Advertisement

The increasing capabilities of digital computation have altered the way electromagnetic problems are being solved. It is no longer necessary that analytical solutions be obtained. Many practical problems with complicated geometries for which there are no closed form analytic solutions can now be solved numerically. Nevertheless, understanding the fundamental behavior (the essence) of the solutions must still be gained from analytic solutions of canonical problems. In other words, correct interpretation of the numerical results must depend on knowing the essence of guided waves on certain related canonical structures. Therefore, the primary goal of this book is to provide an insight into this essence.

Review of the wave guiding structures over the whole electromagnetic spectrum shows that, for frequencies below 30 GHz, mostly metal-based structures are used, and for frequencies above 30 GHz, increasing skin-depth losses in metal requires that low-loss structures be made without the use of any metallic material. Hence, the importance of pure dielectric waveguides for carrying large bandwidth signals is established. See Fig. 1.1 for a display of spectral regions in which certain guiding structures are useful. It is seen that the useful spectrum for dielectric waveguides can span more than seven decades, from 109 to 1016 Hz.

Keywords

Optical Waveguide Dielectric Waveguide Dielectric Structure Photonic Crystal Waveguide Closed Form Analytic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Sommerfeld, “Über die fortplanzung elektrodynamisches wellen langes eines drahtes,” Ann. der Phys. Chem. 67, 233 (1899)CrossRefGoogle Scholar
  2. 2.
    A. Sommerfeld, “An oscillating dipole above a finitely conducting plane,” Ann. der Physik, 28, 665 (1909); Ann. der Physik 81, 1135 (1926)CrossRefGoogle Scholar
  3. 3.
    J. Zenneck, “Propagation of plane EM waves along a plane conducting surface,” Ann. der Physik 23, 846 (1907)CrossRefGoogle Scholar
  4. 4.
    D. Hondros and P. Debye, “Elektromagnetische wellen in dielektrischen drahtes,” Ann. der Physik 32, 465 (1910); D. Hondros, “Elektromagneticsche wellen in drahtes,” Ann. der Physik 30, 905 (1909)Google Scholar
  5. 5.
    H. Zahn, “Detection of electromagnetic waves along dielectric wires,” Ann. der Physik 49, 907 (1916)CrossRefGoogle Scholar
  6. 6.
    H. Ruter and O. Schriever, “Elektromagnetische wellen an dielektrischen drahten,” Schriften des Naturalwissenschaftlichen vereines fur Schleswig-Holstein 16, 2 (1916)Google Scholar
  7. 7.
    J. R. Carson, S. P. Mead, and S. A. Schelkunoff. “Hyperfrequency waveguides-mathematical theory,” Bell Syst. Tech. J. 15, 310 (1936)Google Scholar
  8. 8.
    G. C. Southworth, “Hyperfrequency waveguides – general considerations and experimental results,” Bell Syst. Tech. J. 15, 284 (1936)Google Scholar
  9. 9.
    S. A. Schelkunoff, “The impedance concept and its application to problems of reflection, refraction, shielding and power absorption,” Bell Syst. Tech. J. 17, 17 (1938)Google Scholar
  10. 10.
    Mallach, “Dielektrische richtstrahler,” Bericht des V. I. F. S (1943)Google Scholar
  11. 11.
    G. F. Wegener. “Ausbreitungsgeschwindigkeit wellenwiderstand und dampfung elektromagnetischer wellen an dielektrischen Zylindern,” Dissertation, Air Material Command Microfilm ZWB/FB/RE/2018, R8117F831 (1946)Google Scholar
  12. 12.
    W. M. Elsasser, “Attenuation in a dielectric circular rod,” J. Appl. Phys. 20, 1193 (1949)CrossRefGoogle Scholar
  13. 13.
    C. H. Chandler. “An investigation of dielectric rod as waveguides,” J. Appl. Phys. 20, 1188 (1949)CrossRefGoogle Scholar
  14. 14.
    C. Yeh, “A relation between α and Q,” Proc. IRE, vol. 50, 2143 (1962)Google Scholar
  15. 15.
    L. Brillouin, “Wave Propagation in Periodic Structures,” Dover, New York (1953)MATHGoogle Scholar
  16. 16.
    S. Sensiper, “Electromagnetic wave propagation on helical conductors,” Research Laboratory for Electronics, Mass. Inst. of Tech., Tech. Rept No. 194, May 16 (1951); Proc. IRE 43, 149 (1955)Google Scholar
  17. 17.
    J. R. Pierce, “Theory and Design of Electron Beams,” D. Van Nostrand, Princeton (1950)Google Scholar
  18. 18.
    D. D. King, “Dielectric image line,” J. Appl. Phys. 23, 699 (1952); D. D. King and S. P. Schlesinger, “Losses in dielectric image lines,” IRE Trans. Microw. Theory Tech. MTT-5, 31 (1957)Google Scholar
  19. 19.
    G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119 (1950); G. Goubau, “Single conductor surface wave transmission lines,” Proc. IRE 39, 619 (1951)Google Scholar
  20. 20.
    R. E. Collin, “Field Theory of Guided Waves,” McGraw-Hill, New York (1960)Google Scholar
  21. 21.
    E. Snitzer and J. W. Hicks, “Optical wave-guide modes in small glass fibers. I. Theoretical,” J. Opt. Soc. Am. 49, 1128 (1959); E. Snitzer and H. Osterberg, “Observed dielectric waveguide modes in the visible spectrum,” J. Opt. Soc. Am. 51, 499 (1961); N. S. Kapany and J. J. Burke, “Fiber optics IX. Waveguide effects,” J. Opt. Soc. Am. 51, 1067–1078 (1961)Google Scholar
  22. 22.
    E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491 (1961)CrossRefMathSciNetGoogle Scholar
  23. 23.
    C. Yeh, “Elliptical dielectric waveguides,” J. Appl. Phys. 33, 3235 (1962); C. Yeh, “Attenuation in a dielectric elliptical cylinder,” IEEE Trans. Antenn. Propag. AP-11, 177 (1963)Google Scholar
  24. 24.
    L. A. Lynbimov, G. I. Veselov, and N. A. Bei, “Dielectric waveguide with elliptical cross-section,” Radio Eng. Electron. (USSR) 6, 1668 (1961)Google Scholar
  25. 25.
    R. B. Dyott, “Elliptical Fiber Waveguides,” Artech House, Boston (1995)Google Scholar
  26. 26.
    N. Bloembergen, “Non-linear Optics,” W. A. Benjamin, New York (1965)Google Scholar
  27. 27.
    K. C. Kao and G. A. Hockham, “Dielectric fiber surface waveguides for optical frequencies,” Proc. IEEE 113, 1151 (1966)Google Scholar
  28. 28.
    F. P. Kapron, D. B. Keck, and R. D. Maurer, “Radiation losses in glass optical waveguides,” Appl. Phys. Lett. 17, 423 (1970)CrossRefGoogle Scholar
  29. 29.
    D. Marcuse, Ed., “Integrated Optics,” IEEE Press, New York (1973)Google Scholar
  30. 30.
    A. W. Snyder, “Asymptotic expressions for eigenfunctions and eigenvalues of a dielectric or optical waveguide,” IEEE Trans. Microw. Theory Tech. MTT-17, 1130 (1969)Google Scholar
  31. 31.
    D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252 (1971)CrossRefGoogle Scholar
  32. 32.
    G. P. Agrawal, “Fibre-Optic Communication Systems,” Wiley, New York (2002)CrossRefGoogle Scholar
  33. 33.
    A. Hasegawa and T. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142 (1973)Google Scholar
  34. 34.
    C. Yeh and L. A. Bergman, “Existence of optical solitons on wavelength division multiplexed beams,” Phys. Rev. E 60, 2306 (1999)Google Scholar
  35. 35.
    K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenn. Propag. 14, 302 (1966)MATHCrossRefGoogle Scholar
  36. 36.
    G. Mur, “Absorbing boundary conditions for finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Trans. Electromag. Compat. 23, 1073 (1981)Google Scholar
  37. 37.
    C. Yeh and P. Wang, “Scattering of obliquely incident waves by inhomogeneous fibers,” J. Appl. Phys. 43, 3999 (1972)CrossRefGoogle Scholar
  38. 38.
    C. Yeh and G. Lindgren, “Computing the propagation characteristics of radially stratified fibers – An efficient method,” Appl. Opt. 16, 483 (1977)CrossRefGoogle Scholar
  39. 39.
    C. Yeh, L. Casperson, and B. Szejn, “Propagation of truncated gaussian beams in multimode or single-mode fiber guides,” J. Opt. Soc. Am. 68, 989 (1978)CrossRefGoogle Scholar
  40. 40.
    M. D. Feit and J. D. Fleck, “Light propagation in graded-index optical fibers,” Appl. Opt. 17, 3990 (1980)CrossRefGoogle Scholar
  41. 41.
    C. Yeh, S. B. Dong, and W. Oliver, “Arbitrarily shaped inhomogeneous optical fiber or integrated optical waveguides,” J. Appl. Phys. 46, 2125 (1975); C. Yeh, K. Ha, S. B. Dong, and W. P. Brown, “Single-mode optical waveguides,” Appl. Opt. 18, 1490 (1979)Google Scholar
  42. 42.
    G. E. Mariki and C. Yeh, “Dynamic 3D TLM analysis of microstrip-lines on anisotropic substrates,” IEEE Trans. Microw. Theory Tech. MTT-33, 789 (1985)Google Scholar
  43. 43.
    C. Yeh, F. Shimabukuro, and P. H. Siegel, “Low-loss terahertz ribbon waveguides,” Appl. Opt. 44, 5937 (2005); C. Yeh, F. Shimabukuro, P. Stanton, V. Jamnejad, W. Imbriale, and F. Manshadi, “Communication at millimeter–submillimeter wavelengths using a ceramic ribbon,” Nature 404, 584 (2000)Google Scholar
  44. 44.
    E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059 (1987)CrossRefGoogle Scholar
  45. 45.
    S. John, “Strong localization of photon in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987)CrossRefGoogle Scholar
  46. 46.
    J. Joannopoulos, R. Meade, and J. Winn, “Photonic Crystals,” Princeton Press, New Jersey (1995)MATHGoogle Scholar
  47. 47.
    J. C. Knight, T. A. Birks, P. J. Russell, and D. M. Atkins, “All-silica single-mode optical fiber with photonic crystal cladding,” Optics Lett. 21, 1547 (1996)CrossRefGoogle Scholar
  48. 48.
    R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874 (1957); H. Raether, “Surface Plasmons,” Springer, Berlin Heidelberg New York (1988)Google Scholar
  49. 49.
    S. A. Maier, “Plasmonics: Fundamentals and Applications,” Springer, Berlin Heidelberg New York (2007)Google Scholar
  50. 50.
    H. A. Atwater, “The promise of plasmonics,” Verlag Scientific Am. 50, 56 (2007)Google Scholar
  51. 51.
    V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Soviet Phys. Uspekhi 10, 509 (1968)CrossRefGoogle Scholar
  52. 52.
    J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780 (2006)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Personalised recommendations