Plasmon (SubWavelength) Waveguides

A surface plasmon-polariton wave (SPP) is a guided surface wave along the interface of a metal film or a metal substrate and a surrounding dielectric material. This type of wave is formed by the coupling of an electromagnetic wave to oscillating free electrons at the surface of a conductor. The first pioneering investigation on this phenomenon was carried by Ritchie in the 1950s [1]. Subsequently, for the next half a century, the studies of SPPs and their applications have expanded from the diagnostics of metal surface qualities to a broad spectrum of scientific endeavors in physics, chemistry, and biology [2–10]. Furthermore, the subwavelength model size and very slow group velocity over an unusually large bandwidth of the SPP wave may provide exciting applications to the field of nanophotonics and microfabrication [4, 6, 10].


Dispersion Relation Dielectric Medium Dielectric Waveguide Complex Dielectric Constant Antisymmetric Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874 (1957)CrossRefMathSciNetGoogle Scholar
  2. 2.
    H. Raether, “Surface Plasmons,” Springer, Berlin Heidelberg New York (1988)Google Scholar
  3. 3.
    J. R. Sambles, G. Bradbery, and F. Z. Yang, “Optical-excitation of surface plasmons - An introduction,” Contemp. Phys. 32, 173 (1991)CrossRefGoogle Scholar
  4. 4.
    W. L. Barnes, A. Deseux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003)CrossRefGoogle Scholar
  5. 5.
    H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 56 (2007)CrossRefGoogle Scholar
  6. 6.
    E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science 311, 189 (2006)CrossRefGoogle Scholar
  7. 7.
    S. A. Maier, “Plasmonics: Fundamentals and Applications,” Springer, Berlin Heidelberg New York (2007)Google Scholar
  8. 8.
    S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 99, 011101 (2005)CrossRefGoogle Scholar
  9. 9.
    D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896 (2004); T. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 06113 (2003)Google Scholar
  10. 10.
    A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljaĉiĉ, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 06390 (2005)CrossRefGoogle Scholar
  11. 11.
    J. A. Stratton, “Electromagnetic Theory,” McGraw-Hill, New York (1941)MATHGoogle Scholar
  12. 12.
    J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like wave guided by thin lossy metal films,” Phys. Rev. B 33, 5186 (1986); E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539 (1969)Google Scholar
  13. 13.
    M. N. Zervas, “Surface plasmon-polariton waves guided by thin metal films,” Opt. Lett. 16, 720 (1991)CrossRefGoogle Scholar
  14. 14.
    J. A. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides – Frequency dependent dispersion, propagation, localization and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005)CrossRefGoogle Scholar
  15. 15.
    P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000)CrossRefGoogle Scholar
  16. 16.
    R. Pregla and W. Pascher, “Numerical Techniques for Microwave and Millimeter-Wave Passive Structures,” T. Itoh, ed., Wiley, New York (1989)Google Scholar
  17. 17.
    F. I. Shimabukuro, “A study of dispersion in plasmas,” Ph. D. Thesis, California Inst. of Technol. (1962)Google Scholar
  18. 18.
    A. W. Trivelpiece and R. W. Gould, “Space charge waves in cylindrical plasma columns,” J. Appl. Phys. 3, 1784 (1959)CrossRefGoogle Scholar
  19. 19.
    C. Yeh, “Wave propagation on a moving plasma column,” J. Appl. Phys. 39, 6112 (1968)CrossRefGoogle Scholar
  20. 20.
    P. B. Catrysse, H. Shin, and S. Fan, “Propagating modes in subwavelength cylindrical holes,” J. Vac. Sci. Tech. 23(6), 2675 (2005)Google Scholar
  21. 21.
    L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003)CrossRefGoogle Scholar
  22. 22.
    M. A. Foster, A. C. Turner, M. Lipson, and A. L. Gaeta, “Nonlinear optics in photonic nanowires,” Opt. Exp. 16, 1300 (2008)CrossRefGoogle Scholar
  23. 23.
    R. E. Collin, “Field Theory of Guided Waves,” McGraw-Hill, New York (1960)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations