Skip to main content

Description of AFES 2: Improvements for High-Resolution and Coupled Simulations

  • Chapter
High Resolution Numerical Modelling of the Atmosphere and Ocean

Summary

This chapter describes the updated version of Atmospheric General Circulation Model for the Earth Simulator (AFES 2). Modifications are intended (1) to increase the accuracy and efficiency of the Legendre transform at high resolutions and (2) to improve the physical performance. In particular, the Emanuel scheme replaces a simplified version of the Arakawa-Schubert scheme for the parametrization of cumulus convection. The Emanuel scheme parametrizes O(100m) drafts within subgrid-scale cumuli and does not have explicit dependency upon the grid size. Therefore the cloud model of the Emanuel scheme allows us to use it at high resolutions of O(10km) where the validity of the ensemble cloud model of the Arakawa-Schubert scheme is questionable. Moreover, 10-year test runs indicate that the use of the Emanuel scheme improve the physical performance at a moderate resolution as well. Anomalies of the geopotential height and zonal winds in the middle to upper troposphere are reduced, although the improvements in terms of the distributions of precipitation and sea-level pressure are not significant. Improvements are attributable to a better vertical structure of temperature in the tropics due to more realistic estimation of mixing of the momentum, temperature, and moisture by the Emanuel scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

 

  • Arakawa, A. and Schubert, W.H. (1974) Interaction of cumulus cloud ensemble with the large-scale environment. Part I. J. Atmos. Sci., 31, 671-701.

    Article  Google Scholar 

  • Arakawa, A. and Suarez, M.J. (1983) Vertical differencing of the primitive equations in sigma coordinates. Mon. Wea. Rev., 111, 34-45.

    Article  Google Scholar 

  • Belousov, S.L. (1962) Tables of normalized associated Legendre polynomials. Brown D.E. (Trans.), Pergamon Press, Oxford.

    Google Scholar 

  • Bony, S. and Emanuel, K.A. (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J. Atmos. Sci., 58, 3158-3183.

    Article  Google Scholar 

  • Emanuel, K.A. (1991) A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci., 48, 2313-2335.

    Article  Google Scholar 

  • Emanuel, K.A. and Z˘ ivkovi ć -Rothman M. (1999) Development and evaluation of a convection scheme for use in climate models. J. Atmos. Sci., 56, 1766-1782.

    Article  Google Scholar 

  • Enomoto, T., Fuchigami, H., Shingu, S. (2004) Accurate and robust Legendre transforms at large truncation wavenumbers with the Fourier method., Proc. the 2004 workshop on the solution of partial differential equations on the sphere, 20-23 July 2004, Yokohama, Japan, 17-19.

    Google Scholar 

  • ERBE Science Team (1986) First Data From the Earth Radiation Budget Experiment (ERBE). Bull. of the Amer. Meteor. Soc., 67, 818-824.

    Article  Google Scholar 

  • Gibson, J.K., K Ã¥llberg, P., Uppala, S., Hernandez, A., Nomura, A., Serrano, E. (1999) ERA-15 description (version 2 - January 1999), ECMWF Re-Analysis Project Report Series, European Centre for Mid-Range Weather Forecasts, Reading, United Kingdom.

    Google Scholar 

  • Hobson, E.W. (1931) The theory of spherical and ellipsoidal harmonics. Cambridge Univesity Press, Cambridge.

    Google Scholar 

  • Hoskins, B.J. and Simmons, A.J. (1975) A multi-layer spectral model and the semi-implicit method. Quart. J. Roy. Meteor. Soc., 101, 637-655.

    Article  Google Scholar 

  • Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G. Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V. van den Dool, H., Jenne, R. and Fiorino, M. (1999) The NCEP/NCAR 50-year reanalysis. Bull. Amer. Meteor. Soc., 82, 247-267.

    Article  Google Scholar 

  • Komori, N., Kuwano-Yoshida, A., Enomoto, T., Sasaki, H. and Ohfuchi, W. (2007) High-resolution simulation of the global coupled atmosphere-ocean system: description and preliminary outcomes of CFES (CGCM for the Earth Simulator). In High Resolution Numerical Modelling of the Atmosphere and Ocean. W. Ohfuchi and K. Hamilton (Eds.), Springer, New York.

    Google Scholar 

  • Le Treut, H. and Li, Z.-X. (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effects associated with the simulation of cloud optical properties. Clim. Dynam., 5, 175-187.

    Google Scholar 

  • Mellor. G.L. (1977) The Gaussian cloud model relations. J. Atmos. Sci., 34, 356-358.

    Article  Google Scholar 

  • Nakajima, T., Tsukamoto, M., Tsushima, Y., Numaguti, A., and Kimura, T., 2000: Modeling of the radiative process in an atmospheric general circulation model. Appl. Opt., 39, 4869-4878.

    Article  Google Scholar 

  • Numaguti, A., Takahashi, M., Nakajima, T., and Sumi, A. (1997) Description of CCSR/NIES/ Atmospheric General Circulation Model. CGER’s Supercomputer Monograph Report, 3, National Institute of Environmental Sciences, Tsukuba, Japan, 1-48.

    Google Scholar 

  • Ohfuchi, W., Nakamura, H., Yoshioka, M.K., Enomoto, T., Takaya, K., Peng, X., Yamane, S., Nishimura, T., Kurihara, Y., and Ninomiya, K. (2004) 10-km mesh meso-scale resolving simulations of the global atmosphere on the Earth Simulator: preliminary outcomes of AFES (AGCM for the Earth Simulator). J. Earth Simulator, 1, 8-34.

    Google Scholar 

  • Peng, M.S., Ridout, J.A. and Hogan, T.F. (2004) Recent modification of the Emanuel convective scheme in the Navy operational global atmospheric prediction system. Mon. Wea. Rev., 132, 1254-1268.

    Article  Google Scholar 

  • Peng, X., Xiao, F., Ohfuchi, W., and Fuchigami, H. (2005) Conservative semi-Lagrangian transport on a sphere and the impact on vapor advection in an atmospheric general circulation model. Mon. Wea. Rev. 133, 504-520.

    Article  Google Scholar 

  • Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C. and Wang, W., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609-1625.

    Article  Google Scholar 

  • Sekiguchi, M. (2004) A study on evaluation of the radiative flux and its computational optimization in the gaseous absorbing atmosphere. Science Doctoral Dissertation, Tokyo University, 121 (in Japanese).

    Google Scholar 

  • Sekiguchi, M., Nakajima, T., Suzuki, K., Kawano, K., Higurashi, A., Rosenfeld, D., Sano, I. and Mukai, S. (2003) A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res., 108, (10.1029), 2002JD003359.

    Google Scholar 

  • Shingu, S., Takahara, H., Fuchigami, H., Yamada, M., Tsuda, Y., Ohfuchi, W., Sasaki, Y., Kobayashi, K., Hagiwara, T., Habata, S., Yokokawa, M., Itoh, H., and Otsuka, K. (2002) A 26.58 Tflops global atmospheric simulation with the spectral transform method on the Earth Simulator. Proceedings of Supercomputing 2002, http://www.sc-2002.org/paperpdfs/pap.pap331.pdf.

  • Shingu, S., Fuchigami, H., Yamada, M. (2003) Vector parallel programming and performance of a spectral atmospheric model on the Earth Simulator in Realizing Teracomputing: Proceedings of the Tenth ECMWF Workshop on the Use of High Performance Computing in Meteorology, W. Zwieflhofer and N. Kreitz (Eds.), World Scientific, 29-46.

    Google Scholar 

  • Sommeria, G. and Deardroff, J.W. (1977) Subgrid-scale condensation in models of nonprecipitation clouds. J. Atmos. Sci., 34, 344-355.

    Article  Google Scholar 

  • Swartztrauber, P.N. (1993) The vector harmonic transform method for solving partial differential equations in spherical geometry. Mon. Wea. Rev., 121, 3415-3437.

    Article  Google Scholar 

  • Swartztrauber, P.N. (2002) Computing the points and weights for Gauss-Legendre quadrature. SIAM Journal on Scientific Computing, 24, 945-954.

    Article  Google Scholar 

  • Takahashi, Y.O., Hamilton, K., and Ohfuchi, W. (2006) Explicit global simulation of the mesoscale spectrum of atmospheric motions, Geophys. Res. Lett., 33, L12812 doi:10.1029/ 2006GL026429.

    Article  Google Scholar 

  • Takata, K., Emori, S., Watanabe, T. (2003) Development of the minimal advanced treatments of interaction and runoff. Global Planet. Change, 38, 209-222.

    Google Scholar 

  • Teixeira. J. and Hogan, T.F. (2002) Boundary layer clouds in a global atmospheric model: simple cloud cover parameterizations. J. Climate, 15, 1261-1276.

    Article  Google Scholar 

  • Temperton, C. (1991) On scalar and vector transform methods for global spectral models. Mon. Wea. Rev., 119, 1303-1307.

    Article  Google Scholar 

  • Tsuboki, K. (2007) High-Resolution Simulations of High-Impact Weather Systems Using the Cloud-Resolving Model on the Earth Simulator. In High Resolution Numerical Modelling of the Atmosphere and Ocean. W. Ohfuchi and K. Hamilton (Eds.), Springer, New York. Chapter 9.

    Google Scholar 

  • Uppala, S.M., KÃ¥llberg, P.W., Simmons, A.J., Andrae, U., da Costa Bechtold, V., Fiorino, M., Gibson, J.K., Haseler, J., Hernandez, A., Kelly, G.A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.P., Andersson, E., Arpe, K., Balmaseda, M.A., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M., Hagemann, S., Hólm, E., Hoskins, B.J., Isaksen, L., Janssen, P.A.E.M., Jenne, R., McNally, A.P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N.A., Saunders, R.W., Simon, P., Sterl, A., Trenberth, K.E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J. 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961-3012.doi:10.1256/qj.04.176

    Article  Google Scholar 

  • Xie, P.-P. and Arkin, P.A. (1997) Global Precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Enomoto, T., Kuwano-Yoshida, A., Komori, N., Ohfuchi, W. (2008). Description of AFES 2: Improvements for High-Resolution and Coupled Simulations. In: Hamilton, K., Ohfuchi, W. (eds) High Resolution Numerical Modelling of the Atmosphere and Ocean. Springer, New York, NY. https://doi.org/10.1007/978-0-387-49791-4_5

Download citation

Publish with us

Policies and ethics