Advertisement

An Updated Description of the Conformal-Cubic Atmospheric Model

  • John L. McGregor
  • Martin R. Dix

Summary

An updated description is presented for the quasi-uniform Conformal-Cubic Atmospheric Model. The model achieves high efficiency as a result of using semi-Lagrangian, semi-implicit time differencing. A reversible staggering treatment for the wind components provides very good dispersion characteristics. An MPI methodology is employed that allows the model to run efficiently on multiple processors. The physical parameterizations for the model are briefly described, and results are shown for the Held-Suarez test, the Aqua-Planet Experiment and an AMIP simulation having 125 km resolution. Antarctic snow accumulation is also shown from a shorter simulation having 50 km resolution.

Keywords

Versus Versus Versus Versus Versus Spectral Element Method Vertical Advection Total Variation Diminish Atmospheric Model Intercomparison Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

 

  1. Bates, J. R., F. H. M. Semazzi, R. W. Higgins, and S. R. M. Barros, 1990: Integration of the shallow water equations on the sphere using a vector semi-Lagrangian scheme with a multigrid solver. Mon. Wea. Rev., 118, 1615-1627.CrossRefGoogle Scholar
  2. Bermejo, R., and A. Staniforth, 1992: The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes. Mon. Wea. Rev., 120, 2622-2632.CrossRefGoogle Scholar
  3. Chouinard, C., M. B éland, and N. McFarlane, 1986: A simple gravity wave drag parametrization for use in medium-range weather forecast models. Atmos.-Ocean, 24, 91-110.Google Scholar
  4. D’Azevedo, E. F., V. L. Eijkhout, and C. H. Romine, 1992: Conjugate gradient algorithms with reduced synchronization overhead on distributed memory multiprocessors. Technical Report LAPACK working note 56, University of Tennessee.Google Scholar
  5. Durran, D. R., and P. A. Reinecke, 2004: Instability in explicit two-time-level semi-Lagrangian schemes. Q. J. R. Meteorol. Soc., 130, 365-369.CrossRefGoogle Scholar
  6. Fels, S. B., and M. D. Schwarzkopf, 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32, 1475-1488.CrossRefGoogle Scholar
  7. Fox-Rabinovitz, M., J. Cot é , B. Dugas, M. D équ é , and J. L. McGregor, 2006: Variable-resolution GCMs: Stretched-Grid Model Intercomparison Project (SGMIP). J. Geophys. Res., 111, D16104, doi: 10.1029/2005JD006520.CrossRefGoogle Scholar
  8. Gordon, H. B., L. D. Rotstayn, J. L. McGregor, M. R. Dix, E. A. Kowalczyk, S. P. O’Farrell, L. J. Waterman, A. C. Hirst, S. G. Wilson, M. A. Collier, I. G. Watterson, and T. I. Elliott, 2002: The CSIRO Mk3 climate system model. Technical Report 60, CSIRO Atmospheric Research, 130 pp.Google Scholar
  9. Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825-1830.CrossRefGoogle Scholar
  10. Holtslag, A. A. M., and B. A. Boville, 1993: Local versus non-local boundary layer diffusion in a global climate model. J. Climate, 6, 1825-1842.CrossRefGoogle Scholar
  11. Majewski, D., D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, and W. Wergen, 2002: The operational global icosahedral-hexagonal gridpoint model GME: Description and high-resolution tests. Mon. Wea. Rev., 130, 319-338.CrossRefGoogle Scholar
  12. McGregor, J. L., 1993: Economical determination of departure points for semi-Lagrangian models. Mon. Wea. Rev., 121, 221-230.CrossRefGoogle Scholar
  13. McGregor, J. L., 1996: Semi-Lagrangian advection on conformal-cubic grids. Mon. Wea. Rev., 124, 1311-1322.CrossRefGoogle Scholar
  14. McGregor, J. L., 2003: A new convection scheme using a simple closure. BMRC Res. Rep. 93, 33-36.Google Scholar
  15. McGregor, J. L., 2005a: C-CAM: Geometric aspects and dynamical formulation [electronic publication]. Technical Report 70, CSIRO Atmospheric Research, 43 pp.Google Scholar
  16. McGregor, J. L., 2005b: Geostrophic adjustment for reversibly staggered grids. Mon. Wea. Rev., 133,1119-1128.CrossRefGoogle Scholar
  17. McGregor, J. L., and M. R. Dix, 2001: The CSIRO Conformal-Cubic Atmospheric GCM. IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, P. F. Hodnett, Ed., Kluwer: Dordrecht, 197-202.Google Scholar
  18. McGregor, J. L., H. B. Gordon, I. G. Watterson, M. R. Dix, and L. D. Rotstayn, 1993: The CSIRO 9-level atmospheric general circulation model. Technical Report 26, CSIRO Atmospheric Research, 89 pp.Google Scholar
  19. Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs and their physical parameterizations. I: The proposal. Atmos. Sci. Letters, 1, 101-107.CrossRefGoogle Scholar
  20. Rancic, M., R. J. Purser, and F. Mesinger, 1996: A global shallow-water model using an expanded spherical cube: Gnomonic versus conformal coordinates. Quart. J. Roy. Meteor. Soc., 122, 959-982.Google Scholar
  21. Rivest, C., A. Staniforth, and A. Robert, 1994: Spurious resonant response of semi-Lagrangian discretizations to orographic forcing: Diagnosis and solution. Mon. Wea. Rev., 122, 366-376.CrossRefGoogle Scholar
  22. Rotstayn, L. D., 1997: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes. Quart. J. Roy. Meteor. Soc., 123, 1227-1282.Google Scholar
  23. Schmidt, F., 1977: Variable fine mesh in spectral global model. Beitr. Phys. Atmos., 50, 211-217.Google Scholar
  24. Schwarzkopf, M. D., and S. B. Fels, 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96, 9075-9096.CrossRefGoogle Scholar
  25. Smagorinsky, J., S. Manabe, and J. L. Holloway, 1965: Numerical results from a nine-level general circulation model of the atmosphere. Mon. Wea. Rev., 93, 727-768.CrossRefGoogle Scholar
  26. Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435-460.CrossRefGoogle Scholar
  27. Temperton, C., and A. Staniforth, 1987: An efficient two-time-level semi-Lagrangian semi-implicit scheme. Quart. J. Roy. Meteor. Soc., 113, 1025-1039.CrossRefGoogle Scholar
  28. Thomas, S. J., and R. D. Loft, 2000: Parallel semi-implicit spectral element methods for atmospheric general circulation models. J. Sci. Comput., 15, 499-518.CrossRefGoogle Scholar
  29. Thuburn, J., 1993: Use of a flux-limited scheme for vertical advection in a GCM. Quart. J. Roy. Meteor. Soc., 119, 469-487.CrossRefGoogle Scholar
  30. van Leer, B., 1977: Towards the ultimate conservative difference scheme IV. A new approach to numerical convection. J. Comput. Phys., 23, 276-299.CrossRefGoogle Scholar
  31. van Lipzig, N. P. M., J. C. King, T. A. Lachlan-Cope, and M. R. van den Broeke, 2004: Precipitation, sublimation, and snow drift in the Antarctic Peninsula region from a regional atmospheric model. J. Geophys. Res., 109, D24106, doi:10.1029/2004JD004701.CrossRefGoogle Scholar
  32. Vaughan, D. G., J. L. Bamber, M. Giovinetto, J. Russell, and A. P. R. Cooper, 1999: Reassessment of net surface mass balance in Antarctica. J. Climate, 12, 933-946.CrossRefGoogle Scholar
  33. Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539-2558.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John L. McGregor
  • Martin R. Dix

There are no affiliations available

Personalised recommendations