Impact of Coupled Nonhydrostatic Atmosphere-Ocean-Land Model with High Resolution

  • Keiko Takahashi
  • Xindong Peng
  • Ryo Onishi
  • Mitsuru Ohdaira
  • Koji Goto
  • Hiromitsu Fuchigami
  • Takeshi Sugimura


This chapter presents basic formulation of Multi-Scale Simulator for the Geoenvironment (MSSG) which is a coupled non-hydrostatic AGCM-OGCM developed in Earth Simulator Center. MSSG is characterized by Yin-Yang grid system for both of the components, computational schemes with high accuracy in the dynamical core and high computational performance on the Earth Simulator. In particular some preliminary results from 120-h forecast experiments with MSSG are presented.


Horizontal Resolution Lateral Boundary Condition Vertical Layer Land Model Ocean Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blackadar, A. K., 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, 1, Pfafflin and Ziegler, Eds., Gordon and Breach Publisher Group, Newark, pp. 50-85.Google Scholar
  2. Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models, Q. J. R. Met. Soc., 102, 405-418.Google Scholar
  3. Durran, D., 1991: Numerical methods for wave equations in Geophysical Fluid Dynamics, Springer, Berlin, Heidelberg, New York.Google Scholar
  4. Fritsch, J. M., and Chappell, C. F., 1980: Numerical prediction of convectively driven mesoscale pressure systems. Part I. Convective parameterization, J. Atmos. Sci., 37, 1722-1733.CrossRefGoogle Scholar
  5. Gal-Chen, T., and Somerville, R. C. J., 1975: On the use of a coordinate transformation for the solution of the Navier-Stokes equations. J. Compu. Phys., 17, 209-228.CrossRefGoogle Scholar
  6. Gill, A., 1982: Atmosphere-Ocean dynamics, Academic Press, Inc., New York.Google Scholar
  7. Kageyama, A., and Sato, T., 2004: The Yin-Yang Grid: An overset grid in spherical geometry. Geochem. Geophys. Geosyst., 5, Q09005, doi:10.1029/2004GC000734.CrossRefGoogle Scholar
  8. Kain, J. S., and Fritsch, J. M., 1993: Convective parameterization for mesoscale models: The KainFritsch scheme. The Representation of Cumulus Convection in Numerical Models of the Atmosphre, Meteor. Monogr., 46, Am. Meteorol. Soc., 165-170.Google Scholar
  9. Komine, K. et al., 2004: Development of a global non-hydrostatic simulation code using Yin-Yang grid system, Proc. The 2004 Workshop on the Solution of Partial Differential Equations on the Sphere, 67-69, 2/Poster/54 poster
  10. Lilly, D. K., 1962: On the numerical simulation of buoyant convection. Tellus, 14, 148-172.CrossRefGoogle Scholar
  11. Marshall, J., Hill, C., Perelman, L. and Adcroft, A., 1997a: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res., 102, 5733-5752.CrossRefGoogle Scholar
  12. Marshall, J., Adcroft, A., Hill, C., Perelman, L. and Heisey, C., 1997b: A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res., 102, 5753-5766.CrossRefGoogle Scholar
  13. Mellor, G. L. and Yamada, T., 1974, A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 1791-1806.CrossRefGoogle Scholar
  14. Ohdaira, M. et al, 2004: Validation for the Solution of Shallow Water Equations in Spherical Geometry with Overset Grid System in Spherical Geometry. Proc. The 2004 Workshop on the Solution of Partial Differential Equations on the Sphere, frcgc/eng/workshop/pde2004/pde2004 2/Poster/56poster
  15. Peng, X., Xiao, F., Takahashi, K. and Yabe T., 2004: CIP transport in meteorological models. JSME Int. J. (Series B), 47(4), 725-734.CrossRefGoogle Scholar
  16. Peng, X., Xiao, F., Takahashi, K. and Xiao, F., 2006: Conservative constraint for a quasi-uniform overset grid on sphere. Q. J. R. Meteorl. Soc. 132, 979-996.CrossRefGoogle Scholar
  17. Reisner, J., Ramussen R. J., and Bruintjes, R. T., 1998: Explicit forecasting of supercoolez liquid water in winter storms using the MM5 mesoscale model. Q. J. R. Meteorol. Soc. 124, 1071-1107.CrossRefGoogle Scholar
  18. Satomura, T. and Akiba, S., 2003: Development of high-precision nonhydrostatic atmospheric model (1): Governing equations, Annu. Disas. Prev. Res. Inst., Kyoto Univ., 46B, 331-336.Google Scholar
  19. Smagorinsky, J., Manabe, S. and Holloway, J. L. Jr., 1965: Numerical results from a nine level general circulation model of the atmosphere., Mon. Weather Rev., 93, 727-768.CrossRefGoogle Scholar
  20. Stuben, K., 1999: A Review of Algebraic Multigrid, GMD Report 96.Google Scholar
  21. Takahashi, K. et al., 2004a: Proc. 7th International Conference on High Performance Computing and Grid in Asia Pacific Region, 487-495.Google Scholar
  22. Takahashi, K. et al., 2004b: Non-hydrostatic Atmospheric GCM Development and its computational performance, performance computing-11th/presentations.html
  23. Takahashi, K., et al. 2005: Non-hydrostatic atmospheric GCM development and its computational performance, Use of High Performance computing in meteorology, Walter Zwieflhofer and George Mozdzynski Eds., World Scientific, 50-62.Google Scholar
  24. Wicker, L. J. and Skamarock, W.C., 2002: Time-splitting methods for elastic models using forward time schemes, Mon. Weather Rev., 130, 2088-2097.CrossRefGoogle Scholar
  25. Zhang, D. and Anthes, R. A., 1982: A High-Resolution Model of the Planetary Boundary Layer Sensitivity Tests and Comparisons with SESAME-79 Data. J. Appl. Meteorol., 21, 1594-1609.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Keiko Takahashi
  • Xindong Peng
  • Ryo Onishi
  • Mitsuru Ohdaira
  • Koji Goto
  • Hiromitsu Fuchigami
  • Takeshi Sugimura

There are no affiliations available

Personalised recommendations