Global Warming Projection by an Atmospheric General Circulation Model with a 20-km Grid

  • Akira Noda
  • Shoji Kusunoki
  • Jun Yoshimura
  • Hiromasa Yoshimura
  • Kazuyoshi Oouchi
  • Ryo Mizuta


A global wanning projection was conducted on the Earth Simulator by using a very high horizontal resolution atmospheric general circulation model with 20-km grid. Tropical cyclones (TCs) and the rain band (Baiu) during the East Asian summer monsoon season are selected as the main targets of this study, because these bring typical extreme events but so far the global climate models have not given reliable simulations and projections due to their insufficient resolutions. The model reproduces TCs and a Baiu rain band reasonably well under the present-day climate conditions. In a warmer climate at the end of this century, the model projects, under the IPCC SRES A1B scenario, that the annual mean occurrence number of TCs decreases by about 30% globally (but increased in the North Atlantic) and TCs with large maximum surface winds increase. The Baiu rain band activities tend to intensify and last longer until August, suggesting more damages due to heavy rainfalls in a warmer climate.


Tropical Cyclone Atmospheric General Circulation Model Global Precipitation Climatology Project Meteorological Research Institute Maximum Surface Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, R. F., G. J. Huffman, A. Chang, R. Ferraro, P. Xie, J. Janowiak, B. Rudolf, U. Schneider, S. Curtis, D. Bolvin, A. Gruber, J. Susskind, P. Arkin, and E. Nelkin. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeor., 4, 1147-1167 (2003).CrossRefGoogle Scholar
  2. Arakawa, A. and W. H. Schubert. Interaction of cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 674-701 (1974).CrossRefGoogle Scholar
  3. Bengtsson, L., M. Botzet and M. Esch. Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus, 48A, 57-73 (1996).Google Scholar
  4. Emanuel, K. A. The dependence of hurricane intensity on climate. Nature, 326, 483-485 (1987). Habata, S., M. Yokokawa and S. Kitawaki. The development of the Earth Simulator. IEICE TRANSACTIONS on Information and systems. E86-D, 1947-1954 (2003).Google Scholar
  5. Habata, S., K. Umezawa, M. Yokokawa and S. Kitawaki. Hardware system of the Earth Simulator. Parallel Comput., 30, 1287-1313 (2004).CrossRefGoogle Scholar
  6. Henderson-Sellers, A. et al. Tropical cyclones and global climate change: A post-IPCC assessment. Bull. Am. Meteorol. Soc., 79, 19-38 (1998).CrossRefGoogle Scholar
  7. Holland, G. J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519-2541 (1997).CrossRefGoogle Scholar
  8. Hu, Z.-Z., S. Yang and R. Wu. Long-term climate variations in China and global warming signals. J. Geophys. Res., 108(D19), 4614 (2003). doi:10.1029/2003JD003651.CrossRefGoogle Scholar
  9. IPCC (Intergovernmental Panel on Climate Change). Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK (2000).Google Scholar
  10. IPCC (Intergovernmental Panel on Climate Change). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881pp (2001).Google Scholar
  11. JMA. Outline of the operational numerical weather prediction at the Japan Meteorological Agency (Appendix to WMO numerical weather prediction progress report). Japan Meteorological Agency, 157pp. (2003) (available online: 2.pdf)
  12. Kang, I. S., K. Jin, B. Wang, K.-M. Lau, J. Shukla, V. Krishnamurthy, S. Schubert, D. Wailser, W. Stern, A. Kitoh, G. Meehl, M. Kanamitsu, V. Galin, V. Satyan, C.-K. Park, and Y. Liu. Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim. Dyn., 19, 383-395 (2002).CrossRefGoogle Scholar
  13. Kawatani, Y. and M. Takahashi. Simulation of the Baiu front in a high resolution AGCM. J. Meteorol. Soc. Jpn., 81, 113-126 (2003).CrossRefGoogle Scholar
  14. Kitoh, A., S. Yukimoto, A. Noda and T. Motoi. Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2 . J. Meteorol. Soc. Jpn., 75, 1019-1031 (1997).Google Scholar
  15. Knutson, T. R. and R. E. Tuleya. Impact of CO2 -induced warming on simulated hurricane intensity and precipitation: Sensitivity to the choice of climate model and convective parameterization. J. Clim., 17, 3477-3495 (2004).CrossRefGoogle Scholar
  16. Knutson, T. R., R. E. Tuleya and Y. Kurihara. Simulated increase of hurricane intensities in a CO2 warmed climate. Science, 279, 1018-1020 (1998).CrossRefGoogle Scholar
  17. Kobayashi, C. and M. Sugi. Impact of horizontal resolution on the simulation of the Asian summer monsoon and tropical cyclones in the JMA global model. Clim. Dyn., 93, 165-176 (2004).Google Scholar
  18. Kusunoki, S., M. Sugi, A. Kitoh, C. Kobayashi, and K. Takano. Atmospheric seasonal predictability experiments by the JMA AGCM. J. Meteorol. Soc. Jpn., 79, 1183-1206 (2001).CrossRefGoogle Scholar
  19. Kusunoki, S., J. Yoshimura, H. Yoshimura, A. Noda, K. Oouchi and R. Mizuta. Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J. Meteorol. Soc. Jpn., 84, 581-611 (2006).CrossRefGoogle Scholar
  20. Lau, K.-M. and S. Yang. Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J. Clim., 9, 965-985 (1996).CrossRefGoogle Scholar
  21. Lau, K.-M., J. H. Kim and Y. Sud. Intercomparison of hydrologic processes in AMIP GCMs. Bull. Am. Meteorol. Soc. 77, 2209-2227 (1996).CrossRefGoogle Scholar
  22. Liang, X. Z., W. C. Wang and A. N. Samel. Biases in AMIP model simulations of the east China monsoon system. Clim. Dyn., 17, 291-304 (2001).CrossRefGoogle Scholar
  23. Mellor, G. L. and T. Yamada. A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791-1806 (1974).CrossRefGoogle Scholar
  24. Mizuta, R., K. Oouchi, H. Yoshimura, A. Noda, K. Katayama, S. Yukimoto, M. Hosaka, S. Kusunoki, H. Kawai, and M. Nakagawa. 20-km-mesh global climate simulations using JMAGSM model - Mean climate states. J. Meteorol. Soc. Jpn., 84, 165-185 (2006).CrossRefGoogle Scholar
  25. Nakagawa, M and A. Shimpo. Development of a cumulus parameterization scheme for the operational global model at JMA. RSMC Tokyo-Typhoon Center Technical Review, No. 7, 10-15 (2004).Google Scholar
  26. Ninomiya, K. and T. Akiyama. Multi-scale features of Baiu, the summer monsoon over Japan and the East Asia. J. Meteorol. Soc. Jpn., 70, 467-495 (1992).Google Scholar
  27. Oouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda. Tropical cyclone climatology in a global-warming climate as simulated in a 20-km-mesh global atmospheric model: Frequency and wind intensity analyses. J. Meteorol. Soc. Jpn., 84, 259-276 (2006).CrossRefGoogle Scholar
  28. Randall, D. and D.-M. Pan. Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. Meteorological Monograph/The representation of cumulus convection in numerical models 46, 145-150 (1993).Google Scholar
  29. Reynolds, R. W. and T. M. Smith. Improved global sea surface temperature analyses using optimum interpolation. J. Clim., 7, 929-948 (1994).CrossRefGoogle Scholar
  30. Simmons, A. J. and J. K. Gibson. The ERA-40 project plan. ERA-40 Project report series Vol. 1. European Centre for Medium-Range Weather Forecasts, Reading, U.K., 62 pp. (2000).Google Scholar
  31. Sperber, K. R., S. Hameed, G. L. Potter and J. S. Boyle. Simulation of the northern summer Monsoon in the ECMWF model: Sensitivity to horizontal resolution. Mon. Weather Rev., 122, 2461-2481 (1994).CrossRefGoogle Scholar
  32. Sugi, M, A. Noda and N. Sato. Influence of global warming on tropical cyclone climatology: An experiment with the JMA Global Model. J. Meteorol. Soc. Jpn., 80, 249-272 (2002).CrossRefGoogle Scholar
  33. Tanaka, H. L., N. Ishizaki and D. Nohara. Intercomparison of the intensities and trends of Hadley, Walker and monsoon circulations in the global warming projections. SOLA, 1, 77-80 (2005). doi:10.2151/sola.2005-021.CrossRefGoogle Scholar
  34. Walsh, K. J. E. and B. F. Ryan. Tropical cyclone intensity increase near Australia as a result of climate change. J. Clim., 13, 3029-3036 (2000).CrossRefGoogle Scholar
  35. Yamaguchi, K., and A. Noda. Global warming patterns over the North Pacific: ENSO versus AO. J. Meteorol. Soc. Jpn., 84, 221-241 (2006).CrossRefGoogle Scholar
  36. Yasunaga, K., M. Yoshizaki, Y. Wakazuki, C. Muroi, K. Kurihara, A. Hashimoto, S. Kanada, T. Kato, S. Kusunoki, K. Oouchi, H. Yoshimura, R.Mizuta and A. Noda. Changes in the Baiu frontal activity in the future climate simulated by super-high-resolution global and cloud-resolving regional climate models. J. Meteorol. Soc. Jpn., 84, 199-220 (2006).CrossRefGoogle Scholar
  37. Yoshimura, H. and T. Matsumura. A two-time-level vertically-conservative semi-Lagrangian semiimplicit double Fourier series AGCM. CAS/JSC WGNE. Res. Act. Atmos. Ocean Model., 35, 3.27-3.28 (2005).Google Scholar
  38. Yoshimura, J. and M. Sugi. Tropical cyclone climatology in a high-resolution AGCM - Impacts of SST warming and CO2 increase. SOLA, 1, 133-136 (2005). doi: 10.2151/sola.2005-035.CrossRefGoogle Scholar
  39. Yoshimura, J., M. Sugi and A. Noda. Influence of greenhouse warming on tropical cyclone frequency. J. Meteorol. Soc. Jpn., 84, 405-428 (2006).CrossRefGoogle Scholar
  40. Yukimoto, S., A. Noda, A. Kitoh, M. Hosaka, H. Yoshimura, T. Uchiyama, K. Shibata, O. Arakawa and S. Kusunoki. The Meteorological Research Institute coupled GCM, version 2.3 (MRICGCM2.3) - Control climate and climate sensitivity. J. Meteorol. Soc. Jpn., 84, 333-363 (2006a).CrossRefGoogle Scholar
  41. Yukimoto, S., A. Noda, T. Uchiyama and S. Kusunoki. Climate change of the late nineteenth through twenty-first centuries simulated by the MRI-CGCM2.3. Meteorol. Geophys., 56, 9-24 (2006b).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Akira Noda
  • Shoji Kusunoki
  • Jun Yoshimura
  • Hiromasa Yoshimura
  • Kazuyoshi Oouchi
  • Ryo Mizuta

There are no affiliations available

Personalised recommendations