst. Tech. J. 34, 807 (1955)

    Google Scholar 

  28. K. Ogawa, “Simplified theory of the multimode fiber coupler,” Bell. Syst. Tech. J. 56, 729 (1977)

    Google Scholar 

  29. A. W. Snyder and J. D. Love, “Optical Waveguide Theory,” Chapman and Hall, London (1983)

    Google Scholar 

  30. M. D. Feit and J. D. Fleck, “Computations of mode properties in optical fiber waveguides by a propagating beam method,” Appl. Opt. 19, 1154 (1980)

    Article  Google Scholar 

  31. C. Yeh, “Modes in weakly guiding elliptical optical fibers,” Opt. Quantum Electron. 8, 43 (1976)

    Article  Google Scholar 

  32. A. Taflove and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time dependent Maxwell’s equations,” IEEE Trans. Microw. Theory Tech. 23, 623 (1975); K. S. Kunz and R. J. Luebbers, ”Finite Difference Time Domain Method for Electromagnetics,” CRC Press, Boca Raton, USA (1992)

    Google Scholar 

  33. P. H. Siegel, private communication (2004)

    Google Scholar 

  34. C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt. 28, 5937 (2006)

    Google Scholar 

  35. P. H. Siegel, S. E. Fraser, W. Grundfest, C. Yeh, and F. Shimabukuro, “Flexible guide for in-vivo and hand-held THz imaging,” Quarterly Progress Report, NIH-PAR-03-075, Caltech (2006)

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

(2008). Selected Numerical Approaches. In: The Essence of Dielectric Waveguides. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-49799-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-49799-0_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-30929-3

  • Online ISBN: 978-0-387-49799-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics