Skip to main content

Global Warming Projection by an Atmospheric General Circulation Model with a 20-km Grid

  • Chapter
High Resolution Numerical Modelling of the Atmosphere and Ocean

Summary

A global wanning projection was conducted on the Earth Simulator by using a very high horizontal resolution atmospheric general circulation model with 20-km grid. Tropical cyclones (TCs) and the rain band (Baiu) during the East Asian summer monsoon season are selected as the main targets of this study, because these bring typical extreme events but so far the global climate models have not given reliable simulations and projections due to their insufficient resolutions. The model reproduces TCs and a Baiu rain band reasonably well under the present-day climate conditions. In a warmer climate at the end of this century, the model projects, under the IPCC SRES A1B scenario, that the annual mean occurrence number of TCs decreases by about 30% globally (but increased in the North Atlantic) and TCs with large maximum surface winds increase. The Baiu rain band activities tend to intensify and last longer until August, suggesting more damages due to heavy rainfalls in a warmer climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, and E. Nelkin. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeor., 4, 1147-1167 (2003).

    Article  Google Scholar 

  • Arakawa, A. and W. H. Schubert. Interaction of cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674-701 (1974).

    Article  Google Scholar 

  • Bengtsson, L., M. Botzet and M. Esch. Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57-73 (1996).

    Google Scholar 

  • Emanuel, K. A. The dependence of hurricane intensity on climate. Nature, 326, 483-485 (1987). Habata, S., M. Yokokawa and S. Kitawaki. The development of the Earth Simulator. IEICE TRANSACTIONS on Information and systems. E86-D, 1947-1954 (2003).

    Google Scholar 

  • Habata, S., K. Umezawa, M. Yokokawa and S. Kitawaki. Hardware system of the Earth Simulator. Parallel Comput., 30, 1287-1313 (2004).

    Article  Google Scholar 

  • Henderson-Sellers, A. et al. Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Am. Meteorol. Soc., 79, 19-38 (1998).

    Article  Google Scholar 

  • Holland, G. J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519-2541 (1997).

    Article  Google Scholar 

  • Hu, Z.-Z., S. Yang and R. Wu. Long-term climate variations in China and global warming signals. J. Geophys. Res., 108(D19), 4614 (2003). doi:10.1029/2003JD003651.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK (2000).

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881pp (2001).

    Google Scholar 

  • JMA. Outline of the operational numerical weather prediction at the Japan Meteorological Agency (Appendix to WMO numerical weather prediction progress report). Japan Meteorological Agency, 157pp. (2003) (available online: http://www.jma.go.jp/jma/jma-eng/jma-center/nwp/outline-nwp/pdf/ol4 2.pdf)

  • Kang, I. S., K. Jin, B. Wang, K.-M. Lau, J. Shukla, V. Krishnamurthy, S. Schubert, D. Wailser, W. Stern, A. Kitoh, G. Meehl, M. Kanamitsu, V. Galin, V. Satyan, C.-K. Park, and Y. Liu. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim. Dyn., 19, 383-395 (2002).

    Article  Google Scholar 

  • Kawatani, Y. and M. Takahashi. Simulation of the Baiu front in a high resolution AGCM. J. Meteorol. Soc. Jpn., 81, 113-126 (2003).

    Article  Google Scholar 

  • Kitoh, A., S. Yukimoto, A. Noda and T. Motoi. Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2 . J. Meteorol. Soc. Jpn., 75, 1019-1031 (1997).

    Google Scholar 

  • Knutson, T. R. and R. E. Tuleya. Impact of CO2 -induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Clim., 17, 3477-3495 (2004).

    Article  Google Scholar 

  • Knutson, T. R., R. E. Tuleya and Y. Kurihara. Simulated increase of hurricane intensities in a CO2 warmed climate. Science, 279, 1018-1020 (1998).

    Article  Google Scholar 

  • Kobayashi, C. and M. Sugi. Impact of horizontal resolution on the simulation of the Asian summer monsoon and tropical cyclones in the JMA global model. Clim. Dyn., 93, 165-176 (2004).

    Google Scholar 

  • Kusunoki, S., M. Sugi, A. Kitoh, C. Kobayashi, and K. Takano. Atmospheric seasonal predictability experiments by the JMA AGCM. J. Meteorol. Soc. Jpn., 79, 1183-1206 (2001).

    Article  Google Scholar 

  • Kusunoki, S., J. Yoshimura, H. Yoshimura, A. Noda, K. Oouchi and R. Mizuta. Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J. Meteorol. Soc. Jpn., 84, 581-611 (2006).

    Article  Google Scholar 

  • Lau, K.-M. and S. Yang. Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J. Clim., 9, 965-985 (1996).

    Article  Google Scholar 

  • Lau, K.-M., J. H. Kim and Y. Sud. Intercomparison of hydrologic processes in AMIP GCMs. Bull. Am. Meteorol. Soc. 77, 2209-2227 (1996).

    Article  Google Scholar 

  • Liang, X. Z., W. C. Wang and A. N. Samel. Biases in AMIP model simulations of the east China monsoon system. Clim. Dyn., 17, 291-304 (2001).

    Article  Google Scholar 

  • Mellor, G. L. and T. Yamada. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791-1806 (1974).

    Article  Google Scholar 

  • Mizuta, R., K. Oouchi, H. Yoshimura, A. Noda, K. Katayama, S. Yukimoto, M. Hosaka, S. Kusunoki, H. Kawai, and M. Nakagawa. 20-km-mesh global climate simulations using JMAGSM model - Mean climate states. J. Meteorol. Soc. Jpn., 84, 165-185 (2006).

    Article  Google Scholar 

  • Nakagawa, M and A. Shimpo. Development of a cumulus parameterization scheme for the operational global model at JMA. RSMC Tokyo-Typhoon Center Technical Review, No. 7, 10-15 (2004).

    Google Scholar 

  • Ninomiya, K. and T. Akiyama. Multi-scale features of Baiu, the summer monsoon over Japan and the East Asia. J. Meteorol. Soc. Jpn., 70, 467-495 (1992).

    Google Scholar 

  • Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda. Tropical cyclone climatology in a global-warming climate as simulated in a 20-km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteorol. Soc. Jpn., 84, 259-276 (2006).

    Article  Google Scholar 

  • Randall, D. and D.-M. Pan. Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. Meteorological Monograph/The representation of cumulus convection in numerical models 46, 145-150 (1993).

    Google Scholar 

  • Reynolds, R. W. and T. M. Smith. Improved global sea surface temperature analyses using optimum interpolation. J. Clim., 7, 929-948 (1994).

    Article  Google Scholar 

  • Simmons, A. J. and J. K. Gibson. The ERA-40 project plan. ERA-40 Project report series Vol. 1. European Centre for Medium-Range Weather Forecasts, Reading, U.K., 62 pp. (2000).

    Google Scholar 

  • Sperber, K. R., S. Hameed, G. L. Potter and J. S. Boyle. Simulation of the northern summer Monsoon in the ECMWF model: Sensitivity to horizontal resolution. Mon. Weather Rev., 122, 2461-2481 (1994).

    Article  Google Scholar 

  • Sugi, M, A. Noda and N. Sato. Influence of global warming on tropical cyclone climatology: An experiment with the JMA Global Model. J. Meteorol. Soc. Jpn., 80, 249-272 (2002).

    Article  Google Scholar 

  • Tanaka, H. L., N. Ishizaki and D. Nohara. Intercomparison of the intensities and trends of Hadley, Walker and monsoon circulations in the global warming projections. SOLA, 1, 77-80 (2005). doi:10.2151/sola.2005-021.

    Article  Google Scholar 

  • Walsh, K. J. E. and B. F. Ryan. Tropical cyclone intensity increase near Australia as a result of climate change. J. Clim., 13, 3029-3036 (2000).

    Article  Google Scholar 

  • Yamaguchi, K., and A. Noda. Global warming patterns over the North Pacific: ENSO versus AO. J. Meteorol. Soc. Jpn., 84, 221-241 (2006).

    Article  Google Scholar 

  • Yasunaga, K., M. Yoshizaki, Y. Wakazuki, C. Muroi, K. Kurihara, A. Hashimoto, S. Kanada, T. Kato, S. Kusunoki, K. Oouchi, H. Yoshimura, R.Mizuta and A. Noda. Changes in the Baiu frontal activity in the future climate simulated by super-high-resolution global and cloud-resolving regional climate models. J. Meteorol. Soc. Jpn., 84, 199-220 (2006).

    Article  Google Scholar 

  • Yoshimura, H. and T. Matsumura. A two-time-level vertically-conservative semi-Lagrangian semiimplicit double Fourier series AGCM. CAS/JSC WGNE. Res. Act. Atmos. Ocean Model., 35, 3.27-3.28 (2005).

    Google Scholar 

  • Yoshimura, J. and M. Sugi. Tropical cyclone climatology in a high-resolution AGCM - Impacts of SST warming and CO2 increase. SOLA, 1, 133-136 (2005). doi: 10.2151/sola.2005-035.

    Article  Google Scholar 

  • Yoshimura, J., M. Sugi and A. Noda. Influence of greenhouse warming on tropical cyclone frequency. J. Meteorol. Soc. Jpn., 84, 405-428 (2006).

    Article  Google Scholar 

  • Yukimoto, S., A. Noda, A. Kitoh, M. Hosaka, H. Yoshimura, T. Uchiyama, K. Shibata, O. Arakawa and S. Kusunoki. The Meteorological Research Institute coupled GCM, version 2.3 (MRICGCM2.3) - Control climate and climate sensitivity. J. Meteorol. Soc. Jpn., 84, 333-363 (2006a).

    Article  Google Scholar 

  • Yukimoto, S., A. Noda, T. Uchiyama and S. Kusunoki. Climate change of the late nineteenth through twenty-first centuries simulated by the MRI-CGCM2.3. Meteorol. Geophys., 56, 9-24 (2006b).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Noda, A., Kusunoki, S., Yoshimura, J., Yoshimura, H., Oouchi, K., Mizuta, R. (2008). Global Warming Projection by an Atmospheric General Circulation Model with a 20-km Grid. In: Hamilton, K., Ohfuchi, W. (eds) High Resolution Numerical Modelling of the Atmosphere and Ocean. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49791-4_7

Download citation

Publish with us

Policies and ethics